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Abstract
The geometric process is a monotonic stochastic process commonly used to model some
sort of processes having monotonic trend in time. The statistical inference problem for
a geometric process has been well studied in the literature. However, existing studies
only cover single process data obtained throughout a single realization of a geometric
process. This study presents how multiple process data for a geometric process can arise
and considers its statistical evaluation by assuming that all processes are homogeneous
and the inter-arrival times follow an exponential distribution. Two data structures for
multiple process data are introduced: one consists of complete samples, while the other
includes both complete and censored samples. The maximum likelihood and modified
maximum likelihood estimators for the parameters of the geometric process are derived
on the basis of these data structures. The Expectation-Maximization algorithm is used to
compute the maximum likelihood estimators in the case of censored data. The asymptotic
properties of the estimators are also derived. Test statistics are proposed based on the
asymptotic results of the estimators to distinguish a geometric process from a renewal
process and to test the homogeneity of the processes. A simulation study is conducted
to demonstrate the performance of the inferential procedures. Finally, both artificial and
real data analyzes are presented for illustration.
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1. Introduction
In the probabilistic modeling of consecutive events, a general approach is to use a count-

ing process model. If the inter-arrival times of consecutive events are independent and
identically distributed (iid), a homogeneous Poisson process (HPP) or its generalization,
the renewal process (RP), can be used. If the inter-arrival times are not identically dis-
tributed, a non-homogeneous Poisson process (NHPP) can be used. Two important NHPP
models are the Cox-Lewis process and the Weibull process. These processes are preferred
when inter-arrival times follow a monotone trend. For details, see Cox and Lewis [11]
and Ascher and Feingold [2]. The monotone trend of inter-arrival times can alternatively
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be modeled by a direct monotone counting process model. For this purpose, Lam [17]
introduced a monotone counting process model, called the geometric process (GP), to
model inter-arrival times following a monotone trend. Let (Xk)k∈N be non-negative ran-
dom variables representing the inter-arrival times of consecutive events. Then, the process
{N(t), t ≥ 0}, where N(t) = max{n :

∑n
k=1 Xk ≤ t}, giving the number of events that

have occurred up to time t, is said to be a GP with trend parameter a if the random vari-
ables ak−1Xk, for k = 1, 2, . . . are i.i.d. The stochastic process notation {Xk, k = 1, 2, . . .}
for inter-arrival times is also said to be a GP. The GP increases stochastically when a < 1,
and decreases stochastically when a > 1. Note that GP is a generalization of RP, as it
reduces to RP when a = 1. For a comprehensive discussion of the GP, see Lam [21]. The
GP has been utilized in many fields of applied probability. In particular, it has been used
as a powerful model for reliability, maintenance, and warranty analysis due to its ease of
implementation for monotonic processes. First, Lam [17,18] used the GP to determine the
optimal replacement policy for a deteriorating system, since successive operating times of
the system after repair are assumed to be stochastically decreasing, while repair times are
assumed to be stochastically increasing. Lam [19] considered the optimal repairable re-
placement model for deteriorating systems using the GP. Since then, GP has been studied
for many repair/replacement problems. Lam and Zhang [24] introduced a GP model for
a two-component series system with one repairman, assuming that successive operating
times of each component are exponentially distributed and form a decreasing GP, while
successive repair times of each component are exponentially distributed and form an in-
creasing GP. Lam and Zhang [25], Tang and Lam [34], and Lam [22] considered the GP
for maintenance analysis of some deteriorating systems in specific cases. For other recent
applications of the GP, see Chan et al. [10], Wan and Chan [41], Chan et al. [8,9], Pekalp
and Aydoğdu [29, 31, 32], Zhang and Wang [44], Arnold et al. [1], Pekalp et al. [30], and
Rasay et al. [33].

For a GP, some important parameters of the model are estimated statistically by ob-
serving the inter-arrival times of the process. Let {Xk, k = 1, 2, . . .} be the inter-arrival
times of a GP with trend parameter a, where E(X1) = µ and V ar (X1) = σ2. Then,
E (Xk) = µ/ak−1, and V ar (Xk) = σ2/a2(k−1), for k = 1, 2, . . .. The inference problem
for a, µ and σ2 has been well studied in the literature. Lam [20] obtained non-parametric
estimators of these parameters using the linear regression method. Parametric inference
for a GP, when X1 follows important failure distributions such as exponential, lognormal,
Weibull and gamma, has been studied in detail by Kara [14], Lam and Chan [23], Ay-
doğdu et al. [3], Chan et al. [7], Kara et al. [15], respectively. For other inferential studies
about the GP, see Biçer et al. [5], Biçer et al. [6], Lone et al. [26], Usta [39], and Yılmaz
[45]. In these studies, statistical inference was concerned only with single process data. In
some reliability problems, not only single process data but also multiple process data may
arise. The literature includes studies on the use and statistical analysis of multiple process
data for various counting process models. For example, Garmabaki et al. [12, 13] studied
the reliability modeling of multiple repairable systems by utilizing RP, HPP, or NHPP as
models for the repair processes of multiple units, which generate multiple process data.
Further, Na and Chang [27] and Wang et al. [42] considered the statistical analysis of
multiple process data coming from the repair processes of multiple systems by modeling
the repair processes with NHPP. However, to the best of our knowledge, there is no study
in the literature that explores the usage and statistical analysis of GPs for multiple process
data, despite their potential and ease of implementation for processes with a trend. In
this study, we statistically evaluate multiple process data for a GP by assuming that all
processes are homogeneous and inter-arrival times follow an exponential distribution. We
then compare it with single process data from an effectiveness perspective and illustrate
its use in modeling multiple repairable systems as a novel approach.
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The rest of the paper is organized as follows. Data structures for multiple GPs are
presented in Section 2. In Section 3, the maximum likelihood (ML) and modified maximum
likelihood (MML) estimators for the parameters of the GP are derived, along with their
asymptotic properties. Further, some test statistics are proposed to distinguish the GP
from the RP, and to test the homogeneity of the samples. A Monte Carlo simulation is
carried out in Section 4 to demonstrate the performance of the inferential procedures for
both multiple and single process data, for comparative purposes. Data analysis examples
are illustrated in Section 5. Finally, some conclusions are provided in Section 6.

2. Multiple process data for GP
Let us consider the GP as a repair model for a repairable system. Assume that the

system will be repaired after each failure and that the successive operating times of the
system after each repair decrease stochastically. Therefore, the GP can be utilized to
model this repair process. Let the successive operating times of a repairable system be
modeled by a GP with trend parameter a. To estimate the trend parameter a, as well
as the mean and variance of each operating time after repair, a sufficient number of
successive operating times must be observed throughout the repair process. Note that the
observation process of successive operating times after each repair may take a long time.
To reduce the total observation time, multiple repair processes based on identical multiple
systems can be observed simultaneously, rather than just a single repair process. On the
other hand, some repairable systems may become inefficient after a few repairs due to
decreased operating times and increased repair times. In such cases, the repair process
is terminated after some repairs. To obtain a sufficient number of successive operating
times after each repair, multiple repair processes based on multiple systems should be
observed simultaneously. This phenomenon suggests the use of multiple process data to
make inferences for a process modeled by the GP. For examples of multiple process data
modeling with some counting processes, see Garmabaki et al. [12,13], Na and Chang [27],
and Wang et al. [42].

Figure 1. Repair processes of r systems with a predetermined number of failures.
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Suppose that we have r units of identical repairable systems, whose repair processes
are modeled with the GP. The trend parameter of the repair process, along with the
mean and variance of operating times for the systems after each repair, can be estimated
based on multiple process data obtained throughout the r repair processes if all repair
processes are assumed to be homogeneous. When the repair processes of r systems are
observed simultaneously, two observation schemes arise depending on the decision to end
the observation. First, each repair process is observed until a predetermined number of
failures occur for each unit. Second, all repair processes are observed until a predetermined
time. In the first case, successive operating times for all units are complete. In the second
case, operating times for systems functioning at the predetermined time are right-censored,
whereas the previous operating times for each system are complete. Hereafter, we refer to
these observation schemes as Case I and Case II, respectively. These observation schemes
are illustrated in Figure 1 and Figure 2.

Figure 2. Repair processes of r systems with a predetermined ending time.

3. Statistical inference for multiple process data
Assume that the inter-arrival times of r independent GPs with the same trend parameter

a are observed simultaneously, and that the first inter-arrival times of all processes are
distributed according to an identical exponential distribution. The statistical inference
problem for the trend parameter as well as the mean and variance of each inter-arrival
time based on multiple process data, should be studied separately for the two different
observation schemes mentioned above.

3.1. Inference for Case I
Let r independent and identical GPs with trend parameter a be observed with predeter-

mined number of inter-arrival times such as nj∈ N, j = 1, . . . , r. Let {Xji, i = 1, .., nj}, j =
1, . . . , r be the inter-arrival times of jth process, Xj1 has distribution function

F (x) = 1 − exp (−x/θ) , x ≥ 0; θ > 0,
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with µ = E (Xj1) = θ, σ2 = V ar (Xj1) = θ2 for j = 1, . . . , r. The distribution function
and probability density function of Xji are given as

Fi(x) = 1 − exp
(
−ai−1x/θ

)
, x ≥ 0; θ > 0, i = 1, .., nj ,

fi(x) = exp
(
−ai−1x/θ

)
ai−1/θ, x ≥ 0; θ > 0, i = 1, .., nj

for j = 1, . . . , r. Therefore, mean and variance of Xji are µi = E (Xji) = µ/ai−1, σ2
i =

V ar (Xji) = σ2/a2(i−1), i = 1, .., nj for j = 1, . . . , r.
Let X ={Xji, i = 1, . . . , nj , j = 1, . . . , r} denote the set of inter-arrival times, and let

x be the sample points of X. Then, the likelihood function for the parameters a and θ
based on the multiple process data x is given by

L (a, θ; x) =
r∏

j=1

nj∏
i=1

fi(xji) =
r∏

j=1

nj∏
i=1

exp
(
−ai−1xji/θ

) ai−1

θ
.

The log-likelihood function is

ln L (a, θ; x) = ln a
r∑

j=1

nj∑
i=1

(i − 1) − ln θ
r∑

j=1
nj − 1

θ

r∑
j=1

nj∑
i=1

ai−1xji.

The likelihood equations are obtained by taking partial derivatives of the log-likelihood
function with respect to a and θ as

∂ ln L (a, θ; x)
∂a

= 1
a

r∑
j=1

nj∑
i=1

(i − 1) − 1
θ

r∑
j=1

nj∑
i=1

(i − 1)ai−2xji = 0, (3.1)

∂ ln L (a, θ; x)
∂θ

= −1
θ

r∑
j=1

nj + 1
θ2

r∑
j=1

nj∑
i=1

ai−1xji = 0. (3.2)

The ML estimators of a and θ are derived by solving Equations (3.1) and (3.2) simulta-
neously as follows. First, â is obtained by solving the equation

r∑
j=1

nj∑
i=1

ai−1xji

[∑r
j=1 n2

j∑r
j=1 nj

− 2i + 1
]

= 0, (3.3)

numerically, and

θ̂ =

 r∑
j=1

nj∑
i=1

âi−1xji

 /

 r∑
j=1

nj

 . (3.4)

Therefore, the ML estimators for the mean and variance of Xji for j = 1, . . . , r are

µ̂i = θ̂

âi−1 , σ̂2
i = θ̂2

â2(i−1) , i = 1, .., nj . (3.5)

Considering the asymptotic properties of the ML estimators, we have the following as-
ymptotic distributions for the estimators â and θ̂.

Theorem 3.1. As at least one nj → ∞ for j = 1, ..., r;[
â

θ̂

]
∼ N

([
a
θ

]
, I−1(a, θ; X)

)
(3.6)

where N stands for normal distribution and I (a, θ; X) is Fisher information such that

I (a, θ; X) =
[

1
3a2

∑r
j=1 n3

j − 1
2aθ

∑r
j=1 n2

j

− 1
2aθ

∑r
j=1 n2

j
1
θ2
∑r

j=1 nj

]
. (3.7)
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Proof. Second partial derivatives of the log-likelihood function are

∂2 ln L (a, θ; X)
∂a2 = − 1

a2

r∑
j=1

nj∑
i=1

(i − 1) − 1
θ

1
a2

r∑
j=1

nj∑
i=1

(i − 1)(i − 2)ai−1Xji,

∂2 ln L (a, θ; X)
∂θ2 = 1

θ2

r∑
j=1

nj − 2
θ3

r∑
j=1

nj∑
i=1

ai−1Xji,

∂2 ln L (a, θ; X)
∂a∂θ

= 1
θ2

1
a

r∑
j=1

nj∑
i=1

(i − 1)ai−1Xji.

Then, the expected values of negative second partial derivatives are

E

(
−∂2 ln L (a, θ; X)

∂a2

)
= 1

a2

r∑
j=1

nj∑
i=1

(i − 1) + 1
θ

1
a2

r∑
j=1

nj∑
i=1

(i − 1)(i − 2)E
(
ai−1Xji

)

= 1
a2

r∑
j=1

nj∑
i=1

(i − 1) + 1
a2

r∑
j=1

nj∑
i=1

(i − 1)(i − 2)

= 1
a2

r∑
j=1

nj(nj − 1)(2nj − 1)
6 ≈ 1

3a2

r∑
j=1

n3
j ,

E

(
−∂2 ln L (a, θ; X)

∂θ2

)
= − 1

θ2

r∑
j=1

nj + 2
θ3

r∑
j=1

nj∑
i=1

E
(
ai−1Xji

)
= 1

θ2

r∑
j=1

nj ,

E

(
−∂2 ln L (a, θ; X)

∂a∂θ

)
= − 1

θ2
1
a

r∑
j=1

nj∑
i=1

(i − 1)E
(
ai−1Xji

)
= −1

θ

1
a

r∑
j=1

nj∑
i=1

(i − 1)

= −1
θ

1
a

r∑
j=1

nj (nj − 1)
2 ≈ − 1

2aθ

r∑
j=1

n2
j ,

since E
(
ai−1Xji

)
= θ, j = 1, . . . , r. The Fisher information in Equation (3.7) is readily

obtained and the result is clear. �

Corollary 3.2. As at least one nj → ∞ for j = 1, ..., r;

â ∼ N

a,
12a2∑r

j=1 nj

4[
∑r

j=1 n3
j ][
∑r

j=1 nj ] − 3
[∑r

j=1 n2
j

]2
 , (3.8)

θ̂ ∼ N

θ̂,
4θ2∑r

j=1 n3
j

4[
∑r

j=1 n3
j ][
∑r

j=1 nj ] − 3
[∑r

j=1 n2
j

]2
 . (3.9)

The asymptotic distributions of µ̂i and σ̂2
i , i = 1, .., nj for j = 1, . . . , r are therefore

obtained using the delta method as follows:

Corollary 3.3. As at least one nj → ∞ for j = 1, ..., r;

µ̂i ∼ N

(
θ

ai−1 , ν

)
, i = 1, . . . , nj , (3.10)

σ̂2
i ∼ N

(
θ2

a2(i−1) , ξ

)
, i = 1, . . . , nj , (3.11)
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where

ν =
a2(1−i)θ2

[
12(1 − i)2∑r

j=1 nj + 12(1 − i)
∑r

j=1 n2
j + 4

∑r
j=1 n3

j

]
4[
∑r

j=1 n3
j ][
∑r

j=1 nj ] − 3
[∑r

j=1 n2
j

]2 ,

ξ =
a4(1−i)θ4[48(1 − i)2∑r

j=1 nj + 48(1 − i)
∑r

j=1 n2
j + 16

∑r
j=1 n3

j ]

4[
∑r

j=1 n3
j ][
∑r

j=1 nj ] − 3
[∑r

j=1 n2
j

]2 .

If we take i = 1, then it is clear that;

µ̂ ∼ N

θ,
4θ2∑r

j=1 n3
j

4[
∑r

j=1 n3
j ][
∑r

j=1 nj ] − 3
[∑r

j=1 n2
j

]2
 , (3.12)

σ̂2 ∼ N

θ2,
16θ4∑r

j=1 n3
j

4[
∑r

j=1 n3
j ][
∑r

j=1 nj ] − 3
[∑r

j=1 n2
j

]2
 . (3.13)

These asymptotic distributions allow to construct approximate confidence intervals for the
parameters of interest, to distinguish GP from RP by testing whether a = 1 or a 6= 1, and
to test the homogeneity of processes.

Proposition 3.4. To test H0 : a = 1 vs H1 : a 6= 1, let us define the test statistic

S1 =

√√√√√4[
∑r

j=1 n3
j ][
∑r

j=1 nj ] − 3
[∑r

j=1 n2
j

]2
12â2∑r

j=1 nj
(â − 1) . (3.14)

If |S1| > zα/2, then, the null hypothesis is rejected at significance level α since S1 ∼ N(0, 1)
asymptotically, under H0. Here, zα/2 denotes the upper α/2 quantile of the standard
normal distribution.

The above inferences were obtained under the assumption that all processes are homoge-
neous. If multiple process data are observed on identical units, it is reasonable to assume
that the random variables Xj1, j = 1, 2, ..., r are identically distributed. However, the
homogeneity of trends should be tested. The homogeneity of the trend parameters in all
processes can be tested using the following proposition.

Proposition 3.5. Let {Xji, i = 1, 2, . . . , nj} be the inter-arrival times of GPs with trend
parameter aj for j = 1, 2, . . . , r. Assume that the random variables Xj1, j = 1, 2, . . . , r
follow identical exponential distributions with the mean θ. To test H0 : a1 = a2 = · · · = ar

against H1 : ∃ai 6= aj , i, j ∈ {1, 2, . . . , r}, i 6= j, let us define the test statistic

T1 = 1
r − 1

r∑
j=1

 âj − ¯̂a√
12â2/n3

j

2

. (3.15)

Then, the null hypothesis is rejected at the significance level α if T1 > χ2
r−1(α), since

T1 ∼ χ2
r−1 asymptotically under H0. Here, χ2

r−1 denotes the chi-square distribution with
degrees of freedom r − 1, and χ2

r−1(α) denotes its α upper quantile, âj is the ML estimator
of aj for the jth process, ¯̂a = 1

r

∑r
j=1 âj, and â is the ML estimator based on the multiple

process data for the common trend parameter a of all processes.

To compute the ML estimate of the parameter a for a given multiple process data,
the Equation (3.3) must be solved numerically using numerical methods such as Newton-
Raphson or bisection. However, these methods are sensitive to initial value of the algorithm
and thus may lead to undesirable results such as non-convergence or convergence to an
incorrect value. Tiku [35] proposed a methodology, known as the MML, where intractable
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terms of likelihood equations are linearized by Taylor series approximation to obtain ex-
plicit solutions. This approach is also known as the approximate ML method. For further
details on the MML methodology, see Tiku [36], Tiku et al. [37], Tiku and Akkaya [38].
See also Aydoğdu et al. [3] and Kara et al. [15] for application of the MML methodology in
a GP based on a single process data with Weibull and gamma inter-arrival times. To ob-
tain MML estimators of the parameters a and θ, let us write Yji = ai−1Xji, i = 1, . . . , nj ,
j = 1, . . . , r. From the definition of GP, the random variables Yji are iid with the distri-
bution function F (y) = 1 − exp (−y/θ) , y > 0; θ > 0. Let ln Yji = (i − 1) ln a + ln Xji,
i = 1, . . . , nj , j = 1, . . . , r, then the random variables ln Yji have an identical extreme
value distribution with the distribution function G(y) = 1 − exp (− exp (y − δ)) , y∈ R,
where δ = ln θ. Hence, likelihood function based on logarithmically transformed data ln x
is

L (a, δ; ln x) =
r∏

j=1

nj∏
i=1

exp ((i − 1) ln a + ln xji − δ − exp ((i − 1) ln a + ln xji − δ)).

Let Zji = (i−1) ln a+ln Xji −δ. Then, the random variables Zji have a standard extreme
value distribution. If we take the logarithm of the likelihood function L (a, δ; ln x) and
then take partial derivatives with respect to a and δ, the likelihood equations are obtained
as:

∂ ln L (a, δ; ln x)
∂a

=
r∑

j=1

nj∑
i=1

cji −
r∑

j=1

nj∑
i=1

cji exp (zji) = 0,

∂ ln L (a, δ; ln x)
∂δ

=
r∑

j=1

nj∑
i=1

exp (zji) −
r∑

j=1
nj = 0,

where cji = (i − 1), zji = ln xji + cjiβ − δ, β = ln a, i = 1, . . . , nj , j = 1, . . . , r. By
using ordered terms and linearizing the intractable term exp (zji) around the mean of the
ordered standard extreme value variate, the modified likelihood equations are obtained as:

∂ ln L∗ (a, δ; ln x)
∂a

=
r∑

j=1

nj∑
i=1

cj[i] −
r∑

j=1

nj∑
i=1

cj[i](aj(i) + bj(i)zj(i)) = 0, (3.16)

∂ ln L∗ (a, δ; ln x)
∂δ

=
r∑

j=1

nj∑
i=1

(aj(i) + bj(i)zj(i)) −
r∑

j=1
nj = 0, (3.17)

where zj(i) = ln xj[i] + cj[i]β − δ, aj(i) = exp
(
t(i)
) (

1 − t(i)
)
, bj(i) = exp

(
t(i)
)
, t(i) =

E
(
Zj(i)

)
, i = 1, . . . , nj , j = 1, . . . , r and Zj(i) are ordered variates of Zji for each j =

1, . . . , r. Note that
(
xj[i], cj[i]

)
are concomitants of ordered variates zj(i) for each j =

1, . . . , r. For a detailed explanation of concomitants, see Tiku and Akkaya [38]. The
expected values of the ordered standard extreme value variate are exactly calculated for
each j = 1, . . . , r as

t(i) = −γ−(nj + 1 − i)
(

nj

nj + 1 − i

)
i−1∑
k=0

(
i − 1

k

)
(−1)k ln (nj + k + 1 − i) /(nj + k + 1 − i),

i = 1, . . . , nj , where γ = 0.5772 is the Euler constant; see White [43]. In addition, it can be
calculated approximately for nj ≥ 10, j = 1, . . . , r by inverting the distribution function
of the standard extreme value variate as t(i) ∼= ln[− ln[1 − i/(nj +1 )]], i = 1, . . . , nj . Now,
we are ready to explicitly obtain the MML estimators, which are given in the following
proposition.
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Proposition 3.6. The MML estimators for the parameters β and δ are calculated from
Equation (3.16) and (3.17) as

β̃ = A

C
− B

C
, (3.18)

δ̃ = D/

 r∑
j=1

nj∑
i=1

bj(i)

 , (3.19)

where

A =

 r∑
j=1

nj∑
i=1

bj(i)cj[i]


 r∑

j=1

nj∑
i=1

(aj(i) − 1)

+

 r∑
j=1

nj∑
i=1

bj(i) ln xj[i]

 ,

B =

 r∑
j=1

nj∑
i=1

bj(i)


 r∑

j=1

nj∑
i=1

(
aj(i) − 1

)
cj[i]

+

 r∑
j=1

nj∑
i=1

bj(i)cj[i] ln xj[i]

 ,

C =

 r∑
j=1

nj∑
i=1

bj(i)

 r∑
j=1

nj∑
i=1

bj(i)c
2
j[i]

−

 r∑
j=1

nj∑
i=1

bj(i)cj[i]

2

,

D =
r∑

j=1

nj∑
i=1

(aj(i) − 1) +
r∑

j=1

nj∑
i=1

(bj(i) ln xj[i]) + β̃
r∑

j=1

nj∑
i=1

bj(i)cj[i].

Therefore, the MML estimators for a, θ, µi and σ2
i , i = 1, . . . , nj , j = 1, . . . , r are

ã = exp
(
β̃
)

, θ̃ = exp
(
δ̃
)

, (3.20)

µ̃i = θ̃

ãi−1 , σ̃2
i = θ̃2

ã2(i−1) . (3.21)

These estimators are asymptotically equivalent to ML estimators as nj → ∞, j = 1, . . . , r.
Therefore, their asymptotic distributions are the same as those of the ML estimators; see
Bhattacharyya [4], Vaughan and Tiku [40]. The asymptotic variances given in Equations
(3.8) and (3.9) are known as minimum variance bounds (MVB) when estimating the
parameters a and θ. To illustrate the efficiency of the MML estimators, see Table 1, which
presents the simulated variances for both the ML and MML estimators, as well as the
MVBs. The variances and MVBs for a = 0.95 and θ = 1 over 104 replications have been
computed in MATLAB. Note that the ML and MML estimators for the single process data
can be easily obtained by setting r = 1. In Table 1, it is evident that the variances of the
ML and MML estimators are similar and decrease as the sample size increases. Therefore,
we can conclude that the MML estimators are as efficient as the ML estimators.

Proposition 3.7. Let X ={Xji, i = 1, . . . , nj , j = 1, . . . , r} be the inter-arrival times of
multiple GPs with trend parameter a, X = {Xi, i = 1, . . . , n} be inter-arrival times of a
single GP with the same trend parameter a, and X1, Xj1, j = 1, . . . , r have exponential
distribution with mean θ. Assume that

∑r
j=1 nj = n. Then, relation for Fisher information

of a and θ contained in X and X are
I (a; X) < I(a; X),
I (θ; X) = I(θ; X).

Proposition 3.7 emphasizes that the observation of multiple GPs, compared to a single
GP with an equal number of inter-arrival times, leads to information loss for a but does
not affect the information for θ.
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Table 1. Simulated variances for the ML and MML estimators, and the MVBs.

Simulated variances
for ML estimators

Simulated variances
for MML estimators

MVBs for
ML estimators

a θ a θ a θ

r = 1, n = 30 0.0004 0.1374 0.0005 0.1382 0.0004 0.1269
r = 2, n = (15, 15) 0.0017 0.1377 0.0021 0.1364 0.0016 0.1208
r = 3, n = (10, 10, 10) 0.0040 0.1382 0.0053 0.1355 0.0036 0.1152
r = 1, n = 50 0.0001 0.0891 0.0001 0.0889 0.0001 0.0776
r = 2, n = (25, 25) 0.0004 0.0822 0.0004 0.0828 0.0003 0.0754
r = 3, n = (17, 17, 17) 0.0008 0.0772 0.0009 0.0770 0.0007 0.0719
r = 1, n = 100 0.0000 0.0404 0.0000 0.0404 0.0000 0.0394
r = 2, n = (50, 50) 0.0000 0.0409 0.0000 0.0409 0.0000 0.0388
r = 3, n = (33, 33, 33) 0.0001 0.0408 0.0001 0.0407 0.0001 0.0386

3.2. Inference for Case II
Let r independent and identical GPs with trend parameter a be observed until a pre-

determined time T > 0. Let {Xji, i = 1, .., nj + 1}, j = 1, . . . , r be the inter-arrival times
of the jth process, Xj1 has the distribution function F (x) = 1 − e−x/θ, x ≥ 0; θ > 0,
µ = E (Xj1) = θ, σ2 = V ar (Xj1) = θ2 for j = 1, . . . , r. The distribution function, prob-
ability density function, mean and variance of Xji for i = 1, . . . , nj + 1, j = 1, . . . , r can
be found as in Case I. Note that the inter-arrival times {Xji, i = 1, .., nj} are complete,
while {Xj(nj+1)} are right-censored for each j = 1, . . . , r as demonstrated in Figure 2.

Let us denote Xcom={Xji, i = 1, . . . , nj , j = 1, . . . , r}, Xcens={Xj(nj+1), j = 1, . . . , r},
Xt = (Xcom, Xcens), and xt as the sample points of Xt. Then, the likelihood function for
the parameters a and θ based on the multiple process data xt is given by

L (a, θ; xt) =
r∏

j=1

[ nj∏
i=1

fi (xji)
] [

1 − Fnj+1
(
xj(nj+1)

)]

=
r∏

j=1

[ nj∏
i=1

exp
(
−ai−1xji/θ

) ai−1

θ

] [
exp

(
−ai−1xj(nj+1)/θ

) ai−1

θ

]
.

The log-likelihood function is derived as

ln L (a, θ; xt) = ln a
r∑

j=1

nj∑
i=1

(i − 1) − ln θ
r∑

j=1
nj − 1

θ

r∑
j=1

nj+1∑
i=1

ai−1xji.

By taking partial derivatives of the log-likelihood function with respect to a and θ, the
likelihood equations are obtained as follows:

∂ ln L (a, θ; xt)
∂a

= 1
a

r∑
j=1

nj∑
i=1

(i − 1) − 1
θ

r∑
j=1

nj+1∑
i=1

(i − 1)ai−2xji = 0,

∂ ln L (a, θ; xt)
∂θ

= −1
θ

r∑
j=1

nj + 1
θ2

r∑
j=1

nj+1∑
i=1

ai−1xji = 0.
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The ML estimator â is first obtained as numerical solution of the equation
r∑

j=1

nj+1∑
i=1

ai−1xji

[∑r
j=1 n2

j∑r
j=1 nj

− 2i + 1
]

= 0, (3.22)

then, the ML estimator θ̂ is

θ̂ =

 r∑
j=1

nj+1∑
i=1

âi−1xji

 /

 r∑
j=1

nj

 . (3.23)

Hence, the ML estimators for the mean and variance of Xji for j = 1, . . . , r are

µ̂i = θ̂

âi−1 , σ̂2
i = θ̂2

â2(i−1) , i = 1, .., nj + 1. (3.24)

The asymptotic distributions for the estimators â and θ̂ are given below.

Theorem 3.8. As T → ∞; [
â

θ̂

]
∼ N

([
a
θ

]
, I−1(a, θ; Xt)

)
, (3.25)

where

I (a, θ; Xt) =

 1
a2
∑r

j=1

(
n3

j/3 + n2
jFnj+1 (tj)

)
− 1

aθ

∑r
j=1

(
n2

j/2 + njFnj+1 (tj)
)

− 1
aθ

∑r
j=1

(
n2

j/2 + njFnj+1 (tj)
)

1
θ2
∑r

j=1

(
nj + Fnj+1 (tj)

)  ,

tj is censoring time of Xj(nj+1) such that tj = xj(nj+1) = T −
∑nj

i=1 xji,
Fnj+1 (tj) = 1 − exp (−anj tj/θ) for j = 1, . . . , r.

Proof. The Fisher information can be written as

I (a, θ; Xt) = I (a, θ; Xcom) + I (a, θ; Xcens)

since Xt= (Xcom,Xcens). The Fisher information based on complete observations I (a, θ; Xcom)
is equal to one given in Equation (3.6). Then, we only need to find I (a, θ; Xcens) to ob-
tain I (a, θ; Xt). For a non-negative censored variable Y with censoring time L, the Fisher
information can be computed as

I(θ; Y ) =
∫ L

0

(
∂

∂θ
ln h(x)

)2
f(x)dx,

where f is pdf and h is hazard function of Y , see Zheng and Gastwirth [46] and Park et al.
[28]. Then, for censored variates Xj(nj+1) with censoring times tj , j = 1, . . . , r, we obtain;

∫ tj

0

(
∂

∂a
ln hnj+1(x)

)2
fnj+1(x)dx =

n2
j

a2 Fnj+1 (tj) ,

∫ tj

0

(
∂

∂θ
ln hnj+1(x)

)2
fnj+1(x)dx = 1

θ2 Fnj+1 (tj) ,

∫ tj

0

(
∂

∂a
ln hnj+1(x)

)(
∂

∂θ
ln hnj+1(x)

)
fnj+1(x)dx = −nj

aθ
Fnj+1 (tj) .

Therefore;

I (a, θ; Xcens) =
[

1
a2
∑r

j=1 n2
jFnj+1 (tj) − 1

aθ

∑r
j=1 njFnj+1 (tj)

− 1
aθ

∑r
j=1 njFnj+1 (tj) 1

θ2
∑r

j=1 Fnj+1 (tj)

]
,
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and the result is obtained. Note that censoring time for the variable Xj(nj+1) is in fact
random and equal to T −

∑nj

i=1 Xji. For the sake of simplicity, we consider it as constant
such that tj = T −

∑nj

i=1 xji given Xji = xji.
�

Corollary 3.9. As T → ∞;
â ∼ N

(
a, a2τ11

)
, (3.26)

θ̂ ∼ N
(
θ, θ2τ22

)
, (3.27)

where

τ11 = K

LK − M2 , τ22 = L

LK − M2 ,

K =
r∑

j=1

(
nj + Fnj+1 (tj)

)
, L =

r∑
j=1

(
n3

j/3 + n2
jFnj+1 (tj)

)
, M =

r∑
j=1

(
n2

j/2 + njFnj+1 (tj)
)

.

The asymptotic distributions of µ̂i and σ̂2
i , i = 1, .., nj + 1 for j = 1, . . . , r can be obtained

using the delta method similar to Case I.

Corollary 3.10. As T → ∞;

µ̂i ∼ N

(
θ

ai−1 , ν

)
, i = 1, . . . , nj + 1, (3.28)

σ̂2
i ∼ N

(
θ2

a2(i−1) , ξ

)
, i = 1, . . . , nj + 1, (3.29)

where

ν = θ2(1 − i)2

a2(i−1) τ11 + 2θ2(1 − i)
a2(i−1) τ12 + θ2

a2(i−1) τ22,

ξ = 4θ4(1 − i)2

a4(i−1) τ11 + 24θ4(1 − i)
a4(i−1) τ12 + 4θ4

a4(i−1) τ22,

τ12 = M

LK − M2 .

If we take i = 1, then;
µ̂ ∼ N

(
θ, θ2τ22

)
, (3.30)

σ̂2 ∼ N
(
θ2, 4θ4τ22

)
. (3.31)

The approximate confidence intervals for the parameters of interest can be constructed
using these asymptotic distributions. Additionally, the GP can be distinguished from the
RP using the following proposition.

Proposition 3.11. To test H0 : a = 1 vs H1 : a 6= 1, let us define the test statistic

S2 =
√

1
â2τ̂11

(â − 1) . (3.32)

If |S2| > zα/2, then, the null hypothesis is rejected at significance level α since S2 ∼ N(0, 1)
asymptotically, under H0.

Similarly to Case I, the homogeneity of all processes can be tested by means of the following
proposition.
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Proposition 3.12. Let {Xji, i = 1, 2, . . . , nj + 1} be the inter-arrival times of the GPs
observed until a predetermined time T , with the trend parameter aj for j = 1, 2, . . . , r.
Assume that the random variables Xj1, j = 1, 2, . . . , r have an identical exponential dis-
tribution with the mean θ. To test H0 : a1 = a2 = · · · = ar against H1 : ∃ai 6= aj , i, j ∈
{1, 2, . . . , r}, i 6= j, let us define the test statistic

T2 = 1
r − 1

r∑
j=1

 âj − ¯̂a√
â2κj

2

. (3.33)

Then, the null hypothesis is rejected at the significance level α if T2 > χ2
r−1(α), since

T2 ∼ χ2
r−1 asymptotically under H0. Here,

κj = kj

kjlj − m2
j

,

kj = nj + F̂nj+1(tj), lj = n3
j/3 + n2

j F̂nj+1(tj), mj = n3
j/2 + njF̂nj+1(tj),

F̂nj+1(tj) = 1 − exp
(
−ânj tj/θ̂

)
,

âj is the ML estimator of aj for the jth process, ¯̂a = 1
r

∑r
j=1 âj, â and θ̂ are the ML estima-

tors based on multiple process data for the common trend parameter a and θ, respectively,
and tj is the censoring time for the censored variable Xj(nj+1).

Note that the test statistic T2 can be computed simply as

T2 = 1
r − 1

r∑
j=1

 âj − ¯̂a√
12â2/n3

j

2

,

when nj ’s are large enough. Because it can be shown that κj is asymptotically equal to
12/n3

j .
The ML estimate of the trend parameter a for a given multiple process data xt is com-

puted by solving the Equation (3.22) numerically. Unlike Case I, the MML methodology
cannot be utilized in this case directly due to randomly censored observations. However,
the MML methodology derived for Case I can be used based on only complete observations
xcom. Then, the MML estimators for a and θ based on ln xcom may be considered as good
initial values of the ML estimators rather than being an alternative approach. Further,
the ML estimators can be alternatively computed by using the well-known Expectation-
Maximization (EM) algorithm. The EM algorithm is an iterative procedure that alternates
between the expectation (E) step and the maximization (M) step until a convergence cri-
terion is met. In the E step, the expectation of the log-likelihood function conditional on
the observed sample, is computed. Then, it is maximized in the M step. The log-likelihood
function based on the total sample xt can be written as

ln L (a, θ; xt) = ln a
r∑

j=1

nj+1∑
i=1

(i − 1) − ln θ
r∑

j=1
(nj + 1) − 1

θ

r∑
j=1

[ nj∑
i=1

ai−1xji + anj Xj(nj+1)

]

by assuming censored samples as unobserved variates. Let λt = {λij , i = 1, . . . , nj +1, j =
1, . . . , r} denote whether the observation xji is complete or censored such that λij = 0,
i = 1, . . . , nj , j = 1, . . . , r, λj(nj+1) = 1, j = 1, . . . , r. The expectation of the log-likelihood
function conditional on the observed sample is obtained as
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E [ln L (a, θ; Xt)|Xt = xt, λt] = ln a
r∑

j=1

nj+1∑
i=1

(i − 1) − ln θ
r∑

j=1
(nj + 1)

− 1
θ

r∑
j=1

[ nj∑
i=1

ai−1xji + anj E
[
Xj(nj+1)

∣∣∣Xj(nj+1) > tj

]]
.

Therefore, if we consider the Equations (3.3) and (3.4) in (h + 1)th iteration of the EM
algorithm, â(h+1) is computed by solving the equation

r∑
j=1

[ nj∑
i=1

ai−1xji + anj E
[
Xj(nj+1)

∣∣∣Xj(nj+1) > tj ; â(h), θ̂(h)
]] [∑r

j=1 (nj + 1)2∑r
j=1 (nj + 1) − 2i + 1

]
= 0

(3.34)
with respect to a, then

θ̂(h+1) =

 r∑
j=1

[ nj∑
i=1

âi−1
(h+1)xji + â

nj

(h+1)E
[
Xj(nj+1)

∣∣∣Xj(nj+1) > tj ; â(h), θ̂(h)
]] /

 r∑
j=1

(nj + 1)

 ,

(3.35)
where E

[
Xj(nj+1)

∣∣∣Xj(nj+1) > tj ; â(h), θ̂(h)
]

= tj + θ̂(h)/â
nj

(h). These iterations are repeated

until
∣∣∣|(â(h+1) − â(h), θ̂(h+1) − θ̂(h)) |

∣∣∣ < ε is satisfied. Here || .|| stands for Euclidean
norm in R2 and ε > 0 is a prespecified tolerance level.

Proposition 3.13. Let X ={Xji, i = 1, . . . , nj + 1, j = 1, . . . , r} be inter-arrival
times of multiple GPs with trend parameter a observed until a predetermined time, X =
{Xi, i = 1, . . . , n} be inter-arrival times of a single GP with same trend parameter a, and
X1, Xj1, j = 1, . . . , r have exponential distribution with mean θ. Then, if

∑r
j=1 (nj + 1) =

n,
I (a; X) < I(a; X),

I (θ; X) < I(θ; X),
if
∑r

j=1 nj = n,
I (θ; X) > I(θ; X).

The Proposition (3.13) implies that observing multiple GPs until a predetermined time,
compared to a single GP with the same number of inter-arrival times, results in information
loss for both a and θ. However, if the number of inter-arrival times of a single process
is equal to number of completely observed inter-arrival times of multiple GPs, this leads
to an information surplus for θ in X due to the additional information obtained from the
censored observations.

4. Simulation study
In this section, we conduct a simulation study to evaluate the performance of inferential

procedures, including the ML, the ML with the EM algorithm, and the MML methods.
The simulation is carried out in MATLAB with 104 replications. The trend parameter a
is chosen from the range 0.80 : 0.05 : 1.20, and θ is selected from the values 1, 2, 3, 5, 10.
However, we present results only for a = 0.95 and θ = 1, as the results for other parameter
settings are similar. In the simulation, inter-arrival times for both single and multiple
processes are randomly generated, and various sample sizes are used in both cases. The
simulation is carried out for four different cases. In the first case, realizations of both
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Table 2. Simulation means and variances for the ML and MML estimators, based
on both single and multiple GPs data, with predetermined number of inter-arrival
times.

ML MML

â θ̂ ã θ̃

Mean Var Mean Var Mean Var Mean Var
Sample 1 0.9474 0.0104 10.551 0.2899 0.9530 0.0047 10,129 0.2967
Sample 2 0.9536 0.0174 10.354 0.2402 0.9059 0.0196 0.7329 0.1615
Sample 3 0.9668 0.0356 10.327 0.2205 0.9755 0.0545 0.8848 0.2046
Sample 4 0.9493 0.0032 10.442 0.2050 0.9508 0.0017 10,056 0.2078
Sample 5 0.9528 0.0072 10.441 0.1979 0.9549 0.0079 0.9637 0.1944
Sample 6 0.9560 0.0136 10.331 0.1758 0.9149 0.0182 0.7594 0.1256
Sample 7 0.9500 0.0004 10.264 0.1348 0.9500 0.0005 0.9962 0.1355
Sample 8 0.9504 0.0017 10.234 0.1274 0.9505 0.0020 0.9631 0.1250
Sample 9 0.9521 0.0041 10.253 0.1237 0.9528 0.0051 0.9371 0.1202
Sample 10 0.9537 0.0069 10.220 0.1144 0.9034 0.0091 0.7066 0.0756
Sample 11 0.9501 0.0001 10.184 0.0820 0.9501 0.0001 0.9981 0.0819
Sample 12 0.9502 0.0004 10.178 0.0787 0.9503 0.0004 0.9784 0.0787
Sample 13 0.9508 0.0008 10.195 0.0766 0.9438 0.0010 0.8880 0.0675
Sample 14 0.9508 0.0015 10.154 0.0746 0.9321 0.0018 0.8031 0.0585
Sample 15 0.9515 0.0023 10.151 0.0711 0.9518 0.0029 0.9220 0.0693

single and multiple GPs are observed with a predetermined number of inter-arrival times,
similar to Case I. The ML and MML estimators, as described in Section 3.1, are then
evaluated based on the inter-arrival times of the GPs. It is important to note that the
inter-arrival times are complete in Case I. Table 2 presents the results for this case. In
Table 2, r denotes the number of processes being observed, n presents the number of
inter-arrival times for each process, and Mean and Var refer to the simulation mean and
variance of the corresponding estimators. The sample sizes used in the Table 2 are given
in Table 3. For the computation of the ML estimator â the function fzero is used to
numerically solve Equation (3.3), and the MML estimator ã is used as the starting point
for the computation.

In the second case, realizations of multiple GPs are observed until a predetermined
time, similar to that of Case II. The ML estimators, as described in Section 3.2, are then
evaluated based on the inter-arrival times of the multiple GPs. It is important to note that
the last inter-arrival times of each process are right-censored, while the previous ones are
complete for Case II. The ML estimators are computed directly from Equation (3.22) and
(3.23), as well as using the EM algorithm formulated in Equations (3.34) and (3.35). When
employing the EM algorithm, the tolerance level ε is set to 5/10−5, and MML estimators
based on only complete inter-arrival times are used as initial estimates for the algorithm.
The results for this case are provided in Table 4, which also includes the MML estimators
based solely on the complete inter-arrival times. In Table 4, r denotes the number of
processes being observed, T represents the predetermined time that ends the observation
period, n∗ gives the average number of inter-arrival times observed for multiple GPs until
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Table 3. The sample sizes given in Table 2

Sample 1 r = 1, n = 15
Sample 2 r = 2, n = (8, 7)
Sample 3 r = 3, n = (5, 5, 5)
Sample 4 r = 1, n = 20
Sample 5 r = 2, n = (10, 10)
Sample 6 r = 3, n = (7, 7, 6)
Sample 7 r = 1, n = 30
Sample 8 r = 2, n = (15, 15)
Sample 9 r = 3, n = (10, 10, 10)
Sample 10 r = 4, n = (8, 8, 7, 7)
Sample 11 r = 1, n = 50
Sample 12 r = 2, n = (25, 25)
Sample 13 r = 3, n = (17, 17, 16)
Sample 14 r = 4, n = (13, 13, 12, 12)
Sample 15 r = 5, n = (10, 10, 10, 10, 10)

Table 4. Simulation means for the ML, ML-EM and MML estimators, based on
multiple GPs data, with predetermined total observation time.

MML ML ML-EM

n∗ ã θ̃ â θ̂ â θ̂ AIN
r = 2, T = 10 16 0.8877 0.5901 0.9115 0.9476 0.9117 0.9479 9
r = 3, T = 10 24 0.8501 0.4467 0.9246 0.9597 0.9246 0.9597 9
r = 4, T = 10 32 0.8287 0.3751 0.9311 0.9667 0.9311 0.9667 9
r = 2, T = 20 26 0.9212 0.6887 0.9370 0.9665 0.9370 0.9665 7
r = 3, T = 20 39 0.9041 0.5651 0.9412 0.9746 0.9412 0.9746 7
r = 4, T = 20 52 0.8927 0.4955 0.9430 0.9781 0.9430 0.9781 7
r = 2, T = 30 36 0.9312 0.7367 0.9423 0.9757 0.9423 0.9757 6
r = 3, T = 30 54 0.9207 0.6265 0.9448 0.9791 0.9448 0.9791 6
r = 4, T = 30 72 0.9135 0.5632 0.9461 0.9842 0.9461 0.9842 6
r = 2, T = 50 50 0.9395 0.7872 0.9462 0.9821 0.9462 0.9821 5
r = 3, T = 50 75 0.9325 0.6906 0.9472 0.9865 0.9472 0.9865 5
r = 4, T = 50 100 0.9288 0.6396 0.9481 0.9916 0.9481 0.9916 5

time T , AIN indicates the average number of iterations required for the EM algorithm to
converge, and the values represent the simulation means of the related estimators.

In the third case, inter-arrival times of GPs from both single and multiple processes
are observed to compare the effectiveness of using single versus multiple process data. In
this setup, a single GP is observed with a predetermined number of inter-arrival times.
Then, multiple GPs are observed until a predetermined time, which is on average equal
to the total realization length of the single GP. Table 5 presents the results for the ML
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Table 5. Simulation means and variances for the ML estimators, based on single
and multiple GPs data, under averagely equal total observation length.

ML

â θ̂

Mean Var Mean Var
r = 1, n = 8; T ∗ = 10 0.9647 0.0291 11,098 0.6318
r = 2, T = 10; n∗ = 16 0.9115 0.0096 0.9476 0.1842
r = 3, T = 10; n∗ = 24 0.9246 0.0057 0.9597 0.1184
r = 4, T = 10; n∗ = 32 0.9311 0.0040 0.9667 0.0876
r = 1, n = 13; T ∗ = 20 0.9525 0.0056 10,659 0.3414
r = 2, T = 20; n∗ = 26 0.9370 0.0020 0.9665 0.1199
r = 3, T = 20; n∗ = 39 0.9412 0.0012 0.9746 0.0760
r = 4, T = 20; n∗ = 52 0.9430 0.0009 0.9781 0.0576
r = 1, n = 18; T ∗ = 30 0.9512 0.0021 10,524 0.2450
r = 2, T = 30; n∗ = 36 0.9423 0.0009 0.9757 0.0926
r = 3, T = 30; n∗ = 54 0.9448 0.0006 0.9791 0.0628
r = 4, T = 30; n∗ = 72 0.9461 0.0004 0.9842 0.0475
r = 1, n = 25; T ∗ = 50 0.9500 0.0007 10,361 0.1691
r = 2, T = 50; n∗ = 50 0.9462 0.0003 0.9821 0.0712
r = 3, T = 50; n∗ = 75 0.9472 0.0002 0.9865 0.0476
r = 4, T = 50; n∗ = 100 0.9481 0.0002 0.9916 0.0360

estimators based on single- and multiple-GP data. In Table 5, r represents the number of
processes being observed, n indicates the predetermined number of inter-arrival times for
the single GP, T ∗ is the predetermined time to observe multiple GPs, and n∗ represents
the average number of inter-arrival times of multiple GPs observed until time T .

In the fourth case, inter-arrival times of GPs are observed according to both Case I and
Case II to evaluate the interval estimates of the ML estimators. For each case, 95% confi-
dence intervals for the parameters are computed based on the asymptotic distributions of
the ML estimators, as presented in Corollary (3.2) and (3.9). The confidence intervals are
calculated as ”point estimate ± 1.96 × square root of the estimated asymptotic variance”.
In addition, the corresponding coverage probabilities of the confidence intervals are com-
puted to assess the convergence rate of the ML estimators. The confidence intervals and
coverage probabilities for Case I are provided in Table 6, while the results for Case II are
presented in Table 7.

When the results are investigated, the following comments can be made. For the first
case, overall, the ML estimators â and θ̂ based on both single and multiple process data
with equal inter-arrival times perform very well in terms of low bias and variance. As
the number of inter-arrival times n increases, both the bias and variance of â and θ̂
decrease. The MML estimators ã and θ̃ perform very close to the ML estimators in terms
of simulation mean and variance for single process data. However, MML estimators based
on multiple process data become more biased compared to those based on single process
data as the number of multiple processes r increases while the total number of inter-arrival
times n is fixed. Because this setting yields fewer inter-arrival times for each process and
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Table 6. Confidence interval and coverage probabilities for the ML estimators,
based on both single and multiple GPs data, with predetermined number of inter-
arrival times.

a = 0.95, θ = 10
â θ̂

Confidence
Interval

Coverage
Probability

Confidence
Interval

Coverage
Probability

r = 1, n = 15 0.8297 1.0507 0.918 0 21.0988 0.875
r = 2, n = (15, 15) 0.8708 1.0277 0.956 2.8795 17.3759 0.932
r = 3, n = (15, 15, 15) 0.8874 1.0158 0.939 4.2321 16.1317 0.930
r = 1, n = 20 0.8781 1.0225 0.944 1.3167 20.0100 0.896
r = 2, n = (20, 20) 0.9002 1.0024 0.946 3.9201 16.7007 0.929
r = 3, n = (20, 20, 20) 0.9086 0.9918 0.947 5.0432 15.3771 0.939
r = 1, n = 30 0.9106 0.9891 0.929 2.8985 17.4901 0.901
r = 2, n = (30, 30) 0.9221 0.9776 0.954 4.9836 15.1953 0.932
r = 3, n = (30, 30, 30) 0.9276 0.9729 0.958 5.9558 14.3433 0.942
r = 1, n = 50 0.9317 0.9682 0.959 4.5096 15.7292 0.933
r = 2, n = (50, 50) 0.9372 0.9630 0.950 6.1424 14.0627 0.951
r = 3, n = (50, 50, 50) 0.9394 0.9604 0.949 6.7946 13.1914 0.947

Table 7. Confidence interval and coverage probabilities for the ML estimators,
based on both single and multiple GPs data, with predetermined total observation
time.

a = 0.95, θ = 10
â θ̂

Confidence
Interval

Coverage
Probability

Confidence
Interval

Coverage
Probability

r = 1, T = 200, n∗ = 15 0.7958 1.0471 0.917 0 19.4345 0.837
r = 2, T = 200, n∗ = 30 0.8569 1.0203 0.947 2.6513 16.7078 0.897
r = 3, T = 200, n∗ = 45 0.8796 1.0109 0.935 4.1645 15.9377 0.934
r = 1, T = 350, n∗ = 20 0.8662 1.0071 0.929 1.1671 17.7382 0.858
r = 2, T = 350, n∗ = 40 0.8961 0.9917 0.933 3.8394 15.6600 0.894
r = 3, T = 350, n∗ = 60 0.9072 0.9847 0.946 5.0130 14.7367 0.921
r = 1, T = 700, n∗ = 30 0.9041 0.9826 0.940 2.7139 16.4693 0.890
r = 2, T = 700, n∗ = 60 0.9194 0.9736 0.936 4.8489 14.5983 0.914
r = 3, T = 700, n∗ = 90 0.9260 0.9700 0.941 5.8420 13.9020 0.933
r = 1, T = 2000, n∗ = 50 0.9285 0.9674 0.933 4.2383 15.3055 0.907
r = 2, T = 2000, n∗ = 100 0.9354 0.9629 0.940 5.9874 13.9592 0.939
r = 3, T = 2000, n∗ = 150 0.9383 0.9606 0.942 6.7153 13.2039 0.941
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so, the approximation for the MML estimators gets worse compared to those based on
more inter-arrival times. Further, the performance of MML estimators improves when
more inter-arrival times are observed for each process.

In the second case, the ML estimators give desirable results for the parameters a and θ.
Both the bias and the variance of the ML estimators decrease as the observation period T
and/or the number of processes observed r increase. However, MML estimators based on
only complete samples are very biased, especially for θ, even with large values of T . The
reason for this phenomenon is again explained by the small number of inter-arrival times,
similar to the first case. When multiple GPs are observed until the predetermined time
T , some of the processes produce only a few inter-arrival times in some replications due
to randomness.This negatively affects the performance of the MML estimators, as their
approximation worsens in the case of very small samples. Besides that, the EM algorithm
converges in only a few iterations when the MML estimates are chosen as the initial values
for the algorithm.

In the third case, the ML estimators based on both single and multiple process data
perform close to each other. The bias of the ML estimator â based on single process data is
smaller than that based on multiple process data. However, the bias of the ML estimator
θ̂ based on multiple process data is less than that of the ML estimator based on single
process data. Furthermore, the variance of the estimators based on multiple process data
decreases as the number of processes being observed r and the total observation period T
increase, since the total number of inter-arrival times being observed increases.

For the fourth case, when the confidence intervals and coverage probabilities derived
from the asymptotic distributions of the ML estimators are examined, it is seen that the
coverage probabilities converge to the actual level of 95% for moderate sample sizes. If the
number of processes and inter-arrival times increase, the confidence intervals get tighter,
as expected.

5. Data analysis
In this section, we present data analysis examples to illustrate the effectiveness and use-

fulness of GP multiprocess data in the context of multirepairable system modeling. First,
artificially generated single- and multiple-process data of GPs are analyzed from effective-
ness perspective. Then, a real data representing the failure processes two supercomputer
shared memory processors (SMPs) are analyzed statistically under both the GP and the
NHPP-PLP models for comparison.

5.1. Data analysis for artificially generated data
In this section, a numerical example is examined for inferential procedures based on

single and multiple GPs data to compare the effectiveness of single and multiple processes.
For this purpose, a single GP and multiple GPs are generated with trend parameter a = 1.1
and θ = 10. For the single process data, the number of inter-arrival times observed is
chosen as n = 20. For the data from multiple processes, the number of processes observed
is chosen as r = 5, and the total observation period is limited to T = 40. The inter-arrival
times for these processes are given in Table 8. Note that the last inter-arrival times of
each process are right-censored, which are denoted with a sign of plus.

The ML estimators are computed as â = 1.0857 and θ̂ = 9.1244 based on single process
data, and as â = 1.1240 and θ̂ = 10.5060 based on multiple process data. To test whether
the data are compatible with the GP or RP, we test H0 : a = 1 against H1 : a 6= 1 for
single process data with the test statistic S1 given in Equation (3.14) by taking r = 1.
We also test, H0 : a = 1 against H1 : a 6= 1 for multiple process data by utilizing the test
statistic S2 given in Equation (3.34). The results are S1 = 2.0379 with p-value p = 0.0208
for single process data and S2 = 2.1468 with p-value p = 0.0159 for multiple process
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Table 8. Artificially generated data for single and multiple GPs with a = 1.1 and
θ = 10.

Inter-arrival times for single process with n = 20.
1.84 4.38 5.40 1.10 15.89 0.60 12.56 3.39 9.07 2.46 20.77 0.93 0.52 0.25
0.03 1.63 2.84 4.54 1.22 0.87
Inter-arrival times for multiple processes with r = 5 until predetermined time T = 40.
2.71 22.63 3.41 4.96 6.29+
0.63 4.79 6.77 0.45 2.88 4.93 0.99 3.23 2.76 1.64 3.86 5.01 1.74 0.32+
8.99 19.85 6.71 4.45+
9.13 1.66 7.50 7.07 6.97 7.67+
13.47 22.22 4.31+

data. Both results yield a 6= 1 at α = 0.05 significance level, that is the processes are
distinguished from the RP. It can be concluded from this result that the model parameters
of the GP, a and θ, can be estimated effectively based on both single and multiple process
data. However, the total observation time for single process data is 90.30 while it is only
40 (predetermined) for multiple process data. Consequently, the model parameters of a
GP can be estimated effectively based on multiple process data which can be observed in
a shorter period compared to single process data.

5.2. Real data analysis
In this section, a real data set is analyzed using both the GP and the NHPP for com-

parative purposes. The data set covers the failure processes of two identical SMPs of the
Blue Mountain supercomputer at Los Alamos National Laboratory. When an SMP fails,
it is restarted. Therefore, the failure process of each system can be regarded as the repair
process of a repairable system; see Wang et al. [42]. The original data present consecutive
failure times of two identical SMPs, and can be found in Wang et al. [42]. The inter-arrival
times of consecutive failures for each system are given in Table 9. Wang et al. [42] showed
that these multiple failure process data exhibit reliability growth, i.e., the inter-arrival
times between consecutive failures tend to increase after each restart/repair. Therefore, it
can be modeled with a monotone counting process model. Wang et al. [42] modeled the
data using the power-law process (PLP) which is a monotonic NHPP with the intensity
function λ(t) = λβtβ−1. They also showed that the failure processes of two SMPs are
homogeneous. Therefore, each failure process can be analyzed using an identical intensity
function of the PLP. The ML estimators of the intensity function parameters based on
the failure processes of two SMPs are calculated as λ̂ = 0.2496 and β̂ = 0.7794. For ML
estimation based on multiple process data in the PLP, see the appendix of Garmabaki et
al.[12].

As an alternative, these data can also be modeled by the GP. To fit the data set with
a GP model, it is essential to properly answer the following questions: Does the data
exhibit a trend? Is the data consistent with the model? Are the trends of the multiple
processes homogeneous? What are the estimates of the model parameters? Finally, how
well does the model fit the data compared to other models? The examination of these
questions is provided as follows. The combined Laplace test has been applied to multiple
process data to determine whether the processes exhibit a trend. The test statistic has
been calculated as Lc = −15.3731 with a p-value of p < 0.0001. This indicates that the
multiple process data of SMPs’ failures exhibit a trend. Additionally, the value of the
test statistic suggests that the failures tend to decrease over time, corresponding to an
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Table 9. Inter-arrival times between the consecutive failures of the two SMPs in
the Blue Mountain supercomputer

j nj Xji

1 31 4.74 15.49 1.98 3.81 9.07 2.25 20.70 1.67 7.96 5.22
1.27 11.52 8.90 17.79 11.75 0.71 4.30 6.84 5.95 4.59
16.55 38.41 13.62 24.77 4.88 0.22 15.66 7.72 24.55 7.86
79.43

2 23 5.21 9.28 27.82 12.21 4.57 7.00 8.90 44.28 8.20 19.01
26.29 17.44 13.31 19.85 29.27 12.88 18.54 28.62 9.99 11.03
14.78 62.91 23.37

increasing trend in the inter-arrival times of consecutive failures. For more details on
the combined Laplace test for multiple process data, see Kvaløy and Lindqvist [16] and
Garmabaki et al. [13]. Lam [20] proposed the following auxiliary variables to test whether
the data is compatible with the GP. Let Uji = Xj(2i)/Xj(2i−1), i = 1, 2, . . . , (nj − 1)/2 for
j = 1, 2. These variables are supposed to be iid for each j ∈ {1, 2}, if the multiple process
data follow a GP model. The iid property of the auxiliary variables has been tested by the
well-known turning-point test. The test statistics have been computed as TP1 = −0.4354
with p-value p = 0.66 for j = 1, and TP2 = −1.0885 with p-value p = 0.27 for j = 2.
Consequently, each process is compatible with the GP. It is reasonable to assume that the
first inter-arrival times for each process are identically distributed, as the failure processes
have been observed over identical systems. However, the homogeneity of trend parameters
for each process should be tested. For this purpose, the test statistic defined in Equation
(3.15) has been calculated as T1 = 0.4281 with p-value p = 0.51. This indicates that the
trend parameters of the failure processes are homogeneous. Thus, the multiple process
data of SMPs’ failure processes can be modeled by the GP with a common trend parameter
a. Taking the assumption that X11 and X21 have an exponential distribution with mean
θ, the ML estimates of the parameters are calculated as â = 0.9654, θ̂ = 9.0295. Note that
â = 0.9654 < 1, which implies that the inter-arrival times of consecutive failures tend to
decrease, giving a consistent result with the PLP model. Now, we can compare the GP
and the PLP models for the multiple process data of SMPs’ failure processes. The ML
estimates and related Akaike information criterion (AIC) values are given in Table 10. As
seen in the table, the AIC value for the GP model is slightly smaller. This result suggests
a better fit of the GP model to the data compared to the PLP.

Table 10. GP and NHPP-PLP models for the multiple SMPs failure data

Model Maximum Likelihood Estimates AIC
GP â = 0.9654, θ̂ = 9.0295 400.2603

NHPP-PLP λ̂ = 0.2496, β̂ = 0.7794 401.4636

6. Conclusion and discussion
In this paper, the multiple process data for a GP have been statistically evaluated. The

motivation for utilizing the GP model in the analysis of multiple process data is explained
in the context of modeling the repair processes of multiple repairable systems. In this
regard, the study presents some novel results, as the literature commonly uses NHPP
models to analyze multiple process data with a monotonic trend. The statistical inference
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problem is studied in detail under the assumption that all processes are homogeneous
and that inter-arrival times follow an exponential distribution. For this purpose, the
ML and MML estimators have been obtained along with their asymptotic distributions.
The simulation results show that both methods effectively estimate the model parameters,
showing low bias and variance. When all samples have a sufficient number of observations,
the ML and MML estimators perform similarly and produce almost the same estimates.
An advantage of the MML estimators is that they can be calculated analytically, whereas
the ML estimators require numerical computation. When the samples include censored
observations, the MML estimators cannot be directly calculated because of the presence of
randomly censored observations. In such cases, we recommend using the EM algorithm to
compute the ML estimators, with the MML estimates from complete observations serving
as the starting points for the algorithm.

From Propositions 3.7 and 3.13, the multiple process data of the GPs contain less
information about the trend parameter a than the single process data with an equal
number of observations. However, the simulation study shows that statistical inference
for the trend parameter a based on multiple process data is as effective as that based
on single process data. Artificial data analysis demonstrates the effectiveness of multiple
process data compared to single process data from a statistical perspective. Furthermore,
real data analysis highlights the modeling capability of GPs for analyzing multiple process
data, providing a better fit to the SMP failure data than the PLP model.

In the study, the inter-arrival times for GPs are assumed to follow an exponential distri-
bution. However, statistical inference for the GP under multiple process data with other
commonly used non-negative distributions, such as the gamma, lognormal, or Weibull dis-
tributions, should be considered to extend the present study. Furthermore, the inference
problem for alternative monotonic counting processes, such as the α-series process, double
GP, and others, should be addressed in multiple process data modeling.
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