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Evaluation of Dynamic Response Variability in Aluminum 

Honeycomb Sandwich Panels Using PCE and Kriging-Based 

Metamodel 

Highlights 

❖ The response of the core cell walls is particularly decisive at high frequencies and cannot be captured when 

the core is taken as an equivalent volume.  

❖ The uncertainties in the core structure mostly originated from the inhomogeneity of adhesive fillets. 

❖ The variability at low frequencies is due to the facing sheets, while the variability at high frequencies is 

dominated by the core. 

Graphical Abstract 

In this work, the dynamic response variability in 35 aluminum honeycomb sandwich panel samples is examined using 

a PCE and Kriging-based metamodel. 

  

Figure. Experimental modal analysis of aluminum honeycomb sandwich panels 

Aim 

To model the dynamic response variability in commercial aluminum honeycomb sandwich panels. 

Design & Methodology 

The experimental data are acquired through experimental modal analysis techniques. The computational model is 

constructed using shell modeling. The modal frequency values obtained for the samples are compared with the 

computational results and deviations are referred to as errors. 

Originality 

A data-driven meta-model called PCE-Kriging is created to express the relationship between error and the stochastic 

variables. 

Findings 

The results show that the variability at low frequencies is due to the facing sheets, while the variability at high 

frequencies is dominated by the core. 

Conclusion  

The uncertainties in the core structure mostly originated form the inhomogeneity of adhesive fillets which alter the 

effective cell wall thickness 
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 ABSTRACT 

The aim of this study is to model the dynamic response variability in commercial aluminum honeycomb sandwich panels. An 

experimental modal analysis is performed on 35 identical commercial AHSPs. Based on 10,000 samples, a computational model 

is constructed according to the estimated weight of the panel. The modal frequencies of the 35 samples for the first 10 flexible 

modes are compared with the computational results and deviations are referred to as errors. The thickness of the facing sheets and 

thickness of the cell wall of the core are considered as sources of uncertainty. A data-driven meta-model called PCE-Kriging is 

created.  

Keywords: Kriging, modal analysis, polynomial chaos expansion (PCE), uncertainty quantification, variability. 

Alüminyum Petek Sandviç Panellerde Dinamik Tepki 

Değişkenliğinin PCE ve Kriging Tabanlı Meta-Model 

Kullanılarak Değerlendirilmesi 

ÖZ 

Bu çalışmanın amacı, ticari alüminyum petek sandviç panellerdeki (APSP) dinamik tepki değişkenliğini modellemektir. Özdeş 35 

ticari APSP üzerinde deneysel modal analiz çalışması gerçekleştirilmiştir. Panelin tahmini ağırlığına göre 10.000 örnek temel 

alınarak bir hesaplamalı model oluşturulmuştur. İlk 10 esnek mod için 35 numunenin deneysel modal frekansları, deterministik 

hesaplama modelinin sonuçlarıyla karşılaştırılmış ve sapmalar hata olarak nitelenmiştir. Kaplama levhalarının kalınlıkları ve 

çekirdek hücre duvarının kalınlığı belirsizlik kaynakları olarak kabul edilmiştir. Hata ve stokastik değişkenler arasındaki ilişkiyi 

ifade etmek için PCE-Kriging adı verilen veri güdümlü bir meta-model oluşturulmuştur. Sonuçlar, düşük frekanslardaki 

değişkenliğin kaplama tabakalarından kaynaklandığını, yüksek frekanslardaki değişkenliğin ise çekirdek tarafından domine 

edildiğini göstermektedir. 

Anahtar Kelimeler: Kriging, modal analiz, çokterimli kaos açılımı, belirsizlik sayısallaştırma, değişkenlik. 

 
1. INTRODUCTION 

Aluminum honeycomb sandwich panels (AHSPs) have 

been commonly designed and implemented due to their 

benefits. Some of these benefits include high strength to 

weight ratio, crashworthiness, energy absorption, and 

effective acoustic insulation [1–5]. AHSPs are used in the 

rail systems, ship construction, automotive, and aviation 

industries [6–14]. Apart from specialized applications 

such as artificial satellite construction [15–17], 

commercial AHSPs are generally used in industrial 

applications.  

Due to manufacturing uncertainties in commercial 

AHSPs, there may be significant variances between 

panels considered identical. It is important to consider 

these variances when designing or testing any 

engineering structure where AHSPs are employed. The 

term variability can be categorized as inter variability and 

intra variability. Inter variability is defined as variances 

in the response of identical systems under the same 

environmental conditions while intra variability as 

variances in the response of a system under different 

environmental conditions [18, 19]. Intra variability arises 

due to environmental parameters such as different 

operating conditions and different ambient temperatures. 

Inter variability arises occasionally due to production 

errors, assembly procedure and tolerances in modeling. 

The terms variability and uncertainty are sometimes used 

interchangeably, leading to confusion [20, 21]. 

Variability in this work is related to aleatory uncertainty 

rather than epistemic uncertainty. Depending on the 

aleatory uncertainties, the dynamic response of the 

AHSPs is said to be stochastic. Uncertainties in material 

properties, geometric and physical parameters also cause 

variability. In the commercial AHSPs the sources of 

uncertainty are the geometry heterogeneity and the 

effective mechanical properties of materials which are 
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mostly altered due to the presence of adhesives used for 

assembling the AHSPs [22]. 

Engineering structures are often exposed to dynamic 

loading [23, 24]. In the relevant literature it is shown that 

the dynamic response of honeycomb structures is 

sensitive to geometric variables [25–27]. Besides the 

geometric variables, the mechanical properties of 

materials also affect the dynamic response results which 

are shown in model update studies [22, 28]. The response 

of AHSPs to dynamic loading is an important concern 

that must be validated at the design stage. The aim of the 

current study is to model the dynamic response 

variability in commercial AHSPs. 

Geometrical irregularities occur in the honeycomb cells 

due to the manufacturing procedure.  These irregularities 

cause uncertainties in the mechanical performance of the 

panels. Zhao et al. developed a fast Fourier transform 

based method to predict the in–plane elastic properties of 

irregular hexagonal cores [29]. Dey et al. proposed 

multivariate adaptive regression splines–based 

uncertainty quantification method for composite 

sandwich structures [30]. According to the researchers, 

this approach effectively replaces the Monte Carlo based 

stochastic models for sandwich composite structures 

with a computationally efficient model, making the 

overall uncertainty quantification process much more 

cost-effective. Zhang et al. [31] conducted a 

computational study on a honeycomb sandwich structure 

to attain its real strength boundary at failure considering 

the randomness of its parameters as characterized by 

Latin hypercube sampling using Matlab. Lajili et al. [32] 

investigated the wave propagation features in a sandwich 

panel with honeycomb core over a large frequency 

domain in presence of uncertainties. They use the 

generalized polynomial chaos method with Latin 

hypercube sampling. In a study aiming to increase the 

strength of a honeycomb structure [33], grey relational 

grade is assigned to three objective functions consisting 

of von Misses stresses computed according to three 

different standards. The results of a uniform design of 

experiment and grey relational grades were used in 

surrogate models created using Kriging interpolation. 

Polynomial chaos expansion (PCE) and Kriging-based 

metamodels are often used in reliability-based design 

optimization (RBDO) studies and many successful 

results are reported in literature [34–36]. This 

metamodeling algorithm utilizes the advanced 

techniques of PCE [37, 38] and Kriging (Gaussian 

process modeling) [39–41]. To model the dynamic 

response variability in commercial AHSPs, a PCE and 

Kriging-based metamodel is adopted in this work. The 

structure of this paper is as follows. To obtain modeling 

data, 35 samples measuring 750mm×500mm×15 mm are 

subjected to experimental modal analysis as explained in 

Section 2. In Section 3, fundamental notions of the three 

surrogate models, generalized polynomial chaos 

expansion (gPCE), Kriging metamodeling, and PCE-

Kriging, are briefly explained and then the section copes 

with how these models are implemented for various 

engineering and applied science problems in literature. 

The construction of the data-driven meta-model called 

PCE-Kriging for the AHSP is introduced in Section 4. 

Finally, a few brief conclusions are drawn in the last 

section. 

 

2. EXPERIMENTAL MODAL ANALYSIS 

Important dynamic properties are the natural frequencies, 

mode shapes, and damping ratios. Experimental modal 

analysis (EMA) is a testing and analysis procedure used 

to determine these dynamic properties through measured 

frequency response functions (FRFs). The experimental 

procedure includes data collection and analysis of the 

samples. The analyzed data makes it possible to examine 

the impact of system properties on the response. To 

obtain reliable test data, the excitation (input) and 

response (output) locations must be successfully 

determined through a pre–test model [42, 43].  

To build a pre–test model, a computational model is first 

constructed in Siemens Simcenter 3D. The first step in 

preparing the model is to draw the core structure. The 

most important detail to note in the drawing is that some 

of the joints in the core structure have double cell walls, 

not single. Any hexagonal cell has a manufacturing-

induced double cell wall on two sides. Since glue will be 

used at the joints, tolerance values should be adjusted 

accordingly. Since the material is isotropic, it is realistic 

to create a mesh structure with two-dimensional 

elements. Since the mesh structure will be created using 

the shell/shell/shell (SSS) approach with two-

dimensional elements, the midsurface of the entire 

geometry is extracted, where a section is shown in Figure 

1 [22]. For a detailed discussion on VVV, SVS and SSS 

modeling the interested readers are referred to Ref. [44]. 

The dimensions of the AHSP model and the mechanical 

properties of the materials are tabulated in Table 1 and 

Table 2, respectively. The commercial AHSP is obtained 

from Altıgen Co. [45]. Total number of elements and 

nodes are 189,452 and 348,726, respectively. 

 
Figure 1. The midsurfaces of CAD used in the modeling 

To extract the eigenfrequencies and eigenvectors of the 

panel, the eigenvalue problem is solved using Lanczos 

algorithm built-in Siemens Simcenter3D. Then, a pre–

test model is created. The pre–test model is used to 

determine the excitation and response locations at which 

accelerance FRFs (a/F) will be acquired in the 



 

 

experiment. The critical node locations to be measured 

are determined with the min-MAC algorithm.  

Table 1. The dimensions of the AHSP 

Components Parameter Dimension (mm) 

Facing 

sheets 

Length (l) 750 

Width (w) 500 

Height (h) 1 

Core 

Cell side length (𝑙𝑐) 5 

Cell radius (R) 8.66 

Cell wall thickness 

(𝑡) 
0.05 

Height (h) 13 

The algorithm uses the SOL103 solution file to determine 

the node locations such that the diagonal terms in the 

autocorrelation modal assurance criterion (Auto-MAC) 

matrix are 1 and the diagonal terms are 0.2 or less. The 

algorithm starts with the required set of degrees-of-

freedom (dof) and adds one dof for the uniaxial sensor 

and three dof for the triaxial sensor. The dof are added by 

selecting one at a time from the candidate set. The 

algorithm keeps track of a subset of off-diagonal MAC 

terms during the selection process. This subset starts with 

the largest available diagonal term of the MAC matrix. 

Other terms are added to the watchlist as they become the 

largest diagonal term of the MAC matrix. Optimum 

excitation locations are determined by the normal mode 

indication function (NMIF). Through the pre–test model 

with Guyan reduction, 21 output locations and 1 input 

location are identified. The locations are shown in Figure 

2. 

 

A Sinus analyzer, a Dytran roving hammer and Dytran 

uniaxial accelerometers are used to measure the FRFs 

from the 21 determined sensor locations. The 

experimental data are obtained under free boundary 

conditions. To achieve the free boundary conditions, 

elastic ropes are used where shown in Figure 3. 

Table 2. Mechanical properties of materials 

Material Geometry Elastic modulus (MPa) Poisson’s ratio Density (kg/m3) 

Aluminum 5754 Facing sheet 70,300 0.33 2,670 

Aluminum 3005 Core 69,000 0.34 2,700 

Polyurethane hard Adhesive 900 0.40 1,200 

 

 

(a) the output locations 

 
(b) the input location 

Figure 2. Sensor locations determined through pre-test analysis. 



 

 

The frequency range is 1.2 kHz, and the number of 

spectral lines is 3,200. The experimental raw data is 

processed through nCode software using a linear least 

squares regression fit. The variation in the dynamic 

response of AHSPs in terms of flexible modal frequency 

values is shown in Figure 4. The dimensions and weights 

of the samples were measured before the modal test. It 

was observed that the weights of the samples, which were 

assumed to be identical, were not equal. The weights of 

the samples are tabulated in Table 3. From a commercial 

point of view, the samples are considered to be identical. 

Since the samples were precision cut from larger 

  

a) AHSP samples b) Modal test 

Figure 3. Modal test of 35 AHSP samples 

 

Table 3. The weights of AHSP samples (error term = weight of the panel – average) 

Panel # Weight (gram)/error Panel # Weight (gram)/error 

1 2,461.5/-45.5 19 2,498.2/-8.8 

2 2,487.3/-19.7 20 2,548.0/41 

3 2,516.7/9.7 21 2,622.0/115 

4 2,433.0/-74 22 2,505.0/-2 

5 2,472.9/-34.1 23 2,646.3/139.3 

6 2,419.7/-87.3 24 2,560.7/53.7 

7 2,525.4/18.4 25 2,511.7/4.7 

8 2,397.1/-109.9 26 2,468.6/-38.4 

9 2,491.6/-15.4 27 2,492.0/-15 

10 2,568.3/61.3 28 2,593.2/86.2 

11 2,537.1/30.1 29 2,586.2/79.2 

12 2,387.0/-120 30 2,502.4/-4.6 

13 2,551.0/44 31 2,524.5/17.5 

14 2,460.4/-46.6 32 2,465.8/-41.2 

15 2,410.6/-96.4 33 2,505.8/-1.2 

16 2,519.8/12.8 34 2,479.0/-28 

17 2,498.7/-8.3 35 2,643.5/136.5 

18 2455.0/-52   

average 2,507.0 std. deviation 63.94 

 



 

 

commercial panels measuring 3,000 mm × 1,500 mm, it 

was observed that the samples met the specified 

dimensions of 750 mm × 500 mm × 15 mm. Precise 

measurements with calipers showed that the facing sheet 

heights were not exactly 1.00 mm at each position along 

the panel, but had a height between 0.96 mm–1.03 mm. 

It is noted as a source of uncertainty to be evaluated in 

the modeling phase (see Section 4). In order to study the 

core structure and adhesive state, a cut piece supplied 

with the specimens was studied. The cell wall thickness 

(t) was measured as 50 microns with a digital caliper. It 

was observed that the corners of the honeycomb cells 

were not ideal as assumed in the drawing but had a 

rounded appearance. This is one of the uncertainties 

associated with manufacturing. Also, as expected, the 

distribution of the cell structure is not homogeneous. The 

main element of uncertainty to consider is the condition 

of the adhesive layers. The adhesive flows during 

manufacturing, creating a fillet-shaped residue between 

the cell walls and facing sheets. After curing, the 

adhesive fillet layer hardens and alters the buckling 

strength of the thin cell walls, as analyzed in detail in a 

previous study [22]. This is another source of uncertainty 

worth considering in the modeling phase (see Section 4). 

The weight of the computational model is the same as the 

average weight of the panels. When the mentioned 

density values are assigned, the weight of the panel in the 

computational model is 2,507.0 grams. The mode 

number and frequency values obtained from the modal 

test results are given in Section 4, where a data-driven 

meta-model called PCE-Kriging for the AHSP is 

introduced. But before that, the following section briefly 

explains the basic concepts of the three surrogate models 

- generalized polynomial chaos expansion (gPCE), 

Kriging metamodeling and PCE-Kriging - and then 

discusses how these models are implemented to 

engineering solutions and applied science problems in 

literature. 

 

3. METAMODELING 

This section is composed of two main subsections: while 

the first part (Section 3.1) deals with briefly explaining 

the fundamental notions of the three surrogate models, 

the second part (Section 3.2) copes with how these 

models are implemented for various engineering and 

applied science problems in literature. 

3.1. Surrogate Models 

3.1.1. Generalized polynomial chaos expansion 

(gPCE) 

The computational burden of simulations in engineering 

and applied sciences is huge. Thus, more effective 

methods are suggested in the literature. These methods 

are based on quantifying intrinsic uncertainty between 

input variables and output variables by representing input 

variables as well-known probability distributions such as 

Gaussian, Weibull, and Gamma. This approach is called 

metamodeling or surrogate modeling entitled generalized 

polynomial chaos expansion (gPCE) that generates an 

approximation function for the computationally known 

model or fits dataset of real input values and stochastic 

output variables produced by simulation methods, e.g., 

Monte Carlo. Thus, spectral representation on a suitably 

constructed basis of orthogonal polynomials is generated 

to represent a model between a set of input variables and 

an output variable as follows: 

𝐸(𝑌2) = ∫𝑀2(𝒙)𝑓𝑿(𝒙)𝑑𝒙 <∞                                            (1) 

where 𝑥 ∈ 𝐷𝑥 denotes the function domain and 𝒙 =
(𝑥1, 𝑥2, … , 𝑥𝑛)

𝑇represents n-dimensional input vector, 

𝐸(. )  represents the expected value operator, 𝑓𝑿(𝒙) 
denotes n-dimensional joint probability density function 

with independent random variables. So, gPCE is defined 

as follows: 

𝑌 = 𝑀(𝑿) = ∑ (𝑦𝛼𝜓𝛼(𝑿))𝛼𝜖𝑁𝑀                                              (2)  

where the term 𝜓𝛼(𝑿) in Equation (2) denotes 

multivariate polynomials basis orthonormal to 𝑓𝒙(𝒙), 
𝛼𝜖𝑁𝑀 shows a multi-index identifying multivariate 

polynomials’ coefficients, 𝜓𝛼(𝑿), and the coefficients 

are denoted by 𝑦𝛼. Since the truncation of Equation (2) is 

required at some power, Equation (2) is rewritten 

approximately as follows: 

𝑀(𝑿) ≈ 𝑀𝑃𝐶𝐸(𝑿) = ∑ (𝑦𝛼𝜓𝛼(𝑿))𝛼𝜖𝐴                                (3) 

where 𝐴 ⊂ 𝑁𝑀 denotes the set of picked multi-indices of 

multivariate polynomials. Univariate orthonormal 

polynomials, 𝛷𝑘
(𝑖)(𝑥𝑖), are used to construct  𝜓𝛼(𝑿) 

polynomials basis as follows: 

〈𝛷𝑗
(𝑖)(𝑥𝑖)𝛷𝑘

(𝑖)(𝑥𝑖)〉 =

∫𝛷𝑗
(𝑖)(𝑥𝑖)𝛷𝑘

(𝑖)(𝑥𝑖)𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖 =𝛿𝑗𝑘                                     (4) 

where superscript i, subscripts j, and k, 𝛿𝑗𝑘 , and  𝑓𝑋𝑖(𝑥𝑖), 

represent orthogonal polynomials concerning ith input, 

corresponding polynomial degrees for j and k, the 

Kronecker symbol, ith input variable probability mass or 

density function.   

3.1.2. Kriging metamodeling 

Kriging aka Gaussian process modeling assumes the 

realizations of the output variable stemming from the 

Gaussian random process defined in Equation (5) [46] 

𝑀(𝑿) = 𝑀𝐾(𝑿) = 𝜷𝑇𝑓(𝑥) + 𝜎2𝑍(𝒙)                           (5) 

Figure 4. The variation in the dynamic response of AHSPs 

in terms of modal frequency values (Experimental results) 

 



 

 

where the trend also called the mean of the Gaussian 

process is denoted by 𝜷𝑇𝑓(𝒙) , 𝜎2 is called variance and, 

𝑍(𝒙) represents a stationary Gaussian process whose 

means and variance are 0 and 1, respectively. 

Since Kriging is employed to construct an approximation 

function and interpolation for a given computationally 

known function or a design matrix of input and out 

variables, a simple global error measurement showing the 

meta-model’s precision is not available due to Kriging’s 

interpolating attributions. Leave-one-out (LOO) is a 

method to globally measure errors defined by Equation 

(6) [46]. 

𝐸𝑟𝑟𝐿𝑂𝑂
𝐾 =

1

𝑁
∑ (𝑦(𝑖) − 𝜇𝑦(−𝑖)̂ (𝑋(𝑖))2𝑁
𝑖=1                                 (6) 

where the first term in the parathesis is the response value 

and the next term is the estimated value using the Kriging 

model. 

3.1.3. PCE-kriging 

PCE-Kriging is a surrogate model that combines both 

gPCE and Kriging defined by Equation (7). 

𝑀(𝑿) ≈ 𝑀𝑃𝐶𝐾(𝑿) = ∑ (𝑦𝛼𝜓𝛼(𝑿))𝛼𝜖𝐴 + 𝜎2𝑍(𝒙)       (7) 

where 𝑦𝛼𝜓𝛼(𝑿), A, and 𝑍(𝒙) represent a weighted sum 

of orthonormal polynomials called the average of the 

Gaussian process, the index set of the polynomials, and a 

stationary Gaussian process whose means and variance 

are 0 and 1, respectively. 

Two different frameworks are used in PCE-Kriging, 

which are called sequential and optimal, and they are 

abbreviated as SPCE-Kriging and OPCE-Kriging. 

Santner et al. [46] suggest that OPCE-Kriging is superior 

to SPEC-Kriging when the experimental design is under 

consideration since it has the lowest generalized 

statistical error. 

3.2. Implementation of PCE-Kriging Surrogate 

Model 

The differences observed in the modal frequency values 

obtained from the experimental model and from the 

computational model are termed as errors. The errors are 

assumed to stem from the stochastic properties of the 

AHSP samples. As analyzed throughout the study, it is 

assumed that the samples are identical, but they are not. 

It is more realistic to model uncertainty to come up with 

a reliable solution. Thus, one can assume that the 

deviations observed between the experimental and 

computational results originated from uncertainties 

associated with the geometric properties of honeycomb 

panels, which are determined as the thicknesses of the 

upper facing sheet, core structure, and the lower facing 

sheet. 

The surrogate model called gPCE has been implemented 

for simulation-based models as alternative easy-to-

implement models and generated predictions [47–50]. 

Hadj et al. [47] dealt with designing the parameters of a 

wind turbine’s two-stage gearbox. Umesh and Ganguli 

[48] researched the materials’ uncertainty impact to 

control the vibration of smart composite plates by 

utilizing piezoelectric sensors. Azrar et al. [49] examined 

the impact of uncertain parameters affecting viscoelastic 

Carbon Nanotubes (CNT) dynamical behavior when a 

viscous fluid is conveyed in it. Peng et al. [50] 

investigated composite laminated plates by using micro 

and macro parameters based on random and interval 

variables to represent uncertainty. Chen et al. [51] 

suggested a method to design underwater vehicles using 

composite materials whose mechanical properties are 

represented by PCA. On the other hand, the PCE-Kriging 

method has proven itself in several engineering modeling 

processes. Aversano et al. [52] proposed a method that 

predicts 2D combustion data when unexplored operating 

conditions are under consideration. García-Macías and 

Ubertini [53] proposed a method that estimates automatic 

damage identification for large-scale structures. Sinou 

and Denimal [54] suggested a method that tracks traverse 

cracks and pinpoints them in rotating components using 

the PCE-Kriging method based on uncertain parameters 

of position and depth. 

 

4.  DATA ANALYSIS 

In the analysis, 3 geometric variables of AHSPs are 

considered as sources of uncertainty; these are the 

thicknesses of the upper and lower facing sheets and the 

cell wall thickness of core. Their distributions are 

assigned as follows: upper and lower facing sheets are 

uniformly Gaussian with mean 1 and standard deviation 

0.05, and the core structure is Gaussian with mean 0.9 

and standard deviation 0.05. These distributions are 

determined through experimental measurements and 

computational analysis. Precise measurements with 

calipers showed that the facing sheet heights were not 

exactly 1.00 mm at each position along the panel, but had 

a height between 0.96-1.03 mm. Computational analysis 

performed on one of the AHSP samples which is selected 

according to the statistical analysis revealed that even the 

cell wall thickness of the core elements are 50 μm, the 

effective cell wall thickness (𝑡𝑐) is computed as 92 μm, 

as shown and explained in the previous work [22]. The 𝑡𝑐 
value is different from the actual one. This is mainly due 

to the adhesive fillets that form at the bonding interface 

of facing sheets and the honeycomb core during the 

manufacturing process. The data-driven meta-model 

called PCE-Kriging is constructed. The first 10 flexible 

modal frequency values of 35 AHSP samples 

(experimental values) and the results of the 

computational model are tabulated in Table 4. Error 

values between each AHSP sample and the 

computational model for each modal frequency are 

tabulated in Table 5.  

Furthermore, 10,000 samples are run to find the 

estimated average weight of AHSP. The outcomes are 

tabulated in Table 6. All calculations are performed with 

SPSS version 27.0. Since the bias value is too small, the 

estimated weight of 2,507.0 grams is used in the 

computational model. 

In the case of AHSPs, various intrinsic properties can 

lead to uncertainties. These uncertainties can be 



 

 

practically obs erved by taking the difference of each 

modal frequency value between experimental and 

computational results. They arise due to complex 

manufacturing processes, design complexities, assembly 

stages and quality control issues. Consequently, when it 

comes to better optimization and increased performance, 

it is very important to mathematically analyze and 

incorporate uncertainties into the model. The coefficient 

of variation (CoV) is defined by Equation (8) 

CoV =
𝑠𝑖

𝑥𝑖̅̅ ̅
, 𝑖 = 1,2, … ,35                                                             (8) 

where 𝑠𝑖 denotes the standard deviation of 10 modal 

frequencies of each panel; 𝑥�̅� denotes the average of 10 

modal frequencies of each panel. Means and standard 

deviations based on 10 modal frequency values are used 

to calculate the CoV for each AHSP sample. The results 

are tabulated in Table 7. The greatest variation is 

observed in Sample#29 (0.49) and the least variation is 

observed in Sample#6 (0.36). The AHSP and its 

estimated weight used for the computational stage are 

chosen using CoV statistics and a sampling scheme 

called bootstrap. 

Based on the information obtained in the study, it is 

assumed that the errors are due to the uncertainties in the 

thickness of the upper and lower facing sheets and the 

thickness of the core cell wall. All three features are 

utilized to account for errors by running the PCE-Kriging 

model. However, before running the PCE-Kriging 

Table 4. The first 10 flexible modal frequency values of 35 AHSP samples and the computational model 

Sample # 
Modal frequencies 

1 2 3 4 5 6 7 8 9 10 

1 171.20 195.20 382.90 455.50 482.10 561.20 667.60 767.10 891.60 1,018.80 

2 169.90 195.30 379.20 455.30 483.10 563.40 663.40 761.40 896.90 1,008.90 

3 169.70 193.80 378.50 451.90 481.10 556.70 662.70 760.20 897.40 1,010.60 

4 172.40 197.60 384.40 459.40 489.00 566.70 672.00 770.00 913.30 1,025.10 

5 170.40 196.00 382.60 454.50 486.10 563.50 671.00 765.80 909.00 1,025.80 

6 170.40 196.00 382.60 454.50 486.10 563.50 671.00 765.80 909.00 1,025.80 

7 168.60 192.80 376.60 449.70 476.30 555.90 657.60 750.30 884.10 995.20 

8 173.80 198.80 387.50 460.60 491.20 571.30 676.00 775.40 921.00 1,033.10 

9 172.00 197.80 385.20 457.30 489.30 567.90 674.00 769.90 914.30 1,028.40 

10 169.60 194.70 379.60 449.80 482.60 560.10 665.90 761.60 907.90 1,018.60 

11 172.20 197.60 383.80 455.10 491.40 568.00 675.70 768.20 926.00 1,033.90 

12 174.10 198.00 385.90 461.40 489.70 571.00 674.60 772.30 914.10 1,026.40 

13 169.00 192.60 377.90 451.40 476.10 557.90 659.60 755.50 884.10 1,001.00 

14 170.40 194.20 380.30 456.60 480.90 560.60 663.50 760.90 890.20 1,005.90 

15 172.80 172.80 385.30 459.30 487.00 568.90 672.90 769.70 906.10 1,023.20 

16 170.20 193.70 378.10 450.90 482.20 560.20 663.90 757.80 899.50 1,012.10 

17 170.90 196.20 382.90 453.50 484.30 566.00 669.10 765.40 911.70 1,020.70 

18 171.40 195.90 381.30 454.00 484.40 565.50 666.10 762.20 899.80 1,014.00 

19 169.20 194.70 379.50 453.60 482.20 559.70 663.20 760.90 897.90 1,010.20 

20 167.40 191.80 374.90 447.60 476.10 552.20 656.70 752.10 885.70 999.40 

21 167.70 190.50 373.00 445.70 473.40 550.60 653.00 746.80 885.20 998.30 

22 168.80 192.70 377.90 450.60 476.30 557.20 658.90 752.20 888.50 1,003.00 

23 166.90 189.40 372.80 445.00 469.40 549.30 649.00 745.50 872.30 990.60 

24 168.40 193.20 376.40 451.40 477.60 558.20 655.10 756.20 892.20 998.90 

25 160.20 194.70 378.10 454.10 482.00 561.80 662.00 758.70 897.50 1,005.50 

26 169.60 195.50 380.70 452.30 487.70 562.80 665.90 760.80 906.00 1,014.60 

27 169.70 195.10 379.20 451.80 485.20 562.00 666.40 760.10 906.40 1,015.40 

28 168.70 191.00 374.60 445.80 477.00 556.40 659.00 749.10 884.60 1,002.10 

29 168.40 191.80 376.00 446.90 477.50 556.50 661.10 752.00 893.80 1,008.00 

30 170.10 195.50 380.00 451.90 485.20 562.50 667.00 763.60 913.40 1,022.00 

31 170.10 194.30 381.50 #AD? 480.10 560.00 665.20 760.60 898.20 1,014.20 

32 172.00 197.40 384.80 457.60 487.90 572.80 672.30 767.60 920.10 1,023.70 

33 170.40 195.50 378.60 455.10 483.70 566.10 663.20 759.20 908.00 1,007.90 

34 171.00 196.10 382.00 453.80 484.90 565.50 668.90 763.60 908.40 1,016.60 

35 168.10 190.80 375.50 447.00 474.10 554.10 657.40 751.20 883.40 1,002.10 

Computational 178 205 396 473 501 583 687 782 921 1,035.00 

 



 

 

model, ANOVA (Analysis of Variance) is run to check 

whether the errors of the 10 modal frequencies are 

statistically different. Otherwise, 10 different PCE-

Kriging models need to be created. ANOVA is run at a 

significance level of 0.05 and a Duncan post hoc test is 

employed to determine which error of the 10 modal 

frequencies is statistically significant using SPSS version 

27.0. The ANOVA results tabulated in Table 8 indicate 

that there are 3 groups. The results show that the least 

errors occur at modal frequencies #1 and #2, while the 

highest errors occur at modal frequencies #4 to #10. On 

the other hand, the error of modal frequency #3 appears 

to remain as a separate group.  

 

 

Table 6. The statistical results 

Weight (based on 10,000 samplings) Bias 

2,507.06 0.0996 

 

The ANOVA result shows that 3 different OPCE-Kriging 

surrogate models need to be created to account for errors. 

UQ-Lab software [55] is used for all modeling processes. 

Leave-one-out (LOO) measure is used to determine how 

successful the model would be. Table 9 summarizes the 

coefficients of the three input variables and the LOO 

Table 5. Errors between 35 experimental modal frequencies and the computational modal frequencies 

Honeycomb # 
Error=experimental value−computational value (in Hz) 

1 2 3 4 5 6 7 8 9 10 

1 -7.1 -9.4 -12.9 -17.0 -18.6 -22.2 -18.98 -14.98 -29.65 -16.20 

2 -8.4 -9.3 -16.6 -17.2 -17.6 -20.0 -23.18 -20.68 -24.35 -26.10 

3 -8.6 -10.8 -17.3 -20.6 -19.6 -26.7 -23.88 -21.88 -23.85 -24.40 

4 -5.9 -7.0 -11.4 -13.1 -11.7 -16.7 -14.58 -12.08 -7.95 -9.90 

5 -7.9 -8.6 -13.2 -18.0 -14.6 -19.9 -15.58 -16.28 -12.25 -9.20 

6 -7.9 -8.6 -13.2 -18.0 -14.6 -19.9 -15.58 -16.28 -12.25 -9.20 

7 -9.7 -11.8 -19.2 -22.8 -24.4 -27.5 -28.98 -31.78 -37.15 -39.80 

8 -4.5 -5.8 -8.3 -11.9 -9.5 -12.1 -10.58 -6.68 -0.25 -1.90 

9 -6.3 -6.8 -10.6 -15.2 -11.4 -15.5 -12.58 -12.18 -6.95 -6.60 

10 -9 -10 -16 -23 -18 -23 -20.68 -20.48 -13.35 -16.40 

11 -6 -7 -12 -17 -9 -15 -10.88 -13.88 4.75 -1.10 

12 -4 -7 -10 -11 -11 -12 -11.98 -9.78 -7.15 -8.60 

13 -9 -12 -18 -21 -25 -26 -26.98 -26.58 -37.15 -34.00 

14 -8 -10 -15 -16 -20 -23 -23.08 -21.18 -31.05 -29.10 

15 -6 -7 -10 -13 -14 -15 -13.68 -12.38 -15.15 -11.80 

16 -8 -11 -18 -22 -18 -23 -22.68 -24.28 -21.75 -22.90 

17 -7 -8 -13 -19 -16 -17 -17.48 -16.68 -9.55 -14.30 

18 -7 -9 -14 -19 -16 -18 -20.48 -19.88 -21.45 -21.00 

19 -9 -10 -16 -19 -18 -24 -23.38 -21.18 -23.35 -24.80 

20 -11 -13 -21 -25 -25 -31 -29.88 -29.98 -35.55 -35.60 

21 -11 -14 -23 -27 -27 -33 -33.58 -35.28 -36.05 -36.70 

22 -10 -12 -18 -22 -24 -26 -27.68 -29.88 -32.75 -32.00 

23 -11 -15 -23 -28 -31 -34 -37.58 -36.58 -48.95 -44.40 

24 -10 -11 -19 -21 -23 -25 -31.48 -25.88 -29.05 -36.10 

25 -18 -10 -18 -18 -19 -22 -24.58 -23.38 -23.75 -29.50 

26 -9 -9 -15 -20 -13 -21 -20.68 -21.28 -15.25 -20.40 

27 -9 -9 -17 -21 -15 -21 -20.18 -21.98 -14.85 -19.60 

28 -10 -14 -21 -27 -24 -27 -27.58 -32.98 -36.65 -32.90 

29 -10 -13 -20 -26 -23 -27 -25.48 -30.08 -27.45 -27.00 

30 -8 -9 -16 -21 -15 -21 -19.58 -18.48 -7.85 -13.00 

31 -8 -10 -14 -20 -21 -23 -21.38 -21.48 -23.05 -20.80 

32 -6 -7 -11 -15 -13 -11 -14.28 -14.48 -1.15 -11.30 

33 -8 -9 -17 -17 -17 -17 -23.38 -22.88 -13.25 -27.10 

34 -7 -8 -14 -19 -16 -18 -17.68 -18.48 -12.85 -18.40 

35 -10 -14 -20 -26 -27 -29 10.20 -30.88 -37.85 -32.90 

 



 

 

measure for each model and shows the results of the 3 

models. 

The three coefficients, lower facing sheet, core cell wall 

thickness and upper facing sheet, represent the 

contributions of the three stochastic variables to the 

errors between the experimental and computational 10 

flexible mode frequency values. For modes #1 and #2, 

the first and third coefficients are larger than the second 

coefficient, indicating that errors occurring in these 

modes are more related to the facing sheets. Leave-one-

out (LOO) is calculated for each model representing how 

many errors occurred when the prediction is conducted, 

and the value is 0.06. For modes #4 to #10, the second 

coefficient, core cell wall thickness, has a more dominant 

influence on the errors between experimental and 

computational values. Almost the same LOO value is 

attained by the predictions. Although the coefficient of 

the core structure is larger than the coefficients of the 

facing sheets, its dominance has just started to increase 

and is statistically different from modes #4 to #10, so it 

can be called a transition model for the errors. All models 

are optimized by UQLab using a Hybrid genetic 

algorithm. Similarly, the LOO is around 0.06 in this 

model.  

Thus, the results tabulated in Table 9 show that the lowest 

modes (mode#1 and mode#2) are dominated by upper 

and lower facing sheets, mode#4 and higher modes are 

dominated by the core structure. Mode#3 plays the 

transition role with a relatively higher core effect.  

 

5. CONCLUSION 

In this work, the dynamic response variability in 35 

aluminum honeycomb sandwich panel (AHSP) samples 

are examined using a PCE and Kriging-based 

metamodel. The experimental data is acquired through 

experimental modal analysis (EMA) techniques. 

Accelerance frequency response functions (FRFs) are 

obtained at 21 predetermined locations in a response to 

the impulse response function generated by a modal 

hammer for every sample. The computational model is 

constructed using shell/shell/shell (SSS) modeling. As 

shown in a recent work [44], SSS modeling is statistically 

more successful in the prediction of the dynamic 

characteristics of AHSPs compared to the other two 

Table 7. The coefficient of variations (CoV) of the 35 AHSP samples 

AHSP# CoV AHSP# CoV AHSP# CoV AHSP# CoV AHSP# CoV 

1 0.48 8 0.48 15 0.43 22 0.49 29 0.49 

2 0.48 9 0.45 16 0.41 23 0.42 30 0.45 

3 0.49 10 0.41 17 0.45 24 0.48 31 0.42 

4 0.55 11 0.43 18 0.40 25 0.43 32 0.45 

5 0.41 12 0.47 19 0.45 26 0.42 33 0.44 

6 0.36 13 0.47 20 0.45 27 0.39 34 0.46 

7 0.42 14 0.41 21 0.37 28 0.40 35 0.42 

 
Table 8. ANOVA results 

Mode# Group 1 Group 2 Group 3 

10 -21.86   

6 -21.79   

8 -21.52   

9 -20.74   

7 -20.57   

4 -19.62   

5 -18.28   

3  -15.76  

2   -9.89 

1   -8.44 

 
Table 9. The results of PCE-Kriging models 

 

Lower 

facing 

sheet 

Core cell 

wall 

thickness 

Upper 

facing 

sheet 

 

Mode# Coefficients Optimization method LOO 

1-2 0.5185 0.2241 0.3831 Hybrid genetic algorithm 6.3725e-01 

3 0.8031 3.4130 0.0529 Hybrid genetic algorithm 6.5984e-01 

4 to 10 0.6516 9.8257 0.0156 Hybrid genetic algorithm 6.5484e-01 

 



 

 

modeling alternatives which are volume/volume/volume 

(VVV) and volume/shell/volume (SVS). The modal 

frequency values obtained for the first 10 flexible modes 

of the 35 samples are compared with the computational 

results and deviations are referred to as errors. Based on 

the information obtained in the study, it is assumed that 

the errors are due to uncertainties in the thicknesses of 

the upper and lower facing sheets and the thickness of the 

core cell wall. The outcomes of the study show that: 

• The variability in the dynamic response of AHSPs 

increases with increasing frequency. 

• The least variability occurs at low modal 

frequencies, mode#1, and mode#2, which are 

dominated by facing sheets rather than the core. 

• The highest variability is observed at higher 

frequencies, mode#4 to mode#10, with an increasing 

trend. In this range the core is dominant. 

• Mode#3 appears as a transition zone between the 

low frequency range, where the facing sheets 

dominate the dynamic response, and the high 

frequency range, where the core dominates the 

dynamic response. 

• The dynamic response of the core walls is dominant 

in the high frequency region. As studies have shown, 

this response cannot be realized when the 

honeycomb core is taken as an equivalent volume 

[56–58].  

• The uncertainties in the core structure mostly 

originated form the inhomogeneity of adhesive 

fillets which alter the effective cell wall thickness 

[22]. 

• In the relevant studies, it has been shown that the 

out‐of‐plane compressive strengths alter when the 

cell wall thickness value is changed at the junctions 

due the presence of adhesive fillets [59–61]. 
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