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Design and Optimization of an EV 
Battery Enclosure Using Machine 
Learning 

 

 

In this study, structural optimization of an enclosure under bending 

and torsional constraints was carried out. Machine learning (ML) 

approach was used to calculate the objective and constraint functions in 

the optimization problem. The ML model was trained and validated with 

data obtained from finite element analyses. The optimization model was 

then solved by the differential evolution algorithm. Five thicknesses, which 

are the design parameters in the enclosure, were optimized for minimum 

mass, and according to the results, the enclosure’s mass decreased by 

18.29%. 

 

Keywords: Battery enclosure, design optimization, machine 

learning, differential evolution algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1. INTRODUCTION 

 

Today, in parallel with the development of 

battery charging infrastructure, the share of electric 

vehicles in the automobile market is increasing. In 

these vehicles, there is a prismatic battery enclosure 

that carries the battery packs at the bottom of the 

vehicle. The design of the battery enclosure used in 

these vehicles is expected to fulfill the desired 

functions under certain boundary conditions, such as 

bending stiffness, torsional stiffness, Noise-

Vibration-Harshness (NVH), and crashworthiness. At 

the same time, optimization studies are required for 

vehicles to be lightweight.  

 

Many researchers in the literature have carried 

out studies on the structural analysis of battery 

enclosures. Long et al. [1] conducted a crash damage-

based mitigation study for long-range electric 

vehicles. The Ls-Dyna software was used in the finite 

element analyses. The effect of the system on 

bending and torsion modes was examined, and the 

findings were summarized. Ruan et al. [2] performed 

finite element analyses to obtain a reliable battery 

enclosure design that meets the relevant technical 

standards through a lightweight design. In this 

context, the created three-dimensional model was 

analyzed under different operating conditions by 

means of Ansys and HyperMesh software. The study 

confirmed the battery enclosure structure obtained as 

a result of the structural optimization in terms of 

static stiffness and modal behavior. Li et al. [3] 

analyzed the rigidity of the electric vehicle battery 

enclosure by means of the finite element model they 

developed. In the study, the finite element analysis 

module of the welding points of the battery enclosure 
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was created with the help of HyperMesh and Nastran 

softwares. 

 

In the literature review, it was seen that 

different researchers examined the modal properties 

of both the battery enclosure assembly and its 

subcomponents. Wang and Zhao [4] examined the 

modal properties of the battery box in their study. 

Yang et al. [5] aimed to improve the dynamic and 

static performance of the battery pack. Li et al. [6] 

examined the body of the battery enclosure in their 

study. As a result of static and modal analyzes, it has 

been seen that the body has sufficient rigidity but low 

in terms of natural frequency. 

 

There are also optimization studies on battery 

enclosure in the literature. The studies are generally 

related to optimizing the sheet material thickness 

values. Pan et al. [7] carried out size optimization for 

lightening on the battery enclosure made of steel 

material Shui et al. [8] performed the mass 

minimization of the battery enclosure, the 

maximization of the first natural frequency, and the 

minimization of the maximum deformation. 

Thicknesses were chosen as design parameters. It has 

been stated that the parameter that affects the mass 

the most is the bottom base thickness of the 

enclosure. In order to reduce the weight of the battery 

pack system, an optimization study was carried out 

by using the experimental design and the response 

surface method [9]. Lin et al. [10] chose panel and 

beam thicknesses on the battery enclosure as design 

parameters and defined a multi-objective 

optimization problem. In addition to the objective 

functions selected as mass minimization, and first 

natural frequency maximization, the stress value is 

defined as the constraint and the response surface 

function is defined and solved with the global 

optimization algorithm. 

 

In this study, finite element models were 

created, and an optimization study was carried out by 

considering the 7th natural frequency, bending and 

torsional stiffnesses boundary conditions. While the 

response surface method is frequently used for the 

objective functions and constraint functions required 

for optimization in the literature, the artificial neural 

network model is used in this study. No similar study 

was found in the literature. 

 
2. MATERIALS AND METHODS 
 

In this study, structural optimization of a 

battery enclosure under frequency, bending and 

torsional stiffness constraints was carried out. It has 

been observed that aluminum alloys are primarily 

used in the current situation due to their lightness as 

battery enclosure material. 6000 series aluminum 

material was chosen as the battery enclosure material. 

2.1. Finite Element Simulations 

 

Mid surfaces of the battery enclosure’s solid 

model are obtained to perform static bending and 

torsion analysis, as shown in Figure 1. The solid 

model is designed in a CAD software called 

SolidWorks, and mid surfaces are extracted with a 

commercial software Hypermesh. Battery enclosure 

design is box-shaped and has reinforcing structures to 

keep modules safe under any external loads. 

Hypermesh software is used to mesh the mid surfaces 

of the EV battery enclosure. In order to reduce the 

computational expense of analyzing a complete solid 

model, midsurface model used for the finite element 

model. 

 

 

 
 

Figure 1. Mid surfaces of the battery enclosure 

 

The whole model is divided into the 2D quad 

elements as much as possible (Figure 2). Element 

size set to 5 mm, and the finite element model has 

309547 elements (1188 of them are linear triangular 

elements) and 316352 nodes. The model is exported 

as a Nastran Input File (*.bdf). The Nastran file is 

imported, and all boundary conditions are defined in 

Abaqus software. As shown in Figure 3a, the battery 

enclosure is constrained with all degrees of freedom 

at points 1, 2, 3, and 4, and 500 N is applied at points 

5 and 6, 1000 N in total, for bending boundary 

condition. A sample static bending analysis has been 

run, and the result is shown in Figure 4. As expected, 

the maximum bending displacements are near the 5th 

and 6th points. In torsion analysis (Figure 3b), the 

battery enclosure is constrained with all transitional 

degrees of freedom at points 1 and 4. 1500 Nm 

moment is applied at point 7. Reference point 7 is 

coupled to points 2 and 3 with a rigid connection to 

apply the moment properly. Once again, a sample 

static torsion analysis has been run, and the result is 

shown in Figure 5. The maximum angle of rotations 

is near the 2nd and 3rd points, as expected. The modal 

analysis performed with the free-free conditions 

therefore, 7th mode is considered since the first six 

mode (transitional and rotational) is close to zero. 
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Figure 2. Finite element model of the battery 
enclosure 

 

 
Figure 3. Boundary conditions; a) Bending, b) Torsion 

 

 
Figure 4. Maximum bending displacement 

 

 
 

Figure 5. Maximum angle of rotation 

 

6063-T6 aluminum alloy has been chosen in 

this study, and the Young Modulus and Poisson Ratio 

are assumed to be 70 GPa and 0.35, respectively, as 

shown in Table 1. Since it is easier to control 

thickness values using mid surfaces, thickness values 

have been changed with Python programming 

language using Abaqus/CAE's coding infrastructure 

to perform many finite element analyses. The dataset 

required for neural network training has been 

gathered by finite element analysis. Latin Hypercube 

Sampling in the pyDOE module is applied in this 

study, and 300 designs are selected using Python 

programming language. Three hundred analyses for 

modal, bending and torsion boundary conditions, 900 

in total, were carried out, and the results were saved 

in a CSV file. The file contains five thicknesses 

which are design parameters in this study; mass 

which will be minimized; bending stiffness, torsional 

stiffness and 7th natural frequency.  

 

The bending stiffness is calculated by dividing 

applied force to maximum deformation as given in 

Eq. 1 where Ftotal is equal to 1000 N. To calculate the 

torsional stiffness (Eq. 2), the applied moment (1500 

Nm) is divided to maximum angle of rotation (Eq. 3), 

which is the angle between the deformed and 

undeformed shape of the battery enclosure as shown 

in Figure 6. 

 

 
(1) 

 
(2) 

 
(3) 

 

 
 

Figure 6. Calculating the maximum angle of rotation 

 

The design parameters (from T1 to T5) of the 

EV battery enclosure are shown in Figure 7. The 

bottom plate is modeled as having a hollow section in 

order to lighten the battery enclosure and the shell 

equivalent of the section is shown in Figure 8. 

Vertical surface thicknesses of the bottom plate are 

set to 5 mm. 

 
Table 1. Aluminum 6063-T6 alloy properties 

 

Density, gr/cm3 2.7 

Young Modulus, MPa 70000 

Poisson Ratio 0.35 

Yield Stress, MPa 250 

 
2.2. Machine Learning 

 

Machine learning, which is a part of artificial 

intelligence, allows us to achieve the results we want 

simply and quickly. Even though we may not be able 

to define the process completely, we still can have a 

good and useful relationship between inputs and 

outputs [11]. Deep learning, a specific subfield of 

machine learning, is an approach to learning 

representations from data with sequential layers. 

Artificial Neural Networks (ANN) and Convolutional 

Neural Networks (CNN) are the most common deep 
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learning algorithms. They can deal with complex and 

non-linear relationships such as image classification, 

speech recognition, autonomous driving, etc. The use 

of neural networks has become increasingly popular 

in recent years, particularly in data analysis and 

prediction. Therefore, artificial neural networks, a 

sub-branch of machine learning, were preferred 

instead of a surrogate model to predict structural 

behaviors of the EV battery enclosure. 

 

 
 

Figure 7. Design parameters, T1-T5 

 

 
Figure 8. Bottom plate, a) Solid, b) Shell 

 

Artificial neural networks are trained using 

two-thirds of the dataset obtained by performing 

finite element analysis. The thicknesses of the battery 

enclosure are determined as inputs. There are four 

neural network models with the same structure as 

shown in Figure 9 (5 inputs, two hidden layers with 

32 and 16 nodes, and output) to predict mass, 7th 

natural frequency, bending and torsional stiffness. 

ReLU (rectified linear unit) is chosen as the 

activation function of the layers. Adam, MSE (Mean 

Square Error), and MAE (Mean Absolute Error) are 

used in this study as the optimization function, the 

loss function, and the success metric, respectively. 

 
2.3. Optimization 
 

Differential Evolution (DE) is an evolutionary 

population-based optimization algorithm, and it is 

developed to find the global optimum instead of a 

local optimum in an optimization problem. This study 

uses the DE algorithm in the pymoo module [12] to 

obtain both objective and constraint functions. 

Among the strategies in the DE algorithm, 

DE/rand/1/bin DE strategy was used. Population size, 

generation number, and crossover rate are chosen as 

50, 50, and 0.3, respectively. The default values 

defined in the module are used for all the other 

parameters. 

 

 
Figure 9. ANN structure for battery enclosure 

 

The objective of the size optimization is to 

find the minimum mass under the frequency, bending 

and torsional stiffness expected from the EV battery 

enclosure. The structural properties were selected in 

accordance with the requirements of the TÜBİTAK 

project. The size optimization problem is defined as 

follows: 

Obj. min mass 

St. Bending stiffness ≥ 13000 N/mm, 

 Torsional stiffness ≥ 2000 Nm/°, 

 7th Natural Frequency ≥ 50 Hz, 

 2 ≤ T1 ≤ 5 mm, 

 2 ≤ T2 ≤ 5 mm, 

 2 ≤ T3 ≤ 5 mm, 

 2 ≤ T4 ≤ 5 mm, 

 2 ≤ T5 ≤ 5 mm. 

 

The methodology which is used to minimize 

the mass of the battery enclosure is shown in Figure 

10. Latin Hypercube Sampling was used for the 

design of experiment study. After that, finite element 

analysis for modal, bending and torsion was run, and 

the results, which will be used to train ANNs, were 

saved in a CSV file. Two-thirds of the dataset was 

used to train neural networks, and the rest was used 

to test ANN models. Once the DE algorithm 

initializes the first population (thicknesses), mass, 7th 

mode, bending and torsional stiffnesses will be 

predicted by trained neural networks for each 

individual. 

 
3. RESULTS AND DISCUSSION 

 
3.1. Artificial Neural Network 
 

The R2 scores of the trained neural network 

models are given in Table 2, which demonstrates the 

success rates of the five neural networks in predicting 
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the outputs of the dataset. It is evident from the tables 

that all the neural networks have a significant ability 

to predict the outputs with high success rates, as 

indicated by the high R2 values. These results 

highlight the effectiveness and reliability of neural 

networks in predicting complex datasets accurately. 

Moreover, the close success rates observed between 

the training and test indicate that the researchers did 

not encounter any overfitting problems during the 

training process. The absence of overfitting in this 

study demonstrates the effectiveness of the training 

process and the suitability of the structures for the 

task at hand. Figures 11 illustrate the comparison 

between the predicted values and the actual test data. 

In addition to R2 scores, it is evident from the figures 

that the developed neural network models 

successfully predict the test data, which the network 

has not processed before, as indicated by the close 

alignment between the predicted values and the 

actual test data. 

 

 
 

Figure 10. Flowchart of the optimization study 

 

 
3.2. Differential Evolution-Based Size Optimization 
 

The optimization study performed with the DE 

algorithm successfully minimized the mass under the 

constraints. Convergence history of the optimization 

study is illustrated in Figure 12, and it can be seen 

that the optimization algorithm reaches its optimum 

point since the fitness function is not getting any 

lower. As seen in Table 3, the mass of the battery 

enclosure has decreased from 67.09 kg to 54.82 kg. 

According to the results, the mass decreased by 

18.29%, and the 7th mode, bending and torsional 

stiffnesses were obtained as 51.06 Hz, 13018.0 N/mm 

and 2000.4 Nm/°, respectively (Table 3). According 

to the optimization study, the structural properties 

meet the constraint functions and have hit their limits, 

an outcome that is expected. With appropriate 

thicknesses, in addition to minimizing the mass, there 

is an increase in both bending and torsional stiffness. 

Table 3 shows us that the increase of the 1st thickness 

from 3.0 to 4.20 has a crucial role in meeting design 

targets. The 3rd, 4th, and 5th thicknesses approached 

the lower boundaries and contributed significantly to 

the mass reduction. 

 

 
Figure 11. Comparing test and predicted results 

 

 
Table 2. R2 coefficient of determination score of each 

model 
 

Output Epoch Train Test 

Mass, kg 329 0.9974 0.9922 

Bending Stiffness, N/mm 500 0.9908 0.9902 

Torsional Stiffness, Nm/° 434 0.8095 0.8585 

7th Natural Frequency, Hz 328 0.9887 0.9790 

 

 

 
Figure 12. Convergence history 

 

To see the validation of trained neural 

networks, a comparison between neural networks 

(NN) predicts and finite element (FE) results is made. 

The comparison is shown in Table 4. As can be seen, 

the highest error was encountered in the torsional 

stiffness which has the lowest R2 value. Even though, 
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both bending and torsional stiffness are violated the 

requirements, the optimization result clearly shows us 

which thicknesses should be focused on to satisfy the 

constraints with a minimum mass increase. 

 
Table 3. Comparing the base and optimized model 

 

  Base Model Optimized Model 

T1, mm 3.00 4.20 

T2, mm 3.00 3.46 

T3, mm 3.00 2.00 

T4, mm 3.00 2.03 

T5, mm 3.00 2.00 

Mass, kg 67.09 54.82 

Bending Stiffness, N/mm 10956.68 13018.00 

Torsional Stiffness, Nm/° 1588.74 2000.40 

7th Natural Frequency, Hz 45.559 51.065 

 

 
Table 4. Comparison between FE and NN 

 

 Mass, 

kg 

Bending 

Stiffness, 

N/mm 

Torsional 

Stiffness, 

Nm/° 

7th Natural 

Frequency, 

Hz 

FE 55.13 12511.65 1865.79 51.527 

NN 54.82 13018.00 2000.40 51.065 

%Error 0.56 4.05 7.21 0.90 

 

The proposed methodology has proven to be 

highly effective in the size optimization problem of 

EV battery enclosures. This innovative approach 

provides a systematic and reliable guide for designers 

to optimize the size of the battery enclosures, which 

are essential components of electric vehicles. With 

this approach, designers can easily and quickly find 

the optimal size of the battery enclosure, which 

ensures efficient performance. Overall, the proposed 

methodology represents a significant advancement in 

the field of automotive design and engineering. Its 

effectiveness and versatility make it an essential tool 

for designers and engineers who are looking to 

optimize the performance and efficiency of 

automotive products. By utilizing this approach, 

designers can save time and resources for a variety of 

products in the automotive industry. 
 

4. CONCLUSION 

 

The successful application of the proposed 

methodology highlights the importance of robust and 

reliable battery enclosures in electric vehicles. The 

optimization of battery enclosure design will continue 

to be crucial in the development of electric vehicles 

with the increasing demand for sustainable 

transportation solutions. 

 

In the present work, a finite element-based 

machine learning algorithm has been successfully 

applied to EV battery enclosure optimization under 

modal, bending and torsion constraint. It is required 

to research the behavior of battery enclosure under 

different loading and boundary conditions, including 

ground impact and pole crash. Those conditions will 

be considered in the further studies. 
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MAKİNE ÖĞRENMESİ KULLANILARAK BİR 
ELEKTRİKLİ ARAÇ BATARYA TAŞIYICISININ 
TASARIMI VE OPTİMİZASYONU 

 

Bu çalışmada, eğilme ve burulma kısıtlamaları 

altında bir batarya muhafazasının yapısal 

optimizasyonu gerçekleştirilmiştir. Optimizasyon 

problemindeki amaç ve kısıt fonksiyonlarını 

hesaplamak için makine öğrenmesi yaklaşımı 

kullanılmıştır. Sonlu eleman analizlerinden elde 

edilen veriler ile makine öğrenmesi modeli eğitilmiş 

ve doğrulanmıştır. Optimizasyon modeli daha sonra 

diferansiyel evrim optimizasyon algoritması ile 

çözülmüştür. Batarya taşıyıcısındaki tasarım 

parametresi olan beş kalınlık minimum kütle için 

optimize edilmiş ve elde edilen sonuçlara göre 

taşıyıcı kütlesi %18,29 azalmıştır. 

 

Anahtar Kelimeler: Batarya taşıyıcısı, tasarım 

optimizasyonu, makine öğrenmesi, diferansiyel 

gelişim algoritması 
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