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Abstract

Integral inequalities are generally applicable in many branches of mathematics such as real, complex, and numerical analysis, as well as in
other disciplines outside mathematics. In this work, we first prove a new identity. Based on this equality, we establish some new corrected
Euler-Maclaurin type inequalities for functions whose first derivatives are s-convex. The case where the first derivative is bounded as well as
Lipschitzians are also discussed. Some applications to quadrature formulas and inequalities involving means are provided.
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1. Introduction
Definition 1.1 ([36)). A function € :1 — R is said to be convex, if

C(A+(1-2)1) <z A)+(1—-2)% (1)
holds for all A,t € I and all z € [0,1].

The Hermite-Hadamard inequality, which is expressed as follows: for every convex function ¢ on the interval [v,L] with v<L
L
@ (V3L) Sﬁ/%(u)dugi(v); O3 (1.1
\%

is without a doubt the fundamental inequality convex functions. In the other way, (1.1) holds in the reversed direction if the function % is
concave (see [36]).

The above inequality has received renewed attention in past decades, several generalizations and refinements have been studied see
[3,11-14,27-30,42-44].

Convexity is a fundamental idea that is crucial to numerous fields, including game theory, economics, finance, and optimization. This notion
has been expanded and developed in a number of ways as a result of its wide range of uses. We highlight the s-convexity among those
generalizations, which has the following definition.

Definition 1.2 ([2]). For every given s € (0, 1], a nonnegative function € : 1 C [0,00) — R is said to be s-convex in the second meaning, if
(A +(1-2)1) <IC(A)+(1-2)°¢(7)

holds for all A,t € I and z € [0,1].

Email addresses: djenaoui.saliha@univ-guelma.dz (Saliha Djenaoui), badrimeftah@yahoo.fr (B. Meftah)



38 Konuralp Journal of Mathematics

Convexity is closely related to the evolution of inequality theory, it represents a crucial instrument to study the characteristics of solutions of
differential equations also allows obtaining estimates of error bounds of quadrature formulas. Regarding some articles dealing with some
quadratures, see [1,4-10,16,18-26,31-35,37-41] and references therein.

The most popular three-point Newton-Cotes quadrature, called Simpson’s inequality is given as follows:

L
§ (6 (1) +46 (455 + 9 (1) - Ly [ € wau| < Sft )
v
where € is four-times continuously differentiable function on [v, L], and H‘f(“) H = sup |€™ (x) ‘
* xe[v,L]

In recent years, several authors have studied the estimates of the error limits of quadrature rules. Motivated and inspired by some papers, we
plan to examine the corrected Euler-Maclaurin formula (see [17]), which can be stated as follows:

L

@ (27 (%) +26¢ (Y31) +276 (442 ) ) - oLy [ @) au| < 256557 ).

-V
v

To this end, we first prove a new integral identity. Based on this identity, we establish several corrected Euler-Maclaurin inequalities for
functions whose first derivatives are s-convex in the second sense. We also treat the case where the first derivative is bounded as well as
Lipschitzian. In conclusion, some applications are presented.

2. Main results

In order to prove our results, we need the following lemma.

Lemma 2.1. Let € : I C R — R be a differentiable function on I°, V,LE I° with V<L, and €' € L' [v,L]. Then the following equality holds
L
& (276 (%) +26% (Y44) + 276 (452 )) - oLy [ (wdu
v

1 1
=L /z‘@”’ ((l—z)v—i-zsv%)dz—i-/@z——)%’ (( z)sv%+sz+L>dz
0 0

39 cgl((l )V+L+ZV+5L dz+/ 1% (( )V+5L—|—ZL)d

+
o ~—
N
N

Proof. Let
1
I = /z‘@”’ ((1 —z)V—r—zS\’%)dz,
0
1
:/(41—%)%’ ((1-9) 3L 241z,
0
1
[3:/( )%p/(( )V+L+ZV+5L)dZ
0
and
1
/ (5/ )V+5L +zL)d
0
Integrating by parts I;, we get
5 =1 5
I = ﬁz%<(l—z)v+z V“) O—Lfv/%”<(l—z)v+z V“)dz
7=

_ 6 (v 36 , .
o (M6) - Z%(u)du @1
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Similarly, we have

1
=1
b= 2w (0-a% )| -0y [ (0-9 %+t e
z=0 b
V4L
2
11 23 5 36 P
= 20(L7V)%(%)+20(1L V)%( V6+L>_m / ¢ (u)du, (2.2)
5\/%
1
5
L = (4z——)‘5((1—z) HL 4z VJgSL> ZzO—%/%((l—z) VAL | ¥ L)dz
0
V+5L
N
_ 123 117 36
= W ¢ ( )+20( 7 () - oy / C (u) du (2.3)

and

z=1
L = S (-7 ((1 — )WL +ZL> e %/% ((1 )L +zL) dz
- 0
6 5
= (v - / % (u 2.4)
v+5L
Summing (2.1)-(2.4), and then multiplying the resulting equality by %, we get the desired result. O

Theorem 2.2. Assume € : [V,L] — R be a differentiable function with 0 <V<L and €' € L' [v,L]. If || is s-convex in the second sense
for some fixed s € (0,1]. Then we have

L

& (276 (26) +26% (444) + 27 (452)) - 5 [ % )

v

< st (1 ]+ [% W]+ (252 +16 ()77 47 (444))

(s ) (fo () [+« ()

Proof. From Lemma 1, properties of modulus and s-convexity in the second sense of |4”|, we have

L
o (27% (351) +26% (Y4L) +27% (H4L)) - ﬁ/‘f(u)du
\

1
< /z"g' ((l—z)v+zs"%>‘dz

+/‘4 M%’ —z) AL +ZV+L)‘dZ
+/‘4 ”%’ )V+L+ZV+5L)‘dZ
1
+/ (1—2) ‘%/ )v+5L+2L)‘dZ
0

SIE

<y /z((l—z)sy%’(v

4 <5V%) ‘ +2 ¢ (L) }) dz

41
80

+ [ (-4 (-2
0
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where we have used the fact

4L
80

[&

+/ 4z—— 1—Z)

+/

+/<4z—%>(<1
S
1

+/ l—z l—z
0
1

6(‘5/ ]/zl—z Ydz+
0

0| &~
jurs

B ~—- o~—3

+ e (SV+L )

<g/ (SV+L )

(3

(42—

—4)(1-2de+ [ (432)|

+2%" (

@ < 5V+L>

Y5 )dz

(a=2r|e (5] +=

“()
()

)dz
)dz

o[ ()| +2 ]

(V+5L>

+2]¢" (1)) Z)

&' (5V+L) 1

/z”ldz

(4 —42) Zdz

3) (=2 dz+ | (2)] [ (42— 3f) 'z

BB~ o Zg HE— ~ O“\\Qﬁ -

80
39
80
e ()] [ (B -a0) (1 det o (5520|349 7z
0
1
e ()] [ (=B -zt [ (5] [ (42 B) 2
39
80
1 1
V+SL / S+1dz+|‘5/ |/ I—Z vdz)
0
sy (16 0]+ 1% W]+ (252 +16 ()" 1€ (44)
" ety () e )

1
/zlfz
0
1
I
0

1

39
80

1

s+1dZ:/(17Z)5+le: SJ»Z’

1
(1-2)2'dt = ey

o\._

1

0

—42) (1—z)sd1:/(4z_f) dz = (4ls+2 4 (gi)s+2

06+D) 12 T I G12)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)
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and
39
1 80 5
41 _ 39 S _ _ 395-2 4 415+
/(42— 50)2'dz= / (30 —42) (1-2)'dz= 3555055 + Grnerg (80) - (2.10)
41 0
80
The proof is finished. O

Corollary 2.3. Ifwe take s = 1 in Theorem 1, we obtain

& (276 (3% ) +26% (V31) + 276 (S5 ) ) - oLy [ w)du

2401(L—v) [ 64000]%" (V)|+324919]¢" (2L )| +374642|%" (Y41 ) |+324919]6" (153 )| +64000/%" (L)|
= 728800 1152480 ‘

Theorem 2.4. Let f be as in Theorem 1. If |€"|? is s-convex in the second sense for some fixed s € (0,1] where q > 1 with % + é = 1. Then

we have

o (276 (22 ) +26% (4) +27% () —L_IV/L%(u)du
v

1 1
< LV €' W)+ (25| ) 7 € (X)) +E @)\ 7
51 + 51

= 1
36(p+1)7

1
L (aeipars o (€ e (S
20 ( 80 ) ST

\
1
‘(g/(u)|q+‘(g/(V{5L) 4\ ¢
+ ( : s+1 ‘ :

Proof. Lemma 1, properties of modulus, Holder’s inequality and s-convexity in the second sense of |¢”|?, give us

o (27 (351) +26% (Y4L) +27% (V4L)) - le/kcf(u)du
Y

<

]‘41 %!de) 7 (ﬂ‘ﬁ' ((1 —z) 4L +ZVT“> )qdz
0 0

(-9 o)
0

1
+ ](lz)pdz) (7‘%’((12)\’2&‘+2L>‘qdz
0 0

1
q

(22

0 0

80 1

+ /(%*4z)pdz+/(4zf%)pdz
0 41
30

o (350 vl (54))7)

X ) ((1 —z)°
0
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==

80 1
+ /(%—4z)pdz+/ (42— 3) ' dz
0 39
80
1
1 q
% /((l Z)S|Cg, % |q (V+5L)‘ )dZ
0
1 1
1 ? 1 q

s |ogt V+5L>‘ 4+ (bp/( ){ >dz
0 0

1 1
_ v (e esr (e wr )
36(p+1)% s+1 s+1

1
L (sortare o (€ () +g ()] Y
20 ( 80 ) 1

+(wun@wwm>Y)>

The proof is over. O

Corollary 2.5. Ifwe take s = 1 in Theorem 2, we obtain

L

& (276 (3% ) +26% (Y44) + 276 (“52)) - oy [ wdu

\%
< _ L=V (W’(V)
- 36(p+1)%

1 1
HEe )\ (e )| He W @
3 |
1 1
L (3ot parrtt o [ (1€ +HE ()] 7
+35 30 )
[ (252 e ()17 ¢
@ (VL) |94 | (LS 7

(0,1] where g > 1. Then we have

o (27% (351 ) +26% (Y4L) +27% (V4L)) - LIV/L'%(u)du

)" (el 16 0+ o (%))’

(1) (st + el (9)°) [ (%)
1

20( v?i (s42) v+1)8(s+2) (% H_Z) |Cg, %)’lI)q

(

+ (1% ) (( o+ e ()" 1€ ()
(
(

IA
'
]
<
7N
—
DIf—

1

20(:2{;(&2) s+l)8(s+2) (gg Hz) ‘Cg, (VESLN )7
D' (sl (42)]"+ gl 017 ).

Proof. Using Lemma 1, properties of modulus, power mean inequality and s-convexity in the second sense of |4 |7, we get

o (276 (25) + 266 (44) +27% (452 ) - L5 [ @ (w)du

1 =7 /1
< B /zdz /z‘%’((l—z)v-ﬁ-zsv%)‘qdz
0
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¢ ((1-2) 2t +2%5L)

. g
dz

g q
dz

|4z — % ¢’ <(1 —z) Yt +17V+65L)

1

q

%”’((1 —z)V"ESL-HL))qu)

IN
I
R
.
//
o~~~
N
U
N
~
ok
[
X
—~
=
=
ot— -
I
AR
|
&
QU
N
+
X
—~
wn
2
+
=
~—
<
——
I
=]
kA
QU
N
~
<

0
41 -3
80
+ /(%—4z dz+/ (42— 35)dz
0 i
80
41
g% 1
(e ()| [ @ -2 0-2rdet [ (- $) 1~ e
0 4L
80
41 q
80
e )| [ (B9 ‘dz+/ (4e— 1) 2°dz
0
80
39 =
80 1
+ /(%74z)dz+/(4zf%)dz
0 3
80
39
80
|l | [ G- -0tdes [(@-B) -2y
0 3
80
30 i
4 80 1
e ()| [ @ -a)zdet [ (- 3) 2
0 39
80

q
V+5L

1 1

/ Hldz—k{%’ |q/ (1-2) sdz)
0 0

q)l

()

() (e
<

(1) (m)%/ W+

-5 ) s+2
%) ! (<20(Sﬂi;‘—(§+2) + (s+1)8(s+2) (379) )

_ v+2
2o(s3ff)(§+2) + <s+1)8<s+z) (%) ) " (59|

(
(
_1
+(18) (e + it (87 10 (401
( ()

1
+ ey €11 |)")7

&' <5v+L

q

1
q

41542 8 (go)s-&-Z)

W06+ T GIDGY)

& ( V+5L )

11—
+()7 (&
where we used (2.5)-(2.10) and the fact that

1 1
[t 1= 142 B4z i
0 0

The proof is acquired. O
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Corollary 2.7. In Theorem 3, if we take s = 1. Then we get

o (279 (1) +26% (41) +27% (V5L)) —le/L%

1
_ |%" (V)| 142| 6" (2L q 2
- (( GEINN ) +(

IN

v
1
%”(%SL)VW%L)\") ’
3

<=

1601 [ 196919]%" (24) | +187321 %" (=) |
300 384240
1
1601 ( 187321]%" (%55)]"+196919] %" (21) | \ ¢
T 300 384240 :

3. Further results

Theorem 3.1. Assume that € : [V,1] — R is a differentiable function on [V,L] with V<L and €' € L'[V,L]. If there exist constants m,M € R
with oo < m < M < oo such that, for every x € [V,L], m < ¢’ (x) < M. Then we have

L

i (276 () 266 (434) 4276 (352 ) ) = s [ ) < 2l

L—
v

Proof. From Lemma 1, we have

o (27 (351 ) +26% (Y4£) +27% (H4L)) LIV/L‘K(u)du
v
= L= ]Z(%/<(IZ)V+ZS\’;L>W+W)&
(42— 35) (6" ((1-2) - 4244t ) - g 4 2 ) o

(z—l)(%’<( )V+5L+2L)—#+#)dz

i
/

+7(4z—) (sg’(( )V+L+Zv+sL) %MJF#)[ZZ
0
|
/

1
= L /z(‘é'((l—z)v—o—ngL)——m§M>dz+L§M/zdz
0

0
1 1
+/ (4z—3) ((lfz)sv%JerT“) ’”+M>dz+ /(4zf—)dz
0 0
1 1
+/ (42— 33) ((lfz)VT“wLZ%SL)f@>d2+m§M/(4zf—)dz
0 0
I 1
+/ (z—1) z)%%—zL)—#)dz—&-#/(z—l)dz
0 0

z(‘f/ ((1 fz)V+ZSV%> - W)dz

Il
A
<
o ~—0

[ ) (¢ (- 2t g ) -

+ (4 )(%/(( )V+L+ZV+5L)_#>C]2

o\.— o\»—
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A
1

1 1 1
/zdz+/(4z—%)dz+/(4z—%)dz+/(z—l)dz
0 0 0

0

= ]z (%’ ((1 fz)VJrzSV%) - W) dz

(42— 45) (' ((1—2) DL 424 ) - 54 ) gz

1
/
1
+/ (42— ) (‘5’ (( 7) +z%) - #)dz
0
/IA(z_ 1 <<g, <( )V+5L+ZL) §M>dz 7
0

where we have used the fact

1 1 1 1
/zdz+/(4zf%)dz+/(4zf%)dz+/(zfl)dz=
0 0 0 0

Applying the absolute value in both sides of (3.1), we get

& (276 (%) +26% (Y44) + 276 (“52)) - oLy [ @

1

< /z’%’((lfz)v+zsv%>f@‘dz
0
1
+/|4 |’<g/( )5V+L+ZV+L)_#‘dZ
0
o] e D (-0 2 ) mip

1
!
1

+/(1—z)’<5’((1—t)%i+zL)—W’dz ;
0

Since m < ¢” (x) < M for all x € [v,L], we have

/ S5v+4 -+ _
‘cg ((]—Z)V-FZ%)_mT‘ STm,

[ ((1-2) 2L 4o ¥4 ) — | < Mom

and

Using (3.3)-(3.6) in (3.2) we get

L
& (276 (%) +26¢ (V34) + 276 (42 ) ) - oLy [ % (w)du

1 1 1

v

1

LM -m) /zdz+/|4z—‘2%|dz+/|4z—%|dz+/(l—z)dz
0 0 0 0

IA

_ 2401(L—V)(M—m)
- 57600 ’

which is the desired result.

3.1)

(3.2)

(3.3)

3.4)

(3.5)

(3.6)
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Theorem 3.2. Assume that € : [V,L] — R be a differentiable function on [V, L] with V<L and €' € L' [V,L]. The fact that €' is L-Lipschitzian
Sunction on [V,L], gives us

& (277 (24) 267 (41) 279 (W42)) - oL / @ (u)du| < BNy

Proof. From Lemma 1, we have

o (276 (22 ) +26% (Y) +27% () ) - /
\
1
= gg(/z(%’((lz)VHSVgL)%’(v)+<g’(v))dz
0

[ (4= 48) (' ((1-2) gt 4 2¥51) -7 (252 )+ (252)) az

[ (=) (¢ (1 -2 4 +2538) 7 (1) + 9 (Y4) ) de

1) (" (1= 55 1) - gf(wﬂw(vm))dz)

- % (] (%’((u)vw”ﬁ)%’(v))dz%’(v)]zdz

J’_

o~ o — = o~—

0 0

/1(42) (%/ (( 2)5"%+ZV;L) cg/<5v+L>)dz
0

1
+" (L) /
0
1
+f ) (@ (-9 g +252) - (41)) a:
0

1
' (4) [ (=) e
0
1

+/(271)(‘€’ ((lfz)%SL+zL) cg/(wrsL))dZ

0

1
+<€/ v+5L /Z*l )

0

=L (l/z ((5’ ((1 —z)v-i—zsv%) —%”’(v)) dz
0

(42——)(%”'(( Z)S\'%—O—zvﬂ) ‘é”(”“))dz

J’_

(42- ) (¢ (-2 Y+ ) 4" (442) ) dz

+

+
o\.— o\.— o\.—

(z—1) (%/ <( 2) V+5L +ZL> &' (V+5L>) dz

+%(%ﬂ/( )— %/(V+5L))+2170(%p/(V<2FL) %/<5V+L))>. (3.7)

By applying the absolute value in both sides of (3.7), and using the fact that ¢” is L-Lipschitzian function it yields

76 (25 ) +26% (V3 +z7<5 V+5L =
i (277 () +26¢ () /
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< 2| [e]e (a-avea) -4 )]z
+/‘4277 ’%/ —2) 5V6+L Tz V+L> & (5V+L))d2
+ / 4= 31 [# ((1-0) M4 o) - (441)
+/( )¢ <( )V+5L +ZL)_<€/<V+5L)‘dZ
0
e (59| gl e (3))
2 1
< %L /z2d2+2/|4z—% zdz+2/\4z—% zdz+/(1—z)zdz+%+%
0 0 0 0
4081(L—V)*
172800~ L
which is the desired result. O

4. Applications

In this section, we consider some applications using the correct Euler-Maclaurin formula as well as an application using means for arbitrary

real numbers.

Let Y be the partition of the interval [v,L] such that V=1xp < x| < ..

/%ﬂ

where
n—1

. < xn =L, and take the quadrature formula into consideration.

A(€,Y)+R(%,Y),

A€, Y) =Y (27%0” (M) +26% (H’w ) +27% (m))

i=0

and the accompanying approximation error is shown by R (%, Y).

Proposition 4.1. Assume that € : [V,L] — R is a differentiable function on [v,1] with €' € L' [v,L] and n € N. If |€"| is an s-convex

function in the second sense for a given s € (0, 1], we have

IR(€,T)]|

n—1 5
Z 2401 (xiy1—x;) 64000
28800

IA

i=0

1152480

(1" ()| +|€" (xie1)|) + Pismago ‘g’ (H#N

324919 1 Sxitxi ! Xit S
*t 1152480 (‘Cg (%Mw% <%>‘>>

Proof. Applying Corollary 1 on the subintervals [x;,x; 1] (i=0,1,...

% <27‘€ (M> +26% (XHWC:H ) +27% <x,+5x,+,

,n— 1) of the partition Y, we get

Xit+1

Xx+1 —Xi /%

2401 (xi1—x1) (64000 374642 i
< et (1152480 (1%" @) +[%" (1)) + 52480 ‘%/ (x 7 )‘

324919 1 Sxitxicn 1 [ Xi+5xi4
+ il (| () [+« (+5)]))

The required outcome is produced by multiplying both sides of (4.1) by (x| —

and applying the triangular inequality.

Application to special means
For arbitrary real numbers V,V,Vs,...,V,,L we have:

The Arithmetic mean: A (V1,Va,...,V,) = 1H2tetVn,

The p-Logarithmic mean: L, (V,L) = <%

Proposition 4.2. Let v,Le R with 0 <V<L, then we have

1
>”,V,L > 0,v#L and p € R\ {-1,0}.

‘27A2 (V,V,V,V,V,L) 42642 (V,L) +27A (V,L,L,L,L,L) — 80L3 (V,L)

2401(L—V)?
360 -

Proof. When Theorem 4 is applied to the function €’(x)

<

= x2, the claim is obtained.

x;), adding the resulting inequalities for all i = 0,1, ...,

“4.1)

n—1,
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5. Conclusion

In this study, we have constructed a new identity. Based on this equality, we have established some corrected Euler-Maclaurin inequalities
for functions whose first derivatives are s-convex, bounded, and L-Lipschitzian. Some special cases have been discussed. Applications to
numerical integration as well as to inequalities involving means have been presented. We hope that our results will be useful and stimulate
researchers to explore this area and to study and develop other types of inequalities.
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