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Abstract	

Childhood brain tumors rank high among the leading causes of mortality, being the second most common type 
of cancer after leukemia. Abnormal structures in the brain are visualized using MRI techniques, which are the 
most employed tools for distinguishing the neural structure of the human brain. However, identifying and 
diagnosing these abnormal structures can be a time-consuming and critical process. In this study, tumors in the 
Magnetic Resonance images of patients with Posterior Fossa tumors were segmented using two different image 
segmentation methods. Subsequently, numerical features were extracted from these tumors, and significant 
numerical features among tumor groups were determined using the Student's T-test; based on these features, 
tumor types were classified using machine learning algorithms. The study focused on the three most common 
types of Posterior Fossa tumors: Medulloblastoma, Ependymoma, and Pilocytic Astrocytoma, utilizing T2, 
Contrast-Enhanced T1, and ADC sequences. A total of forty-eight different numerical features were extracted 
from the segmented tumors and then acquired significant features were classified using five different machine 
learning algorithms. Among PA-MB, EM-MB and EM-PA tumor types, the average result of the most successful 
method in the T1 sequence was 86.93%, while it was 93.7% for the T2 sequence and 92.06% for the ADC 
sequence. Decision tree, SVM and Ensemble classifiers gave more successful results than others.  As a result of 
the detailed examination, our study not only makes valuable contributions to the literature, but also has a 
promising structure in terms of its potential to help clinicians. 
 
Keywords:	Posterior	Fossa	tumors;	Image	Processing;	Feature	Extraction;	Machine	Learning.		
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1. Introduction	

Posterior fossa tumors are brain tumors that occur in the region known as the "posterior 
fossa," located at the lower back of the skull. They are among the malignancies that cause 
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numerous fatalities in children. Also known as "infratentorial tumors," these tumors are 
predominantly benign tumors of the auditory and balance nerves, but in some cases, they can 
be malignant. Posterior fossa tumors are considered one of the most critical brain lesions. 
When they involve the brainstem within the posterior fossa, they become one of the most 
devastating forms of human diseases. Posterior fossa tumors account for 50-74% of childhood 
tumors, with pilocytic astrocytomas (PA), medulloblastomas (MB), ependymomas (EM), and 
brainstem gliomas being the most common types [1, 2].  Posterior fossa tumors have shown an 
increasing survival rate in recent years as a result of advances in treatment. However, since 
their prognoses and treatments vary due to the diversity in their molecular subtyping, early 
diagnosis and rapid and appropriate treatment are very important [3]. While these tumors may 
show similar characteristics among individuals in terms of age of onset and clinical symptoms, 
their clinical diagnosis can commonly be made by MRI. Conventional MRI is an extremely 
effective tool in detecting brain tumors and evaluating the location of the tumor and its effect 
on surrounding structures. However, since pediatric posterior fossa tumors have similar 
appearances, it has a limited role in the diagnosis of tumor type. Applications to increase the 
diagnostic accuracy of MRI using apparent diffusion coefficient (ADC) maps, MR spectroscopy, 
and MR perfusion are common. However, each of these applications is individually time-
consuming, requires expertise, and is difficult to evaluate together [4,5]. Also, each tumor type 
can have variable appearances within the same group, and it is also expected that the diagnosis 
obtained from conventional radiological reporting may not always be entirely accurate. 
Accurately distinguishing and identifying posterior fossa tumors is a challenging and critically 
important process for healthcare professionals, as it plays a vital role in planning necessary 
and effective treatment to improve survival rates in patients. In this regard, the accuracy of 
diagnosis and treatment relies on the radiologist's education, expertise, and decision-making. 
For pediatric brain tumors, the accuracy of the diagnosis with MRI based on traditional 
radiological reporting is determined to be 63%, while the retrospective examination of images 
with expert review can increase the diagnostic accuracy up to 71% [6]. A precise and effective 
diagnostic process can aid in preoperative evaluation for patients with different tumor types 
and guide surgical planning. It serves as a guiding tool during surgical procedures. Image 
processing methods are extensively used in various fields in the healthcare domain, allowing 
meaningful numerical features to be extracted and analyzed from medical images. Machine 
learning [2] algorithms are widely utilized methods for finding relationships between data, 
making them suitable for tumor classification. In order to increase the survival rate of 
individuals by early and accurate diagnosis of Posterior Fossa tumors, utilizing image 
processing algorithms to identify significant numerical features in segmented tumors, and 
distinguishing tumors from each other using machine learning algorithms have been 
represents a potential method and it which can provide significant advantages beyond 
traditional approaches for diagnosis. Combining image processing and machine learning 
algorithms for tumor classification can provide support to radiology experts, facilitating 
accurate and early diagnosis, and streamlining clinical workflows. In the literature, numerous 
studies have examined posterior fossa tumors from various perspectives, including 
radiological and imaging features, pathological and histological characteristics, as well as 
distinguishing tumor subtypes and classifying tumors. Table 1 below gives a comparative table 
of publications similar to our study during the review of the literature. This table provides a 
clear overview of each study, highlighting the researchers, study focus, participant count, 
methods used, and the accuracy achieved. The shape and topography of posterior fossa tumors 
are similar, and since quantitative analysis is not routinely performed, it is difficult to select 
them radiologically or clinically with high accuracy and reliability. Obtaining quantitative 
features from images with many approaches as a result of image processing techniques that 
can be obtained from MR images creates a potential wealth of information that cannot be seen 
by the human eye [7,8]. The aim of our study is to enable the typing of these types of posterior 
fossa tumors seen in childhood using MRI images taken in different sequences. For this 
purpose, tumor segmentation was performed automatically before T2, contrast-enhanced T1 
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and ADC images of PA, MB, and EM tumors, and then many features were extracted for each 
sequence image and classified with machine learning methods. 

	
Table	1	Examples from similar studies obtained as a result of literature research 
 

 

When our study is compared with the sample studies in the literature given in Table 1, it can 
be seen that these studies either did not use automatic segmentation methods, manually 
segmented the tumor, or studied all of them in general without focusing on different types of 
posterior fossa tumors separately, or for each sequence used in clinical routine (it is seen that 
contrast-enhanced T1, T2, ADC) are not evaluated separately or there are differences in the 
extracted features and machine learning method. Additionally, it appears that these studies did 
not present each sequence and each tumor type in detail when presenting their results.  Our 
study aims to extract and classify the image features of the three most common Posterior Fossa 
tumors in childhood: ependymoma (EM), medulloblastoma (MB), and pilocytic astrocytoma 
(PA). In the study, MR images obtained from T2, contrast-enhanced T1, and ADC sequences, 

Researchers Focus Participants Methods Accuracy 

[9]Bidiwala 
and Pitmann 
(2004) 

EM, MB, PA 
tumor 
classification 

33 
individuals 

CT, MRI, Radiographic findings, 
Neural Network (not have image 
processing) 85.7%  

[10]Gutiérrez 
et al.(2014) 

EM, PA, MB 
tumor 
classification 40 children

Shape, histogram, texture features, 
SVM (T2, T1, ADC) 

MB:95.8%
EM:94.3%
PA:96.9% 

[11]Li et al. 
(2019) 

EM, MB 
tumor 
analysis 174 patients Machine learning, MR biomarkers 85.38% 

[7]Zhou et al. 
(2020) 

MB, EM, PA 
tumor 
classification 288 patients

Preoperative MR images, radiomic 
features, Tree-Based Pipeline 
Optimization Tool (T2, T1, ADC) 

MB: 94%,
EM: 84%,
PA: 94% 

[12]Zarinaba
d et al. (2018)

Metabolite 
analysis for 
tumor 
classification 

41 pediatric 
patients 

MR spectroscopy data, SVM, random 
forest, linear discriminant analysis 
(T2, T1) 

MB: 86%
EM: 90% 
PA: 90% 

[8]Wang et al. 
(2022)  

MB, PA, EM 
tumor 
analysis 
 

99 patients
  

MRI-based analysis, high-
dimensional features, random forest 
classifier (T2, T1, ADC) 

 
93.81% 

  

[13]Sotoudeh 
et al. (2023) 

PA and HB 
tumor 
classification 

34 PA, 18 HB 
patients 

Post-contrast T1 sequence, various 
machine learning methods (T1) 82% 

[14]Li et al. 
(2020) 

Preoperative 
classification 
of EM and PA 45 patients

Radiomic analysis, machine learning 
algorithms, SVM 87.75% 

[15]Quon et 
al. (2020) 

Tumor 
detection and 
classification 92 children

Deep learning, modified ResNeXt-50-
32x4d (T2-weighted MRI) 92% 

[16]Fetit et al. 
(2018) 

EM, MB, PA 
tumor 
classification 

134 
individuals

SVM, three-dimensional textural 
features from MRI 72% 
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which are used separately or in combination for the clinical diagnosis of these tumors, were 
utilized. The tumor region in the images was segmented using the two most accurate 
segmentation methods, as verified by radiologists after trying the most commonly used 
segmentation methods in the literature. Subsequently, numerous numerical features were 
extracted from the images of each sequence. Unlike focusing on a single slice with the tumor, 
our study examined all slice where the tumor was visible. The numerical features that were 
meaningful for the images were determined using the Student's t-test from the extracted 
numerical features. This comprehensive analysis of the tumor from its inception to its 
conclusion in the images has increased the accuracy of the study. Among all the features 
obtained for each image (these; basic first-order statistical features, texture features based on 
the gray level co-occurrence matrix, features based on wavelet transform, numerical features 
based on percentages, and features from the histogram of oriented gradients (HOG)) those 
significant in discriminating between groups were identified. These identified features were 
then classified using five different machine learning algorithms, suitable for the study, to 
achieve high efficiency and accuracy in results. Our study holds promise in providing clinical 
support to radiologists by indicating which meaningful features each sequence possesses, 
which sequences and features better classify each tumor type, and also which classifier 
achieves higher success. As a result of the detailed examination, our study not only makes 
valuable contributions to the literature, but also has a promising structure in terms of its 
potential to help clinicians. 

2. Methods	
	

2.1	Patients	and	Image	Dataset	

This study was conducted using brain MR images of individuals aged between 0 and 18, 
diagnosed with Posterior Fossa tumors at the Department of Pediatric Radiology, Erciyes 
University. The images were obtained following the approval of the Erciyes University Clinical 
Research Ethics Committee. The study focused on the three most seen types of Posterior Fossa 
tumors: medulloblastoma, pilocytic astrocytoma, and ependymoma. The study was carried out 
on images of these tumor types in T2-weighted, contrast-enhanced T1-weighted, and ADC 
sequences. A small number of patients did not have images of all sequences. For patients with 
medulloblastoma, one individual lacked T1 sequence images, and two lacked ADC sequence 
images. For patients with ependymoma, two individuals lacked ADC sequence images, and five 
lacked T1 sequence images. Patients with pilocytic astrocytoma had complete sequence 
images. The images were acquired using the Siemens Magnetom Aera device on a 1.5T MR 
system with the same acquisition protocol. The acquired images consist of slices with a 
thickness of 5mm or 1mm, with a slice gap of 1mm. All images were acquired in DICOM format 
and are in grayscale. All sections containing tumors in any individual's images have been 
included in the study. Table 1 provides the number of patients and slices examined for three 
different sequences. 
 
Table	2 Number of patients and slices examined for posterior fossa tumor 
 

 T2	SEQUENCE	/	
Number	of	
Patients	‐	Slices	

T1	SEQUENCE	/	
Number	of				

Patients	‐	Slices	

ADC	SEQUENCE/	
Number	of										

Patients	‐	Slices	
MEDULLOBLASTOMA 11 - 45 10 - 47 9  - 23 

EPENDYMOMA 12 - 44 7 - 26 10 - 33 
PILOCYTIC 

ASTROSITOMA 
5 - 17 5 - 18 5 - 16 

TOTAL	 28 - 106 22 - 91 24 - 72 
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2.2	Image	Processing	and	Segmentation		

Image processing is a method that involves the acquisition, processing, analysis, and 
interpretation of visual information [17]. In this study, MRI images of patients diagnosed with 
Posterior Fossa were examined based on the number and thickness of slices for contrast-
enhanced T1, T2, and ADC sequences. For subsequent analyses, all slices in which the tumor 
was visible in each sequence were determined and the slices containing the tumor were 
confirmed by the expert radiologist who is one of the authors of our study. In all images, the 
size was fixed at 730x730 pixels, ensuring that only the brain is included in the images. 
Subsequently, contrast-limited adaptive histogram equalization was applied to enhance image 
quality and eliminate color distortions. Tumor segmentation was attempted by taking all slices 
in which the tumor was visible from the images of all people in each sequence - an average of 
5-6 sections from each person. In the literature, the most successful algorithms among the most 
commonly used image segmentation methods have been selected. The selection of the most 
successful segmentation algorithms was made in collaboration with the radiology expert in our 
research team, considering the success in each individual and slice. Tumors were extracted 
using two different algorithms: the Expectation Maximization algorithm and the Region-Based 
Active Contour algorithm. The selection of these two algorithms was primarily based on the 
advantages of Expectation Maximization, such as its wide application area, ability to handle 
missing data, capability to work with complex models, and applicability in clustering. 
Additionally, the Region-Based Active Contour algorithm was chosen for its resistance to noise 
in images, high accuracy in segmenting non-homogeneous areas, versatility in various 
applications, and its ability to precisely delineate the boundaries of objects. The process steps 
followed in the study are illustrated in the flowchart in Figure 1. 
 

 
	

Fig.	1. Flow chart showing the steps followed in the research. Diagram A shows images of the 
tumor types and sequences studied. In diagram B, the methods used for segmentation and the 

tumors extraction with these methods are visualized. While numerical feature extraction 
methods are included in the C scheme, machine learning methods used in the D scheme are 

included. 
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2.2.1	Image	segmentation	with	expectation	maximization	algorithm	

The presence of the capability of the Expectation Maximization algorithm in medical image 
processing to calculate missing data in images has a significant impact on its inclusion in this 
study. It is an effective iterative process used to calculate the maximum likelihood when data 
is missing or hidden. In this iterative process, the procedure is repeated until reliable 
parameter estimates are obtained. The primary aim of maximum likelihood estimation is to 
estimate the model parameters that are most likely to generate the observed data. The EM 
algorithm consists of two steps in each iteration: the E-step and the M-step. In the E-step, also 
known as the expectation step, missing data is estimated when observed data and existing 
model parameters are provided. The term "expectation" is used because this process is 
performed using conditional expectations. In the M-step, the likelihood function is maximized 
under the assumption that missing data is known. The missing data estimates obtained from 
the E-step are used in place of the actual missing data. With each iteration, the likelihood 
increases, leading to convergence [18]. Below, Figure 2 contains sections belonging to the 
Medulloblastoma tumor type, and the tumor image extracted from these sections is presented 
using the Expectation Maximization algorithm. 
 

 
	

Fig.	2. Cross-sections specific to the Medulloblastoma tumor type extracted from this section 
using the Expectation Maximization algorithm, and the extracted tumor images. 

 
2.2.2	Region‐Based	active	contour	algorithm	for	image	segmentation	

Region-based active contour segmentation in image processing locates the outer boundaries of 
the desired object in the image and estimates the object's region. This process involves 
automatically identifying boundaries on the image, starting from a pre-defined initial position. 
Determining the object's boundaries simplifies the segmentation process. This method 
significantly facilitates boundary delineation in images with noise or complex tonal variations. 
The Region-Based Active Contour algorithm is widely used in various fields and applications, 
such as visual tracking and image segmentation. The fundamental idea behind this algorithm 
is to deform a contour to produce the desired segmentation by minimizing a specific energy 
function. Active contours are composed of two main classes: edge-based and region-based 
active contour models [19]. In this study, the region-based active contour model is utilized. The 
region-based active contour model aims to channelize the movement of the active contour 
without using image gradients by defining relevant regions. This model provides better results 
in images with weak object boundaries [20]. In this study, region-based active contour 
segmentation was performed using Chan-Vese's edgeless active contour method [21]. This 
method is typically favored for images with homogeneity. It is a widely used approach in 
various fields, including medical image processing and object recognition. Both segmentation 
methods were implemented using Matlab. Below, Figure 3 displays cross-sectional images 
specific to the Ependymoma tumor type, along with the tumor region extracted from these 
sections using the region-based active contour algorithm. 
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Fig.	3. The cross-sectional images belonging to the Ependymoma tumor type and the tumor 
images extracted from these sections are displayed. This extraction process was performed 

using the region-based active contour algorithm. 
 
2.3	Numerical	Feature	Extraction	

Images carry a significant amount of information that contributes to the overall meaning of the 
images. The purpose of extracting numerical features is to identify specific characteristics that 
uniquely distinguish images from one another. However, not all numerical features extracted 
from images are meaningful. In this study, numerical features were extracted using the Matlab 
program through five different methods. Initially, basic statistical features (such as minimum 
value, maximum value, entropy, etc.) provided 8 features. 22 features were identified from the 
Gray-Level Co-occurrence Matrix (GLCM), 8 features were obtained based on the Discrete 
Wavelet Transform (DWT), 8 features were derived from the Histogram of Oriented Gradients 
(HOG), and finally, 2 features were extracted from percentage values. These methods were 
used as they are known, run with default values, and applied to our data. In total, 48 features 
were obtained for all tumor types and imaging sequences. Numerical features that could 
provide discrimination for all tumor types were identified using the most used methods in the 
literature. Meaningful features for all sequences were determined using 4 different methods. 
The extracted numerical features were organized into a table, and significant features were 
determined using Student's t-Test in the Matlab program. 
 
2.3.1	Primary	Statistical	Features	

Primary statistical features are directly derived from the gray-level histogram of MRI images 
and encompass fundamental statistical characteristics inherent to the image. Within this 
investigation, a total of 8 primary statistical features were extracted, encompassing the 
minimum value, maximum value, mean value, standard deviation, variance, kurtosis, skewness, 
and entropy. 
 
2.3.2	 Second‐Order	 Gray‐Level	 Co‐Occurrence	 Matrix	 (GLCM)	 Based	 Texture	
Features	
	
The Gray-Level Co-occurrence Matrix (GLCM) is a statistical method that examines textures by 
reviewing the spatial relationships of pixels. It calculates how frequently pairs of pixels with a 
specific value and a specific contextual relationship occur in the image, characterizing the 
texture of the image. This matrix enables the computation of various statistical values [22].In 
medical image processing, in addition to features such as shape and size, texture features also 
hold great significance. By formulating second-order statistical features, features that define 
various tissues can be extracted. The GLCM matrix indicates how frequently different 
combinations of gray levels occur together in images [23]. In this study, a total of 22 second-
order texture features were calculated using the GLCM. These features include: 
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Autocorrelation, Contrast, Correlation 1, Correlation 2, Cluster Prominence, Cluster Shade, 
Dissimilarity, Energy, Entropy, Homogeneity 1, Homogeneity 2, Maximum Probability, Sum of 
Squares, Sum Average, Sum Variance, Sum Entropy, Difference Variance, Difference Entropy, 
Information Measure of Correlation 1, Information Measure of Correlation 2, Normalized 
Inverse Difference and Inverse Difference Moment. 
 
2.3.4	Discrete	Wavelet	Transform‐Based	Features	

The Discrete Wavelet Transform (DWT) is a wavelet transform method that provides 
information about time and frequency content. DWT decomposes signals into different 
frequency bands, separating frequencies into various levels of resolution. It decomposes the 
image horizontally with low frequencies corresponding to vertical high frequencies, working 
with low-pass and high-pass filters. In the case of low-pass and high-pass filters, the former 
always provides convergence in the image, while the latter imparts edge information in the 
image [24]. Wavelet transformation allows analysis of images with multiple resolution levels, 
providing the advantage of multi-resolution analysis [25]. Due to these capabilities, it's an 
effective method for extracting discriminative features from MRI images. In this study, the 
Discrete Wavelet Transform method was used to extract 8 features: minimum value, maximum 
value, mean value, standard deviation, variance, kurtosis, skewness, and entropy. These 
features were identified as distinctive structures in the images. 
 
2.3.5	Histogram	of	Oriented	Gradients(HOG)	Based	Features	

The Histogram of Oriented Gradients (HOG) method is a powerful feature extraction technique 
that can characterize object information through the local density gradients of the final 
clustered image. HOG divides the image into different blocks, each containing a few pixels. 
From these pixels, the HOG feature vector is obtained. It is known that extracting too many 
features can be complex and unnecessary, while extracting too few features can lead to a loss 
of information. The HOG method, capable of characterizing object information through the 
local density gradients of the final clustered image, divides the image into different blocks, each 
containing a few pixels, from which the HOG feature vector is derived. Extracting too many 
features can be complex and unnecessary, while too few features can result in information loss. 
HOG features are extracted using various block sizes, with the best-performing size determined 
by testing different block sizes in the study. In this study, features were extracted using an 8 x 
8 block size [26].  The feature extraction process was conducted by calculating the basic 
statistical characteristics of an average of 1500 features, which were used as the Histogram of 
Oriented Gradients feature. These features include calculations of minimum value, maximum 
value, mean, standard deviation, variance, skewness, kurtosis, and entropy. 
 
2.3.6	Percentile	Features	

Percentile values can be utilized in feature extraction to analyze each feature based on the 
statistical information of the image data. Percentile values over images provide statistical 
information based on image pixels and the percentage associated with the image. In this study, 
two features representing the 10th and 90th percentiles were extracted according to the 
intensities of the image pixels. 

As a result, a total of 48 features were calculated across all tumor types and imaging sequences 
in this study. Those features that were significant in distinguishing and classifying tumors were 
determined by applying Student's t-Test. 
 
2.4	Machine	Learning	Algorithms		

In our study, five different machine learning methods were used to classify the image features 
of tumor regions. In this study, classification processes were conducted using the Matlab 
program, and the results were compared. In this section, algorithms were selected considering 
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the data type and size, the complexity of the model, training duration, prediction performance, 
the interpretability and understandability of the model, and also its ability to generalize well 
without being prone to overfitting. 
 
2.4.1	Support	Vector	Machines	

In this study, tumors were initially classified using the Support Vector Machines (SVM) 
algorithm, which is one of the machine learning algorithms, based on significant numerical 
features obtained without feature extraction. Support Vector Machines, belonging to the 
supervised learning category, are a complex algorithm that provides high accuracy. They 
exhibit strong generalization capabilities and resilience against high-dimensional data. The 
selection of parameters holds great importance for their performance. Their training speed is 
comparatively slower than other algorithms. [27]. 

SVM is a favored algorithm for both classification and regression applications, although it is 
predominantly used for classification tasks. In classification applications, its goal is to 
accurately classify objects based on example data in the training dataset. It requires a decision 
plane to differentiate between different classes of data. It employs complex mathematical 
functions for object classification, referred to as kernels [28]. SVM has numerous advantages 
in applications. These advantages include high-accuracy classification in data, the ability to 
model complex decision boundaries, and the capability to work with datasets containing many 
independent variables. 

 In this study, six different SVM algorithms were utilized. These are as follows: Linear SVM, 
Quadratic SVM, Cubic SVM, Fine Gaussian SVM, Medium Gaussian SVM, Coarse Gaussian SVM. 
 
2.4.2	Decision	Trees		

Decision trees typically have a flowchart-like structure where each internal node, also known 
as a split, represents a logical test, and each leaf represents a prediction. At each stage, each 
observation starts from the root and ends up in one of the leaves by following a completely 
transparent path. Its simplicity stems from its robustness. It is a model that is easy to 
understand and interpret. Decision trees can handle missing values in data, are not 
computationally expensive, and can make data usable in complex datasets [29]. 

 In this study, three different decision trees were used. These are: Fine Tree, Medium Tree, 
Coarse Tree. 
 
2.4.3	Logistic	Regression	Classifiers	

Logistic regression is a powerful modeling tool and a generalization of linear regression. 
Logistic regression is an algorithm used to determine the shape of the relationship between 
dependent and independent variables for the purpose of prediction and classification. It is 
employed when the dependent variable has two levels. Linear regression, on the other hand, 
requires the dependent variable to be continuous. However, in practice, the dependent variable 
is often categorical and binary [30]. 
 
2.4.4	Nearest	Neighbor	Classifiers	

The most important goal in classification is to determine, in the simplest and easiest way, to 
which class objects belong based on their characteristics. This algorithm is one of the simplest 
machine learning algorithms. It does not create an explicit prediction-based model, and data 
points are straightforwardly stored during training. This algorithm can be seen as a form of 
basic learning. In predicting a new point, the k points in the training dataset that are closest to 
this point in terms of distance are considered and used. When determining the nearest 
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neighbor, Euclidean and Manhattan distances are commonly employed. While k is a constant, 
it can be determined by the user [31]. 

 In this study, 6 different KNN classifiers were used. These are: Fine KNN, Medium KNN, Coarse 
KNN, Cubic KNN, Cosine KNN, Weighted KNN. 
 
2.4.5	Ensemble	Classifiers	

The machine learning algorithm that combines multiple models to achieve higher accuracy 
than a single model and reduce false positives is called an ensemble classifier [32]. This 
algorithm performs community-based classification by combining the prediction results of 
each model. This way, it ensures that the final result is obtained more accurately by learning 
from the errors of each individual model [33].  

In this study, 5 different ensemble classifiers were used. These are: Boosted Trees, Bagged 
Trees, Subspace Discriminant, Subspace KNN, RUSBoost Trees. 
 
3.Results	

3.1	Feature	Extraction	and	Results	

In the study, a total of 48 features were extracted from all the images of the T1, T2, and ADC 
sequences, corresponding to all sections containing tumors. Significant features specific to each 
tumor type and image sequence were identified. Significant numerical features for all tumor 
types and imaging sequences were determined using the Student’s t-test. In the T2 sequence, 
11 significant features were found between PA and MB, while 21 significant features were 
identified between PA and EM, and 6 significant features between MB and EM. In the case of 
the ADC sequence, 28 significant features were observed between PA and MB, 6 significant 
features between PA and EM, and 18 significant features were found between EM and MB. 
Additionally, within the T1 sequence, 6 significant features were found between PA and MB, 2 
significant features between EM and MB, and 2 significant features between EM and PA. Table 
2, Table 3, and Table 4 below present the significant numerical features among tumor types for 
the T2, contrast-enhanced T1, and ADC sequences, respectively. 
 
Table	3	Significant features obtained with posterior fossa tumor types for contrast-enhanced 
T1 sequence  

 
Only a few of the examined features for the T1 sequence were found to be significant. 
Percentage value features were not significant in the T2 and ADC sequences, while they were 
defined as significant features for MB-PA and EM-MB tumors in the T1 sequence. Primary 
statistical features such as kurtosis and skewness, obtained through discrete wavelet 

Meaningful	Features	           EM‐PA	 MB‐PA	 EM‐MB	

GLCM	           ----------              ----------         --------- 

DWT	 Kurtosis, 
Skewness 

Kurtosis, Skewness         --------- 

Primary	Statistical	           ---------- Kurtosis, Skewness         --------- 

Percent	Value	           ---------- 10 Percent, 90 
Percent 

10 Percent, 90 
Percent 
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transform, were found to be significant among groups. This situation may be attributed to the 
high anatomical accuracy but limited information on tissue physiology and characteristics 
provided by T1 images. 
 
Table	4 Significant features obtained between posterior fossa tumor types for the T2 sequence 

 
More distinguishing features among different tumor types in the T2 sequence were obtained 
compared to T1. In the ADC sequence, a greater number of significant features were obtained 
among all tumor types compared to the other sequences. Similar to the T2 sequence, 
percentage value features were not found to be significant attributes within the ADC sequence. 
These findings indicate that T2 and ADC sequences provide more significant features in 
determining the types of posterior fossa tumors. A greater number of distinguishing features 
between different tumor types on T2 sequence were obtained. More significant features were 
obtained in the ADC sequence compared to other sequences across all tumor types. Similar to 
the T2 sequence, percentage value features were not found to be significant features in the ADC 
sequence. These cases show that T2 and ADC sequences provide more meaningful features in 
determining the types of posterior fossa tumors. 
 

 

 

 

 

 

Meaningful	
Features 

MB‐PA EM‐PA	 MB‐EM	

GLCM	 Autocorrelation, 
Cluster 
Prominence, Sum 
of Squares, Sum 
Variance 

Autocorrelation,Cluster 
Prominence, Sum of 
Squares, Sum 
Variance,Sum Average, 
Information Measure 
of Correlation 1, 
Information Measure 
of Correlation 2 

 
 
 

     -------------------
- 

DWT	 Standart 
Deviation, 
Variance, 
Skewness, Entropi 

Maximum Value, Mean 
Value,Standart 
Deviation, Variance, 
Kurtosis, Skewness 

 
     -------------------

- 

Primary	
Statistical	

Standart 
Deviation, 

Variance, Kurtosis 

Standart Deviation, 
Variance 

 
      -------------------

- 
HOG	  

  
     ------------------- 

Maximum Value, Mean 
Value,Standart 
Deviation, Variance, 
Kurtosis, Skewness     

 

Minimum Value, 
Maximum Value, 
Mean 
Value,Standart 
Deviation, 
Variance, 
Skewness 
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Table	5 Significant features obtained with posterior fossa tumor types for ADC sequence 
 

	
Meaningful	
Features	

	
										MB‐PA							

	
									EM‐PA	

		
											MB‐EM	

GLCM	 Autocorrelation, 
Correlation 1, 
Correlation 2, Cluster 
Shade ,Cluster 
Prominence, Energy, 
Entropy, Homogeneity 
1, Homogeneity 2, 
Maximum Probability, 
Sum of Squares, Sum of 
Squares, Sum Variance, 
Difference Entropy 

       
 
 
 
 
 
   -------------------- 

Autocorrelation, 
Correlation 2, 
Sum of Squares, 
Cluster Shade , 
Sum Average, 
Sum Variance 
 

DWT	 Mean Value, Standart 
Deviation, Kurtosis, 
Variance 

    
   -------------------- 

Autocorrelation, 
Correlation 2, 
Sum of Squares, 
Cluster Shade, 
Sum Average, 
Sum Variance 
 

Primary	
Statistical	

Mean Value, Standart 
Deviation, Kurtosis, 
Variance 

     
  -------------------- 

Minimum Value, 
Maximum 
Value, Standart 
Deviation, 
Variance, 
Kurtosis, 
Skewness 

HOG	 Maximum Value, Mean 
Value,Standart 
Deviation, Variance, 
Kurtosis, Skewness 

Maximum Value, Mean 
Value,Standart 
Deviation, Variance, 
Kurtosis, Skewness       
 

 
 
   ------------------- 

 
3.2	Machine	Learning	Algorithm	and	Results	

3.2.1	Classification	results	of	posterior	fossa	tumors	for	T2	sequence	

Different machine learning algorithms were applied to the features calculated for each type of 
posterior fossa tumors obtained in T1, T2 and ADC sequences. The ones that give the most 
successful results among these algorithms (and algorithm subtypes) are presented in the 
tables. For the T2 sequence, a classification process was conducted on a total of 28 individuals 
with posterior fossa tumors, including 5 pilocytic astrocytomas, 12 ependymomas, and 11 
medulloblastomas. The classification of PA and EM tumors with decision trees is illustrated in 
Figure 4 below. 
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Fig.	4. The classification of PA and EM tumors captured with the T2 sequence using decision 
trees. 

 
Below, the classification accuracy results obtained with five different machine learning 
algorithms in the T2 sequence are provided. 
 
Table	 6	 The accuracy, precision, recall, and F1 score values of the classification results 
obtained with five different machine learning algorithms in the T2 sequence. 

 
TUMORS 

DECISION 
TREES 

LOGISTIC 
REGRESSION 
CLASSIFIERS 

SUPPORT 
VECTOR 

MACHINES 

NEAREST 
NEIGHBOR 
CLASSIFIERS 

ENSEMBLE 
CLASSIFIERS 

 
      
PA‐EM 

94.1(%) 
(Fine Tree) 
Precision:1, 
Recall:0.92, 

F1 Score: 0.96 

88.2(%) 
(LogisƟc 

Regression) 
Precision:0.916 
Recall:  0.916 
F1 Score: 0.916 

88.2(%) 
(Linear SVM) 
Precision:1 
Recall:  0.857 
F1 Score: 0.924 

88.2(%) 
(Fine KNN) 
Precision:1 
Recall:  0.857 
F1 Score: 0.924 

94.1(%) 
(Subspace 

KNN) 
Precision:1 
Recall:0.92 

F1 Score: 0.96 
  
      
 
PA‐MB 

 
100(%) 

(Fine Tree) 
Precision:1 
Recall:1 

F1 Score: 1 

 
100(%) 
(LogisƟc 

Regression) 
Precision:1 
Recall:1 

F1 Score: 1 

 
100(%) 

(Cubic SVM) 
Precision:1 
Recall:1 

F1 Score: 1 

 
100(%) 

(Fine KNN) 
Precision:1 
Recall:1 

F1 Score: 1 

 
100(%) 

(Subspace 
KNN) 

Precision:1 
Recall:1 

F1 Score: 1 
 
     
EM‐MB 

87(%) 
(Fine Tree) 

Precision:0.818 
Recall:0.9 

F1 Score: 0.857 
 

56.6(%) 
(LogisƟc 

Regression) 
Precision:0.636 
Recall:0.538 

F1 Score: 0.582 

65.2(%) 
(Cubic SVM) 

Precision:0.545 
Recall:0.666 

F1 Score:0.599 
 

78.3(%) 
(Fine KNN) 

Precision:0.454 
Recall:0.555 

F1 Score:0.499 
 

69.6(%) 
(Bagged Trees) 
Precision:0.545 
Recall:0.75 

F1 Score:0.63 
 

 

As seen in the table, the lowest successful classification occurred between EM-MB, while the 
highest successful classification was between PA-MB. Among the methods, decision trees 
provided the most successful results among the types. The ability of decision trees to directly 
process both numerical and categorical data, control complex models, quickly train and make 
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predictions on datasets, and facilitate the identification of the most influential features in 
determining the outcome has provided advantages in the results obtained. 
 
3.2.2	Classification	results	of	posterior	fossa	tumors	for	T1	sequence	

For the contrast-enhanced T1 sequence, classification was performed on a total of 22 
individuals with posterior fossa tumors, including 5 pilocytic astrocytomas, 7 ependymomas, 
and 10 medulloblastomas. The ROC curve obtained from the classification of PA and MB tumors 
in the contrast-enhanced T1 sequence using cubic SVM is shown in Figure 5. 
 

 
 

Fig.	5. The ROC curve obtained from the classification of PA and MB tumors in the T1 
sequence using cubic SVM. 

 
Below, the classification accuracy results obtained with five different machine learning 
algorithms in the contrast-enhanced T1 sequence are provided. 
 
Table	 7 The accuracy, precision, recall, and F1 score values of the classification results 
obtained with five different machine learning algorithms in the T1 sequence. 
 

 
TUMORS 

DECISION 
TREES 

LOGISTIC 
REGRESSION 
CLASSIFIERS 

SUPPORT 
VECTOR 

MACHINES 

NEAREST 
NEIGHBOR 
CLASSIFIERS 

ENSEMBLE 
CLASSIFIERS 

 
      
PA‐MB 

80(%) 
(Fine Tree) 
Precision:0.8 
Recall: 0.888 

F1 Score: 0.842 

80(%) 
(LogisƟc 

Regression) 
Precision:0.8 
Recall: 0.888 
F1 Score:0.842 

100(%) 
(QuadraƟc 

SVM) 
Precision:1 
Recall:1 

F1 Score: 1 

100(%) 
(Fine KNN) 
Precision:1 
Recall:1 

F1 Score: 1 

100(%) 
(Bagged Trees) 
Precision:1 
Recall:1 

F1 Score: 1 

  
      
PA‐EM 

58.3(%) 
(Fine Tree) 

Precision:0.714 
Recall: 0.625 
F1 Score:0.666 

58.3(%) 
(LogisƟc 

Regression) 
Precision:0.714 
Recall: 0.625 
F1 Score:0.666 

66.7(%) 
(Linear SVM) 

Precision:0.714 
Recall: 0.714 
F1 Score:0.714 

66.7(%) 
(Weighted 

KNN) 
Precision:0.714 
Recall: 0.714 
F1 Score:0.714 

66.7(%) 
(Subspace 

Discriminant) 
Precision:0.714 
Recall: 0.714 
F1 Score:0.714 

 
 

EM‐MB 

94.1(%) 
(Fine Tree) 
Precision:1 
Recall: 0.875 
F1 Score:0.933 
 

94.1(%) 
(LogisƟc 

Regression) 
Precision:1 
Recall: 0.875 
F1 Score:0.933 

94.1(%) 
(Cubic SVM) 
Precision:1 
Recall: 0.875 
F1 Score:0.933 

88.2(%) 
(Fine KNN) 

Precision:0.857 
Recall: 0.857 
F1 Score:0.857 

88.2(%) 
(Bagged Trees) 
Precision:0.857 
Recall: 0.857 
F1 Score:0.857 
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As seen in the table, the lowest successful classification occurred between EM-PA, while the 
highest successful classification was between PA-MB. Among the methods, support vector 
machines provided the most successful results among the types. 
 
3.2.3	Classification	Results	of	Posterior	Fossa	Tumors	for	the	ADC	Sequence	

A total of 24 individuals with posterior fossa tumors were included in the classification process 
for the ADC sequence, consisting of 5 pilocytic astrocytomas, 10 ependymomas, and 9 
medulloblastomas.  

The confusion matrix obtained from the classification of EM and MB tumors using cubic SVM is 
shown in Figure 6 below. 

 

Fig.	6. The Confusion matrix obtained from the classification of EM and MB tumors in the ADC 
sequence using cubic SVM. 

 
Below, the classification accuracy results obtained with five different machine learning 
algorithms in the ADC sequence are provided. 

Table	 8 The accuracy, precision, recall, and F1 score values of the classification results 
obtained with five different machine learning algorithms in the ADC sequence. 
 

    
   
TUMORS 

DECISION TREES  LOGISTIC 
REGRESSION 
CLASSIFIERS 

SUPPORT 
VECTOR 

MACHINES 

NEAREST 
NEIGHBOR 
CLASSIFIERS 

ENSEMBLE 
CLASSIFIERS 

 
      
PA‐MB 

71.4(%) 
(Fine Tree) 

Precision:0.777 
Recall: 0.777 
F1 Score:0.777 

92.9(%) 
(LogisƟc 

Regression) 
Precision:0.888 

Recall: 1 
F1 Score:0.940 

100(%) 
(QuadraƟc 

SVM) 
Precision:1 
Recall:1 

F1 Score: 1 

85.7(%) 
(Fine KNN) 
Precision:1 
Recall: 0.818 
F1 Score:0.899 

92.9(%) 
(Subspace 

Discriminant) 
Precision:0.888 

Recall: 1 
F1 Score:0.940 

  
      
PA‐EM 

    86.7(%) 
  (Fine Tree) 
Precision:1 
  Recall: 0.588 
 F1 Score:0.741 

53.3(%) 
(LogisƟc 

Regression) 
Precision:0.6 
Recall: 0.666 
F1 Score:0.631 

86.7(%) 
(Linear SVM) 
Precision:1 
Recall: 0.588 
F1 Score:0.741 

86.7(%) 
(Weighted 

KNN) 
Precision:1 
Recall: 0.588 
F1 Score:0.741 

86.7(%) 
(Subspace 

Discriminant) 
Precision:1 
Recall: 0.588 
F1 Score:0.741 

 
 

EM‐MB 

73.7(%) 
(Fine Tree) 
Precision:0.8 
Recall: 0.727 
F1 Score:0.762 

78.9(%) 
(LogisƟc 

Regression) 
Precision:0.8 
Recall: 0.8 
F1 Score:0.8 

89.5(%) 
(Cubic SVM) 
Precision:0.9 
Recall: 0.9 
F1 Score:0.9 

84.2(%) 
(Medium KNN) 
Precision:1 
Recall: 0.769 
F1 Score:0.869 

89.5(%) 
(Subspace 

Discriminant) 
Precision:0.9 
Recall: 0.9 
F1 Score:0.9 
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Our study has important implications for distinguishing between sequence types and tumor 
types based on the features extracted from images in three different types of posterior fossa 
tumors. As can be seen from the classification results presented above, all tumors were 
generally classified with high accuracy. In the T2 sequence, PA-MB and PA-EM tumors were 
classified with the highest success, while EM-MB had the lowest successful classification. With 
T1 sequence images, PA-EM had the lowest classification performance, PA-MB had the highest, 
and EM-MB had high classification accuracy. In the ADC sequence, the results were closer to 
each other, with the highest classification between PA-MB.  
 
4.Discussion	
	
Posterior fossa tumors are the most common brain tumors in childhood comprising 50–74% 
of pediatric all brain tumors. Majority of them are juvenile pilocytic astrocytomas, 
medulloblastomas, ependymomas [2, 9, 34]. Since the rapid progression of some pediatric 
brain tumors causes morbidity and mortality, early diagnosis of tumor types is essential. 
Conventional MRI has an indispensable role in the detection of brain tumors, evaluating tumor 
location and impact on surrounding structures, Nevertheless, it has a limited role in the 
diagnosis of the tumor type because pediatric posterior fossa tumors share similar 
appearances [35,36]. Some progress has been made to improve the diagnostic accuracy of MRI 
using apparent diffusion coefficient (ADC) maps, MR spectroscopy, and MR perfusion. 
However, these advanced MR imaging modalities did not provide accurate enough results to 
exactly discriminate the pediatric posterior fossa tumor types. Histopathological diagnosis is 
the gold standard method for the diagnosis. However, this method is time-consuming and 
invasive. Also, a trained neuropathologist is needed to evaluate the specimens [37, 38].  

MRI-based machine learning algorithms are recently becoming an effective implement that can 
potentially speed up the diagnostic process. It has already been tested in the diagnosis of brain 
tumors in both adults and children, in differentiation of meningiomas, gliomas and pituitary 
tumors[39-41]. The application of MRI-based machine learning algorithms in the diagnosis of 
pediatric fossa tumors may improve the clinical approach for pediatric posterior fossa tumors 
in some potential ways. MR imaging–based classification may act as a noninvasive method to 
plan a surgical approach and extent of resection. Also, it may quicken the planning of any 
potential neoadjuvant chemotherapy, besides that the recognized imaging findings may 
complement the histopathology in the case of pediatric fossa tumors with complex 
histopathologic findings, rather than replacing the histopathologic diagnosis [10,42].  

The aim of this study is to extract and classify image features that will assist radiologists in 
distinguishing the three most common types of posterior fossa tumors (pilocytic astrocytoma, 
medulloblastoma, and ependymoma) using MR images of contrast-enhanced T1, T2, and ADC 
sequences. The primary motivation for this research is the high mortality rate of posterior fossa 
tumors in children, which is attributed to the diagnostic challenges faced by radiologists in 
clinical settings. There are some studies in the existing literature with similar objectives and 
images. The study by Gutierrez et al. [10], which is the closest to our work, involved 40 children 
and calculated shape, histogram, and texture features from T2 and T1, as well as diffusion 
(ADC) sequences for EM, PA, and MB tumor types. They achieved high accuracy in classifying 
medulloblastomas by examining tissue features in the ADC sequence from the gray level co-
occurrence matrix. The classification was performed using support vector machines, achieving 
a 91.4% success rate with ADC histogram features of posterior fossa tumors. Li et al.'s study 
[11] focused on obtaining biomarkers from machine learning-based magnetic resonance 
images for two different pediatric posterior fossa tumors (EM, MB) in 174 patients. They used 
three different feature extraction methods for 300 biomarkers and included 11 different 
classifiers, such as K-nearest neighbors, SVM, random forests, decision trees, neural networks, 
and others. The SVM classifier outperformed others, achieving 85.38% accuracy. The main 
differences that set our study apart from these are the use of three different imaging sequences 
together in the clinical diagnosis of the most common types of posterior fossa tumors and 
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examining all slices where the tumor is visible (an average of 5-6 sections per person), not just 
a single cross-sectional image. Our study also identifies which features are more distinctive in 
differentiating tumors from each other in each sequence's images and which machine learning 
algorithm provides more accurate classification using these features. These differences give 
our research an advantage over other studies. For all sequences, PA-MB tumors were classified 
with the highest accuracy. In the T2 sequence, PA-MB tumors yielded high results with all 
machine learning algorithms. Overall results possess high accuracy, precision, sensitivity, and 
F1 scores. 

The most significant limitation of our study is the small sample size, due to the limited number 
of patients diagnosed with posterior fossa tumors in hospital records and the lack of complete 
image data from all three sequences for all patients with posterior fossa tumors, thus limiting 
the number of individuals. Therefore, future studies with more patients are expected to 
enhance the discriminative power of our findings. Larger datasets, supported by further 
studies using a broader set of features, are needed to provide more comprehensive and 
discriminative results and contribute to the diagnosis and treatment of posterior fossa tumors. 
Our study indicates the need for different feature extraction algorithms and more research in 
this area, as we observed few meaningful numerical features for certain imaging sequences or 
tumor groups during the feature extraction phase. Additionally, not limiting the classification 
phase to 5 methods and trying more machine learning methods could be beneficial for 
achieving the highest accuracy and precision in general interpretation. Moreover, using deep 
learning to directly classify images, apart from machine learning algorithms, could be explored. 
The results of our study guide future research and have the potential to support the literature 
and the radiology clinic. 

5.Conclusions	

The primary aim of this study was to differentiate childhood brain tumors, specifically pilocytic 
astrocytoma, medulloblastoma, and ependymoma, within posterior fossa tumor types using 
MR images with three different sequences. To achieve this goal, each tumor region underwent 
segmentation with two different image processing algorithms, confirmed by a radiologist. 
Subsequently, numerical feature extraction was performed using five different methods from 
the segmented images. This ensured the extraction of 48 different numerical features for each 
tumor, and significant numerical features were identified for each sequence and tumor type. 
During the feature extraction stage, a limited number of significant features were identified for 
some tumor groups. Among the imaging sequences, the ADC sequence provided the most 
significant features, while the contrast-enhanced T1 sequence yielded fewer significant 
numerical features. Subsequently, classification was performed for each sequence and tumor 
type using five different machine learning methods. When considering all sequences together, 
the highest success for PA-EM was achieved with 100% accuracy from the T2 sequence, for PA-
MB with 100% accuracy from the T2 and contrast-enhanced T1 sequences, and for EM-MB with 
89.5% accuracy from the ADC sequence. The results of our study hold promise for the 
classification of posterior fossa tumors in future research. Increasing the sample size, utilizing 
more comprehensive feature extraction methods to increase the number of significant 
features, and experimenting with various machine learning algorithms can further enhance 
classification results. 
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