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Abstract. In this research, by using the principle of quantum calculus, we introduce a
modified fractional derivative operator T ξ,𭟋

q,ς of the analytic functions in the open unit disc
♢ = {ς : ς ∈ C, |ς| < 1}. The operator T ξ,𭟋

q,ς can then be used to introduce a new subclass of
analytic functionsD

⊕
(ϑ, 𭟋, d, ξ, γ; q). We present the necessary conditions for functions

belonging to the subclass D
⊕

(ϑ, 𭟋, d, ξ, γ; q). Furthermore, we discuss a growth and
distortion bounds, the convolution condition, and the radii of starlikeness. In addition,
we present neighbourhoods problems involving the q-analogue of a modified Tremblay
operator for functions in the introduced classD

⊕
(ϑ, 𭟋, d, ξ, γ; q).

1. Introduction

Let ♢ = {ς : ς ∈ C, |ς| < 1} denote the open unit disc and A the class of functions ℏ(ς)
of the form

ℏ(ς) = ς +
∞∑
κ=2

aκςκ, (ς ∈ ♢) (1.1)

that are analytic in the open unit disc ♢. Furthermore, let S be the subset of A consisting
of one-to-one (univalent) functions in ♢.

The convolution of functions ℏ as in (1.1) and the function

y(ς) = ς +
∞∑
κ=2

γκς
κ,

is defined by:

(ℏ ∗ y)(ς) = ℏ(ς) ∗ y(ς) = ς +
∞∑
κ=2

aκγκςκ.
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The fractional q-calculus is an extension of ordinary fractional calculus, and it has become
increasingly popular in recent decades due to its wide range of applications in various fields
of science and engineering, particularly mathematics ([12], [20]). The concept of frac-
tional q-calculus was introduced by Al-Salam and Verma [4], Al-Salam [5], and Agrawal
[1]. They also explored some basic properties of fractional q-derivatives. In addition,
Isogawa et al. [14] investigated some fundamental properties of fractional q-derivatives.
Several problems involving fractional q-calculus operators have recently been recognized
([2, 15, 16, 17, 21, 24, 25]). In 2011, Garg and Chanchlani [13] defined a q-analog of
Saigo’s fractional integrals. Two authors, Exton [10] and Gasper [11], have written books
about q-calculus.

The following are the notations and definitions again for main terms in q-calculus, which
may be found in Gasper and Rahman [11] and Purohit and Rania [18], as follows:

1) The q-shifted factorial (ϑ, q)κ is defined for ϑ ∈ C and 0 < q < 1 by:

(ϑ; q)κ = (qϑ; q)κ =


κ−1∏
ı=0

(1 − ϑqı) , κ > 0

∞∏
ı=0

(1 − ϑqı) , κ→ ∞.

(1.2)

Equivalently,

(ϑ; q)κ =
Γq(ϑ + κ)(1 − q)κ

Γq(ϑ)
, (1.3)

where the q-gamma function (see for example Gasper and Rahman [11]), is given
by

Γq(ϑ) =
(q, q)∞

(qϑ, q)∞(1 − q)ϑ−1 , ϑ , 0,−1,−2, . . . . (1.4)

2) [?] For 0 < q < 1. The q-derivative, also known as the q-difference operator, of a
function ℏ is defined by

∂qℏ(ς) =



ℏ(ς)−ℏ(qς)
ς−qς

, if ς , 0,

ℏ′(0), if ς = 0,

ℏ′(ς), if q→ 1−, ς , 0.

. (1.5)

3) The q-Jackson’s integral of a function ℏ is defined by:∫ ς

0
ℏ(ג)∂qג = ς (1 − q)

∞∑
κ=0

q
κℏ(qκς),

provided that the series converges.

In 2010, Purhot and Yadav [18] introduced fractional integral operator and fractional de-
rivative operator by
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Definition 1.1. [18] The fractional integral operator Iϑq,ςℏ(ς), which operates on a function
ℏ(ς) of order ϑ (ϑ > 0), is defined as follows:

Iϑq,ςℏ(ς) =
1
Γq(ϑ)

∫ ς

0
(ς − τq)ϑ−1ℏ(τ)∂qτ,

Here, ℏ(ς) is an analytic function in a simply-connected region of the ς-plane that in-
cludes the origin.

Definition 1.2. [18] The fractional derivative operator Dϑ
q,ςℏ(ς) of a function ℏ(ς) of order

ϑ (0 ≤ ϑ < 1) is defined as

Dϑ
q,ςℏ(ς) = ∂qIϑq,ςℏ(ς) =

1
Γq(1 − ϑ)

∂q

∫ ς

0
(ς − τq)ϑ−1ℏ(τ)∂q τ.

Definition 1.3. [18](Extended Fractional q-Derivative Operator) Under the hypotheses of
Definition 2, the fractional q-derivative for a function f (ς) of order ϑ is defined by

Dϑ
q,ςℏ(ς) = Dm

q,ςIm−ϑ
q,ς ℏ(ς), (m − 1 ≤ ϑ < m), m ∈ N0 = N ∪ {0}.

By virtue of Definitions 1.1, 1.2 and 1.3, we have

Iϑq,ςς
κ =

Γq(κ + 1)
Γq(κ + ϑ + 1)

ςκ+ϑ, (κ ∈ N, ϑ > 0),

and

Dϑ
q,ςς
κ =

Γq(κ + 1)
Γq(κ − ϑ + 1)

ςκ−ϑ, (κ ∈ N, 0 ≤ ϑ < 1).

Now, let us define the q-analogue of the Tremblay operator. The modified q-Tremblay
operator ofor analytic functions in the complex domain is then given by:

Definition 1.4. For 0 < γ ≤ 1, 0 < ξ ≤ 1, 0 ≤ ξ − γ < 1, ξ ≥ γ and ℏ ∈ A. The q-analouge
of Tremblay derivative operator can be defined by

Ψ
ξ,γ
q,ςℏ(ς) =

Γq(γ)
Γq(ξ)

ς1−γDξ−γ
q,ς (ςξ−1ℏ(ς)).

Definition 1.5. Let ℏ ∈ A, the q-analouge of modified Tremblay operator denoted by
T
ξ,γ
q,ς : A → A and defined as

T
ξ,γ
q,ς ℏ(ς) =

[γ]q
[ξ]q
Ψ
ξ,γ
q,ςℏ(ς)

=
Γq(γ + 1)
Γq(ξ + 1)

ς1−γDξ−γ
q,ς (ςξ−1ℏ(ς))

= ς +

∞∑
κ=2

Γq(γ + 1)Γq(κ + ξ)
Γq(ξ + 1)Γq(κ + γ)

aκςκ,

where 0 < γ ≤ 1, 0 < ξ ≤ 1, 0 ≤ ξ − γ < 1 and ξ ≥ γ.

Remark. We can conclude that, when we choose the parameters q, ξ and γ, the operator
T
ξ,γ
q,ς can lead to other operators results. Examples are presented for further illustration.

1) For ξ = 1 and γ = 1 − ϑ, we get the operator Ωϑq,ς studied by Purohit and Rania
[18].

2) For q → 1−, then T ξ,γ
q,ς ℏ(ς) = T ξ,γ

ς f the modified Tremblay operator studied by
Esa et.al [8].
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3) For ξ = 1, γ = 1 and q → 1− we get the Tremblay operator T ξ,γ
ς f syudied by

Tremblay [23].

Various authors, such as Alb Lupas, and Oros [3], Purohit and Rania [17], Atshan et al.
[6], Seoudy and Aouf [22], Frasin and Darus [9], Ramadan and Darus [19], Elhaddad and
Darus [7], and others, have conducted studies on different subfamilies of normalized ana-
lytic functions. These publications have introduced a novel subclass D

⊕
(ϑ, 𭟋, d, ξ, γ; q)

ofA. This subclass incorporates the operator T ξ,γ
q,ς ℏ(ς) and is represented as follows:

Definition 1.6. The class of functionsD
⊕

(ϑ, 𭟋, d, ξ, γ; q) is denoted by ℏ ∈ A and satis-
fies the inequality: ∣∣∣∣∣∣∣∣1d

 ς∂q
(
T
ξ,γ
q,ς ℏ(ς)

)
+ ϑς2∂2

q

(
T
ξ,γ
q,ς ℏ(ς)

)
(1 − ϑ)(T ξ,γ

q,ς ℏ(ς) + ϑς∂q
(
T
ξ,γ
q,ς ℏ(ς)

) − 1


∣∣∣∣∣∣∣∣ < 𭟋, (1.6)

where ς ∈ ♢, d ∈ C \ {0}, 0 < 𭟋 ≤ 1, 0 ≤ ϑ ≤ 1, 0 < γ ≤ 1, 0 < ξ ≤ 1, 0 ≤ ξ − γ < 1, and
ξ ≥ γ.

2. Main Results

This section examines the conditions that must be met for equation (1.6) to yield the
function ℏ in the class D

⊕
(ϑ, 𭟋, d, ξ, γ; q). It also highlights the significance of these

criteria for functions in this class. Furthermore, it presents growth and distortion bounds,
q-raddi of stralikness of order λ (0 ≤ λ < 1), and the neighborhood problems for the
class D

⊕
(ϑ, 𭟋, d, ξ, γ; q). The necessary and sufficient conditions for functions ℏ ∈

D
⊕

(ϑ, 𭟋, d, ξ, γ; q) are first discussed in our theorem.

Theorem 2.1. Let the function ℏ as is in (1.1) belong to the class D
⊕

(ϑ, 𭟋, d, ξ, γ; q) if
and only if the following inequality holds:

∞∑
κ=2

Γq(γ + 1)Γq(κ + ξ)
Γq(ξ + 1)Γq(κ + γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q (1 + ϑ𭟋|d|)

)
+ 𭟋|d|

)
|aκ| ≤ 𭟋|d|. (2.1)

Proof. Suppose ℏ belongs to the setA and that inequality (2.1) is satisfied. Consequently,
we arrive at the following expression:∣∣∣∣∣∣∣∣

ς∂q
(
T
ξ,γ
q,ς ℏ(ς)

)
+ ϑς2∂2

q

(
T
ξ,γ
q,ς ℏ(ς)

)
(1 − ϑ)

(
T
ξ,γ
q,ς ℏ(ς)

)
+ ϑς∂q

(
T
ξ,γ
q,ς ℏ(ς)

) − 1

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ς +
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) [κ]qaκς

κ+

ϑ

(
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) [κ]q[κ − 1]qaκςκ

)
(1 − ϑ)

(
ς +

∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) aκς

κ

)
+

ϑ

(
ς +

∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) [κ]qaκς

κ

)
− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) [κ − 1]q

(
q + ϑ([κ]q − q)

)
aκςκ

ς +
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
1 + qϑ[κ − 1]q

)
aκςκ

∣∣∣∣∣∣∣∣∣∣∣
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≤

∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) [κ − 1]q

(
q + ϑ([κ]q − q)

)
|aκ||ς|κ−1

1 −
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
1 + qϑ[κ − 1]q

)
|aκ||ς|κ−1

< 𭟋|d|.

When we consider values of ς on the real axis and let ς → 1−, we obtain
∞∑
κ=2

Γq(γ + 1)Γq(κ + ξ)
Γq(ξ + 1)Γq(κ + γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q (1 + ϑ𭟋|d|)

)
+ 𭟋|d|

)
|aκ| < 𭟋|d|. (2.2)

Conversely, suppose ℏ ∈ D
⊕

(ϑ, 𭟋, d, ξ, γ; q), we obtain the following inequality∣∣∣∣∣∣∣∣1d
 ς∂q

(
T
ξ,γ
q,ς ℏ(ς)

)
+ ϑς2∂2

q

(
T
ξ,γ
q,ς ℏ(ς)

)
(1 − ϑ)(T ξ,γ

q,ς ℏ(ς) + ϑς∂q
(
T
ξ,γ
q,ς ℏ(ς)

) − 1


∣∣∣∣∣∣∣∣ > −𭟋, (2.3)

ℜe

 ς∂q
(
T
ξ,γ
q,ς ℏ(ς)

)
+ ϑς2∂2

q

(
T
ξ,γ
q,ς ℏ(ς)

)
(1 − ϑ)

(
T
ξ,γ
q,ς ℏ(ς)

)
+ ϑς∂q

(
T
ξ,γ
q,ς ℏ(ς)

) − 1 + 𭟋|d|

 > 0

This need to complete

ℜe

ς +
∑∞
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) [κ]q

(
1 + ϑ[κ − 1]q

)
aκςκ

ς +
∑∞
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
1 + ϑq[κ − 1]q

)
aκςκ

− 1 + 𭟋|d|

 > 0

or

ℜe


𭟋|d|ς +

∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q (1 + ϑ𭟋|d|)

)
+ 𭟋|d|

)
aκςκ

ς +
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
1 + ϑq[κ − 1]q

)
aκςκ

 > 0.

The inequality can be expressed as follows, taking into account the real part of the expres-
sion −eiθ: ℜe

{
−eiθ

}
≥ |eiθ| = −1.

𭟋|d|r −
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q (1 + ϑ𭟋|d|)

)
+ 𭟋|d|

)
aκrκ

r −
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
1 + ϑq[κ − 1]q

)
aκrκ

> 0.

By employing the mean value theorem for the limit as r approaches 1−, we derive the
inequality 2.1. Thus, we have concluded the proof of Theorem 2.1. □

Corollary 2.2. Assuming that the function ℏ is of the form (1.1) and belongs to the class
D

⊕
(ϑ, 𭟋, d, ξ, γ; q), then the following inequality can be expresse

|aκ| ≤
𭟋|d|Γq(ξ + 1)Γq(κ + γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q

(
1 + ϑ𭟋|d|

))
+ 𭟋|d|

)
Γq(γ + 1)Γq(κ + ξ)

, (2.4)

for κ ≥ 2.

The following result will provide bounds on the growth and distortion of functions in
the classD

⊕
(ϑ, 𭟋, d, ξ, γ; q).



ON SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY q-ANALOGUE OF MODIFIED TREMBLAY FRACTIONAL DERIVATIVE OPERATOR49

Theorem 2.3. The following inequalities hold true for any function ℏ in the classD
⊕

(ϑ, 𭟋, d, ξ, γ; q)
when |ς| = r < 1:

r −
𭟋|d|(1 + γ)r2

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) ≤ |ℏ(ς)| ≤ r +
𭟋|d|(1 + γ)r2

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) , (2.5)

and

1 −
𭟋|d|(1 + q)(1 + γ)r

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) ≤ |∂qℏ(ς)| ≤ 1 +
𭟋|d|(1 + q)(1 + γ)r

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) . (2.6)

These inequalities are sharp by the function

ℏ(ς) = ς +
𭟋|d|(1 + γ)

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

)ς2.

Proof. Given ℏ ∈ D
⊕

(ϑ, 𭟋, d, ξ, γ; q) from (2.1) and since

Γq(γ + 1)Γq(κ + ξ)
Γq(ξ + 1)Γq(κ + γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q

(
1 + ϑ𭟋|d|

))
+ 𭟋|d|

)
is increasing and positive for κ ≥ 2, then we have

1 + ξ
1 + γ

(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) ∞∑
κ=2

aκ ≤

Γq(γ + 1)Γq(κ + ξ)
Γq(ξ + 1)Γq(κ + γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q

(
1 + ϑ𭟋|d|

))
+ 𭟋|d|

) ∞∑
κ=2

aκ

≤ 𭟋|d|,

which is equivalent to,
∞∑
κ=2

aκ ≤
𭟋|d|(1 + γ)

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) . (2.7)

We can acquire this through the utilization of the properties of the modulus function

|ℏ(ς)| =

∣∣∣∣∣∣∣ς +
∞∑
κ=2

aκςκ
∣∣∣∣∣∣∣

≤ |ς| +

∞∑
κ=2

|aκ||ς|κ

≤ r + r2
∞∑
κ=2

|aκ|

≤ r +
𭟋|d|(1 + γ)r2

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) , by (2.7).

and

|ℏ(ς)| =

∣∣∣∣∣∣∣ς +
∞∑
κ=2

aκςκ
∣∣∣∣∣∣∣ ≥ |ς| −

∞∑
κ=2

|aκ||ς|κ

≥ r − r2
∞∑
κ=2

|aκ| ≥ r −
𭟋|d|(1 + γ)r2

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) , by (2.7).
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Now, by applying the Jackson’s derivative of (1.5) with respect to ς, we get:

|∂qℏ(ς)| =

∣∣∣∣∣∣∣1 +
∞∑
κ=2

[κ]qaκςκ−1

∣∣∣∣∣∣∣ ≤ 1 +
∞∑
κ=2

[κ]q|aκ||ς|κ

≤ r + [2]qr2
∞∑

s=2

|aκ| ≤ r +
𭟋|d|(1 + q)(1 + γ)

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) r2.

In other hand,

|∂qℏ(ς)| =

∣∣∣∣∣∣∣1 +
∞∑
κ=2

[κ]qaκςκ−1

∣∣∣∣∣∣∣ ≥ 1 −
∞∑
κ=2

[κ]q|aκ||ς|κ

≥ r − [2]qr2
∞∑
κ=2

|aκ| ≥ r −
𭟋|d|(1 + q)(1 + γ)

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) r2.

□

The neighbourhoods problems of the classD
⊕

(ϑ, 𭟋, d, ξ, γ; q) will now be determined.

Definition 2.1. Let ℏ ∈ A and σ > 0. We define the (m, σ, q)-neighbourhood of ℏ as
follows:

Nσ,q(ℏ) =

g ∈ A : g(ς) = ς +
∞∑
κ=2

bκςκ and
∞∑
κ=2

[κ]q|aκ − bκ| ≤ σ

 . (2.8)

In particular, for the identity functions e(ς) = z, we have

Nσ,q(e) =

g ∈ A : g(ς) = ς +
∞∑
κ=2

bκςκ and
∞∑
κ=2

[κ]q|bκ| ≤ σ

 . (2.9)

Definition 2.2. A function ℏ ∈ A belong to the classDν
⊕

(ϑ, 𭟋, d, ξ, γ; q) if there exists a
function £ ∈ D

⊕
(ϑ, 𭟋, d, ξ, γ; q) such that∣∣∣∣∣ℏ(ς)

£(ς)
− 1

∣∣∣∣∣ ≤ 1 − ν, 0 ≤ ψ < 1, (ς ∈ ♢). (2.10)

Theorem 2.4. f £ ∈ D
⊕

(ϑ, 𭟋, d, ξ, γ; q) and

ν = 1 −
[1 + ξ]q

((
ϑ + q + qϑ𭟋|d|

)
+ 𭟋|d|

)
[1 + ξ]q

((
ϑ + q + qϑ𭟋|d|

)
+ 𭟋|d|

)
− 𭟋|d|[1 + γ]q

,

then
Nσ,q(£) ⊆ Dν

⊕
(ϑ, 𭟋, d, ξ, γ; q).

Proof. Let ℏ ∈ Nσ,q(£), we find from (2.8) that
∞∑
κ=2

[κ]q|aκ − bκ| ≤ σ,

which implies the coefficient inequality
∞∑
κ=2

|aκ − bκ| ≤
σ

1 + q
.
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Since £ ∈ D
⊕

(ϑ, 𭟋, d, ξ, γ; q), and Using relation (2.1) of Theorem ??, we have

Γq(γ + 1)Γq(2 + ξ)
Γq(ξ + 1)Γq(2 + γ)

((
ϑ + q + qϑ𭟋|d|

)
+ 𭟋|d|

) ∞∑
κ=2

|bκ|

≤

∞∑
κ=2

Γq(γ + 1)Γq(κ + ξ)
Γq(ξ + 1)Γq(κ + γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q

(
1 + ϑ𭟋|d|

))
+ 𭟋|d|

)
|bκ| ≤ 𭟋|d|,

for (κ ≥ 2), which implies
∞∑
κ=2

|bκ| ≤
𭟋|d|[1 + γ]q

[1 + ξ]q
((
ϑ + q + qϑ𭟋|d|

)
+ 𭟋|d|

) , (2.11)

and so ∣∣∣∣∣ℏ(ς)
£(ς)

− 1
∣∣∣∣∣ <

∑∞
κ=2 |aκ − bκ|

1 −
∑∞
κ=2 bκ

≤
σ

1 + q
.

 [1 + ξ]q
((
ϑ + q + qϑ𭟋|d|

)
+ 𭟋|d|

)
[1 + ξ]q

((
ϑ + q + qϑ𭟋|d|

)
+ 𭟋|d|

)
− 𭟋|d|[1 + γ]q


= 1 − ν.

Thus, for given ν and by Definition 2.1, we have ℏ ∈ Dν
⊕

(ϑ, 𭟋, d, ξ, γ; q).

Finally, we establish the radii of starlikeness of order λ for functions in the classDλ
⊕

(ϑ, 𭟋, d, ξ, γ; q).
□

Theorem 2.5. Let ℏ ∈ A from the class Dλ
⊕

(ϑ, 𭟋, d, ξ, γ; q). The function ℏ univalent
starlike of order λ, 0 ≤ λ < 1 and |ς| < r0, where

r0 = inf
k

 (1 − λ)Γq(γ + 1)Γq(κ + ξ)
(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q

(
1 + ϑ𭟋|d|

))
+ 𭟋|d|

)
𭟋|d|([2]q − λ)Γq(ξ + 1)Γq(κ + γ)


1

n−1

. (2.12)

Proof. We show that∣∣∣∣∣ς∂q(ℏ(ς))
ℏ(ς)

− 1
∣∣∣∣∣ ≤ 1 − λ, (|ς| < r0).

Considering that

∣∣∣∣∣ς∂q(ℏ(ς))
ℏ(ς)

− 1
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
∞∑
κ=2

([κ]q − 1)aκςκ−1

1 +
∞∑
κ=2

aκςκ−1

∣∣∣∣∣∣∣∣∣∣∣ ≤
∞∑
κ=2

([κ]q − 1)aκ|ς|κ−1

1 −
∞∑
κ=2

aκ|ς|κ−1
,

to prove the theorem, we must show that
∞∑
κ=2

([κ]q − 1)aκ|ς|κ−1

1 −
∞∑
κ=2

aκ|ς|κ−1
≤ 1 − λ,

which equivalent to
∞∑
κ=2

([κ]q − λ)aκ|ς|κ−1 ≤ 1 − λ,
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and applying Theorem ??, we have

|ς| ≤

 (1 − λ)Γq(γ + 1)Γq(κ + ξ)
(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q

(
1 + ϑ𭟋|d|

))
+ 𭟋|d|

)
𭟋|d|([2]q − λ)Γq(ξ + 1)Γq(κ + γ)


1
κ−1

.

Hence, the proof is complete. □

3. Conclusion

In this article, we introduce a new class of normalized analytic functions called
D

⊕
(ϑ, 𭟋, d, ξ, γ; q), which is associated with the modified q-Tremblay operator on the

open unit disk ♢. We investigate the necessary conditions for functions belonging to the
subclass D

⊕
(ϑ, 𭟋, d, ξ, γ; q), as well as the growth and distortion bounds, the convolu-

tion condition, the radii of starlikeness, and the neighborhood problems involving the q-
analogue of a modified Tremblay operator for functions in this class.

Our results extend and generalize some of the known results in the literature on analytic
functions. We believe that our findings will have useful applications in various areas of
mathematics, such as complex analysis, geometric function theory, and applied mathemat-
ics.

In summary, this article contributes to the ongoing research in the field of complex anal-
ysis by providing a more profound understanding of the theory and applications of analytic
functions. The results obtained in this article have the potential for future generalization
through the utilization of post-quantum calculus and other q-analogues of the fractional
derivative operator. Additionally, further research may be conducted to explore additional
subclasses and their respective properties.
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