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Abstract   

In this study well-blended Erbium:Cerium oxide doping polyethylene/ polyvinylpyrrolidone blended 
polymer films were synthesized using a simple solution casting synthesis approach. The changes in 
crystallization behavior, and luminescence and structural properties of polyethylene glycol and 
polyvinylpyrrolidone with the addition of cerium oxide and erbium ion have been investigated through FT-
IR spectroscopy, X-ray diffraction and luminescence properties. The results show that adding the proper 
amount of CeO2:Er3+ nanoparticles can play the role of the further nano-filler, which is beneficial to improve 
the luminescence of blended oxide film. This study contributes to the understanding of the role of interfacial 
sites in metal and oxide support in blended films for the development of fertile luminescence materials. 
 
Keywords: PEG/PVP blended film; CeO2:Er3+; Photoluminescence; Solution casting method. 
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1. Introduction 
 

Recently, versatile polymeric materials have become a part of polymers with strong 
electronic, optical and structural properties, well-organized geometric strength, strong 
weathering and fatigue strength, permanently suitable for high temperatures [1–4].  In this 
context, Polymer bonding or blends of polymers are a class of engineering compounds 
identical to hybrid structures designed by mixing at least two polymers with enhanced 
properties to produce a distinct composition with versatile characters [5,6].  Polymer 
materials blended with nano-fillers or doping polymers have become the focus of many 
studies in terms of improving the properties of inorganic ingredients and polymer matrices 
[7,8]. Polyethylene glycol (PEG) has exceptional water solubility, low toxicity and high 
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adsorption resistance. On the other hand, As a water-solubility polymer, 
Polyvinylpyrrolidone (PVP) has sophisticated features such as biodegradability, good 
dielectric constant, low toxicity, and biocompatibility [9,10].  
 

The lanthanide series of the periodic table begins with the element Cerium, which has the 
electronic configuration [Xe],4f1,5d1,6s2.  The 5p and 4d electrons adequately shield the 4f 
orbitals of the lanthanide, giving them important optical and catalytic properties. In 
addition, cerium oxide, which has a structure similar to fluorite, can be rapidly oxidized in 
the air atmosphere even after a significant amount of oxygen loss. Cerium oxide, which 
crystallizes in a fluorite-like structure, is among the important semiconductor oxides with 
a band gap between 2.6 and 3.4 eV [11–14]. 
 

Furthermore, cerium oxide (CeO2), because of its excellent high oxygen mobility, hardness 
index, uv-radiation absorbing-emitting ability, and stability at high temperatures [15,16], 
plays an important role in many technological fields, such as gas sensors, catalyst support 
and promoter and glass polishing material [17–19].  Trivalent lanthanide ions such as Yb3+, 
Ho3+, Tm3+ and Er3+ contribute to the energy absorption and (or)  luminescence centers in 
these materials.  Among these rare earth ions, Er3+ is one of the most favourite and 
efficient luminescent ions. It exhibits emission peaks of three different colors in the visible 
region range of the electromagnetic spectrum, assigned as blue, green and red light 
emissions, respectively. Among these luminescence transitions the most important is 4I13/2 
→ 4I15/2 erbium emission, which is related to NIR emission, because the spectral range at 
about 1.53 μm that is the safety for human eyes [20].  In this region, Er3+ employs effective 
roles for optical architectures in telecom infrastructures [21].  
 

Based on this point, in this work, doped nanofiller CeO2 with Er3+ ions PEG/PVP:CeO2:Er3+ 
blended polymer films were synthesized using precipitation method and solution casting 
method, respectively.  The effect of nanofiller doped at different rates with Er3+ on the 
structure, and luminescence properties of PEG/PVP blended films was investigated. 
 
 

2. Materials and Method 
 

The materials used for the study were cerium nitrate hexahydrate (Ce(NO3)3·6H2O), 
erbium nitrate pentahydrate (Er(NO3)3·5H2O), Poly(ethylene glycol) (PEG) (molecular 
weight 4000), Polyvinylpyrrolidone (PVP) (average molecular weight ~1,300,000) and 
sodium hydroxide (NaOH) purchased from Sigma Aldrich. 
 
2.1 Synthesis of CeO2 and Er doped CeO2 nanoparticles  
 

The CeO2 were synthesized precipitation method using Ce(NO3)3·6H2O as a precursor. The 
concentration of Er3+ is adjusted to be 1-5 wt.% concerning the Ce3+ content in the solution. 
Then 0.2 M solution of NaOH was prepared to act as a precipitation agent.  The 0.2 M 
solution of NaOH was added to 0.1 M solution of Ce(NO3)3·6H2O to achieve the pH value of 
7 and continuous stirring for 4 h at 80 °C.  The nanostructures were washed with de-
ionized (DI) water and ethanol.  After that, the product was centrifuged and repeated three 
times. Finally, they are dried and crushed and oven-dried at 80 °C overnight. Eventually, 
the prepared material was calcined at 450 °C for 3 h to obtain the yellow-colored CeO2.  
The CeO2 nanocomposites are formed by using the same method. The dosage of doped 
Er(NO3)3·6H2O are 1-5 wt.%, which are denoted as 1% Er3+–CeO2, 2% Er3+–CeO2, 3% Er3+–
CeO2, 4% Er3+–CeO2 and 5% Er3+–CeO2, respectively. 
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2.2 Synthesis of CeO2:Er3+(x wt.%) decorated PEG/PVP blend polymer films  

 
The blend polymer films with similar ratios of dopant were blended by performing the 
solution casting technique to determine the effect on the host polymer blend.  The blended 
films were designed with two polymers: PEG and PVP.  Firstly, 0.5 g of PEG with 20 ml of 
(DI) water, and 0.5 g of PVP with 20 ml were mixed.  Secondly, every type was completely 
provided for solubility. Thirdly, the PEG and PVP polymers were mixed at room 
temperature for 1 h to get the PEG/PVP homogeneous solution.  In a separate beaker, the 
same weight from (0.5 g) with 10 ml of the CeO2:xEr3+ (x=0, 1, 2, 3, 4 and 5 wt.%) 
nanoparticles were sonicated for two hours.  After that, the blended polymer solution and 
nanoparticles solution were mixed by the magnetic stirrer for three hours. The pure 
polymer matrix and CeO2:xEr3+ doped polymer matrix were positioned in Petri dishes, as 
illustrated in Fig. 1.  It was then left to dry in a drying oven at around 40 °C for a maximum 
of three days. 
 

Finally, the undoped and CeO2:xEr3+-doped PEG/PVP hybrid polymer films were prepared. 
The names of CeO2:xEr3+ (x=0-5wt.%) doped PEG/PVP hybrid films are determined as PP 
(PEG/PVP), PPC (PEG/PVP:CeO2), PPCE1 (PEG/PVP:CeO2:Er3+ (1wt.%)), PPCE2 (PEG/PVP: 
CeO2:Er3+ (2wt.%)), PPCE3 (PEG/PVP: CeO2:Er3+ (3wt.%)), PPCE4 (PEG/PVP: CeO2:Er3+ 
(4wt.%)) and PPCE5 (PEG/PVP: CeO2:Er3+ (5wt.%)), respectively.  Also, the mean thickness 
of the as-prepared blended films was recorded to be about 0.000233m.  
 

 
Fig. 1 Preparation of PEG/PVA/CeO2:xEr3+ blend films. 

 

3. Results and discussion 
 

3.1 XRD analysis  
 

The XRD pattern of the pristine-CeO2 sample is presented in Fig. 2 and Table 1.  All the 
diffraction peaks comply with the JCPDS file for CeO2 (JCPDS 98-005-4342), which can be 
assigned to the cubic structure of CeO2.  The JCPDS standard 98-005-4342 with peaks 
observed at 28.53°, 33.02°, 47.50°, 56.28°, 59.11°, 69.40°, 76.71° and 79.10°  assigned to 
(111), (002), (022), (113), (222), (004), (133) and (024) planes respectively.  The pure PP 
(PEG/PVP) blended film was in good agreement with published literature [22].  
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The XRD patterns of pure PEG/PVP blend showed one broad peak at 2θ = 13.15° and sharp 
diffraction peaks at 2θ=19.15° and 23.43°.  This includes most importantly informing the 
amorphous-crystalline nature of blends. The broad peak indicates the amorphous nature 
of the PVP, while sharp diffraction peaks originate in the crystalline phase of PEG. This 
indicates that the feature between the amorphous and crystalline nature of the blended 
film indicates good miscibility of the two polymers [23,24].  Especially, as the doping rate 
increases (from PPCE1 to PPCE5), PEG peak intensities drastically decrease. PEG peak 
intensities are drastically decreased.  This formation can be attributed to the fact that chain 
scission and cross-linking occur. 
 

 
Fig. 2 Powder X-ray diffraction (XRD) patterns of pristine-CeO2, PEG/PVP:CeO2 and 
PEG/PVP:CeO2:Er3+(1-5wt.%). 
 
The crystallite sizes of the pristine-CeO2 powder and PEG/PVP:CeO2:Er3+(1-5wt.%) 
blended films are calculated using the Scherer equation: 
 
                                                                   D=0.9 λ/(β cosθ )                                                                  (1) 
 
where 𝐷 is crystallite size, 𝜆 is the wavelength of the X-rays, 𝛽 is the full width at a half-
maximum intensity of the peaks, and 𝜃 is the diffraction angle [25].  Calculations showed 
that pure CeO2 particles have a crystallite size of 11.76 nm, while PEG/PVP:CeO2:Er3+ 
(1wt.%) decreased slightly to 8.45 nm.  In the case of the doping rate increases, the 
crystallite sizes increased slightly to 10.75 nm.  It is speculated that the differences in 
crystallite sizes may result from the aggregation of CeO2:Er3+ nanoparticles, as the 
PEG/PVP capping agent layers can reduce particle agglomeration and stabilize 
nanoparticle dispersions. 
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Table 1 Particle size estimated from the diffraction spectrum of pristine-CeO2, 
PEG/PVP:CeO2 and PEG/PVP:CeO2:Er3+(1-5wt.%) by using FWHM. 
 

Pos. 
[2θ°] 

FWHM 
[2θ°] 

d-spacing 
[Å] 

Particle 
size(PS) 

Av. PS Pos. 
[2θ°] 

FWHM 
[2θ°] 

d-spacing 
[Å] 

Particle 
size(PS) 

Av. PS 

CeO2 PEG/PVP:CeO2:Er3+(3wt.%) (PPCE3) 
28.52 0.90 3.13 9.14 

11.76 

28.67 0.96 3.11 8.55 

9.00 

33.07 0.73 2.71 11.29 33.21 0.96 2.70 8.64 
47.47 0.90 1.91 9.67 47.61 0.77 1.91 11.31 
56.32 1.06 1.63 8.50 56.49 0.96 1.63 9.40 
59.06 0.82 1.56 11.19 59.19 1.15 1.56 7.93 
69.38 0.82 1.35 11.84 69.54 1.15 1.35 8.40 
76.61 0.49 1.24 20.68 76.82 1.15 1.24 8.80 

PEG/PVP:CeO2 (PPC) PEG/PVP:CeO2:Er3+(4wt.%) (PPCE4) 
28.62 0.86 3.12 9.49 

11.24 

23.42 0.86 3.79 9.39 

10.37 

33.14 0.77 2.70 10.80 28.68 0.53 3.11 15.54 
47.54 0.86 1.91 10.05 33.19 0.96 2.70 8.64 
56.42 0.67 1.63 13.42 47.58 0.86 1.91 10.05 
59.18 0.86 1.56 10.58 56.43 0.77 1.63 11.74 
69.46 0.77 1.35 12.59 69.48 1.15 1.35 8.39 
76.81 0.86 1.24 11.74 76.79 1.15 1.24 8.80 

PEG/PVP:CeO2:Er3+(1wt.%) (PPCE1) PEG/PVP:CeO2:Er3+(5wt.%) (PPCE5) 
23.58 0.86 3.77 9.40 

8.45 

28.63 0.53 1.24 15.53 

10.75 

26.75 1.15 3.33 7.09 33.15 0.67 1.24 12.34 
28.76 0.96 3.10 8.55 47.55 0.86 1.24 10.05 
36.17 1.15 2.48 7.26 56.40 0.86 1.24 10.44 
39.98 1.15 2.25 7.34 59.13 1.15 1.24 7.93 
47.64 0.96 1.91 9.05 69.46 1.15 1.24 8.39 
56.48 0.86 1.63 10.44 76.82 0.96 1.24 10.56 

PEG/PVP:CeO2:Er3+(2wt.%) (PPCE2) 
28.70 0.86 3.11 9.50 

9.01 

33.18 1.15 2.70 7.20 
47.61 0.96 1.91 9.05 
56.47 0.86 1.63 10.44 
59.19 1.15 1.56 7.93 
69.54 1.15 1.35 8.40 
76.80 0.96 1.24 10.56 

 
3.2 FT-IR analysis 
 
FTIR spectrum is a useful tool used to determine the functional groups of products and 
their interactions with each other.  FT-IR spectral data were obtained on a Perkin Elmer 
Spectrum 65 spectrophotometer equipment with an ATR-Kit system in the range of 4000–
600 cm−1 at room temperature. Fig. 3 presents a typical FT-IR spectra of PEG/PVP, 
PEG/PVP:CeO2 and PEG/PVP:CeO2:Er3+ (1-5wt.%), where the broadband around 3450 
cm−1 observed due to the hydrophilic character of PVP is attributed to the O–H stretching 
vibrations [26,27].  The stretching mode of vibration coinciding with C=C is obtained at 
1652 cm−1, and the alkyl group is also observed in the range of 2881–2955 cm−1.  The sharp 
vibrational band at 1654 cm−1 is attributed to the stretching mode of the C=O in the PEG 
and PVP. The other important peak at 1423 cm−1 is referring –CH deformation of cyclic CH2 
groups in the pyrrole ring of PVP.  Another noticeable peak at 1285 cm−1 can be related to 
C-N stretching mode of the amide group.  The sharp and intense vibrational peaks that 
appeared at 1100, 952, and 841 cm−1 are assigned to ring in-plane bending [28]. 
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Fig. 3 FT-IR spectra of pristine-CeO2, Peg/PVP:CeO2 and PEG/PVP:CeO2:Er3+(1-5wt.%). 

 
Changing energy levels of O-H bonds, affected by the stretching frequencies of water 
molecules resulting from moisture on the surface of the sample, lead to a modification in 
the FTIR spectrum, resulting in an increase or decrease in band intensity.  This 
phenomenon is likely a result of chemical interactions within the matrix triggered by 
dopant elements, resulting in structural and chemical changes visible in the FTIR spectrum.  
These data support the consistency of our results with the existing literature [29,30]. 
 
3.3 Luminescence Properties 
 
Photoluminescence spectroscopy (PL) is a useful tool that provides insight into the role of 
electron pair recombination.  Photoluminescence spectrum at room temperature excited 
by 349 nm wavelength of Nd:YLFQ switched pulse laser with tripled frequency for hybrid 
films that called PEG/PVP, PEG/PVP:CeO2, PEG/PVP:CeO2: xEr3+ (x=1-5wt%) is shown in 
Fig. 4. Figure 4a shows the solid-state luminescence spectrum of PEG/PVP polymer films 
with a blue light emission band in the range of 400–700 nm (centered at 515 nm). This 
broad emission band is attributed to n→ π or π→π* electronic transition (ILCT) [31–33]. 
 

Fig. 4b demonstrates the PL data for CeO2-doped PEG/PVP-blended polymers.  As noticed 
from the plot, concerning the PEG/PVA polymer mixture, the luminescence spectrum was 
blue-shifted by about 10 nm, and the PL intensity decreased by about three times with the 
CeO2 doping in the sample matrix.  The lowering in the PL intensity is likely due to the 
decrease in the recombination rate between electron and hole pairs, increasing the 
number of non-radiative defects in the blended polymer.  Doping CeO2 becomes new defect 
states that act as non-radiative centers.  As a result, while nano-filler increases the number 
of defect states.  the luminescence intensity decreases [34]. 
 

In Fig. 4c the PL emission spectra of PEG/PVP:CeO2:xEr3+ (x=1-5wt%) consists of three 
main peaks at 536 (green emitted).  553 (green emitted) and 660 nm (red emitted), which 
is also attributed to transitions between 5H11/2→4I15/2 (536 nm) states, 4S3→4I15/2 (553 nm) 
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states, 4F9/2→4I15/2 (660 nm), respectively.  In addition to this weak emission peak observed 
in the NIR region at 1528 nm, which originated with the 4I13/2→4I15/2 transition (Fig 4d) 
[35–37].  In the spectral positions, there were no observed shifts.  It is known that spectral 
positions of emission bands do not depend on the doping concentration and excitation 
mechanism.  However, doping concentration seriously affects the luminescence intensity 
[38].  
 

Fig. 4c and 4d illustrate that when the Er3+ doping concentration is increased, while the 
emission intensity is decreased.  This decrease can be explained as follows: 

i. At low concentrations, Er3+–Er3+ ion distances are very far from each other 
and Er3+ ions are positioned randomly in the lattice. 

ii. As the concentration increases, the distance between two Er3+ ions decreases 
considerably, resulting in the formation of Er3+ clusters. 

iii. The excessive increase in concentration causes concentration-quenching 
processes in which dominant non-radiative transitions will occur. 

 
Furthermore, the CIE values are (0.291; 0.360), (0.301; 0.329), (0.304; 0.334), (0.305; 
0.323), (0.307; 0.321), (0.307; 0.317) and (0.306; 0.318) for PP, PPC, PPCE1, PPCE2, PPCE3, 
PPCE4 and PPCE5, respectively (Fig. 4e).  Moreover. PEG/PVP:CeO2: Er3+ (1wt.%) is 
observed to broadband effect, which is due to the presence of polymer blend effects. As the 
Er3+ ion contribution in the (PVA-PEG) matrix increases. The narrow and sharp emission 
peaks are observed instead of a wide emission band, which can be explained energy 
transfer process (Fig. 4f).  Firstly, the excitation energy is absorbed by the polymer blend.  
After that energy is transferred to CeO2 nano-fillers.  At the end, the energy is transferred 
from CeO2 nano-fillers to doped Er3+ ions and is observed in narrow emission peaks. 
 

 
 
Fig. 3 The solid-state photoluminescence spectrum of hybrid film samples (a) PEG/PVP, 
(b) PEG/PVP:CeO2, (c) PEG/PVP: CeO2:xEr3+ (x=1-5wt%) in the visible region, (d) the solid-
state emission spectra of the PEG/PVP: CeO2:xEr3+ (x=1-5wt%) films in the NIR region, (e) 
Chromaticity coordinates of all hybrid films and (f) Simplified energy level diagram of Ce3+ 
and Er3+ with arrows indicating optical transitions representing luminescence bands. 
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4. Conclusion 
 

In this work, we present a facile method combined with the synthesis of copolymers and 
rare earth ions-doped CeO2 NPs, and this technique allows the comparison of some 
physico-optical properties by varying the ratio between CeO2:Er3+ and copolymer 
components. The pure CeO2, CeO2:Er3+ (x wt.%, x=1-5) nanocomposites and PEG/PVP, 
PEG/PVP:CeO2, PEG/PVP:CeO2:Er3+ (x wt.%, x=1-5) blended films were successfully 
synthesized by precipitation and solution casting technique, respectively.  The XRD 
diffraction patterns revealed well-crystallized all samples and the average particle sizes of 
the pure CeO2 and blended polymer film samples were established to be around 9.00-11.76 
nm.  Regarding the photoluminescence results, the green emission assigned to 4S3/2→4I15/2 
nm is dominant for PEG/PVP:CeO2:Er3+ blended films.  The predominant green emission 
implies that PEG/PVP:CeO2:Er3+ hybrid films can be used as potential green luminescent 
materials.  
 

Additionally, a weak emission peak was observed at 1528 nm, assigned to 4S3/2→4I15/2.  

Considering the optical performance in the NIR region, Er3+ doped hybrid films may be 
candidates for potential materials that can be used in NIR OLEDs.  The results of the study 
pave the way for many suggestions and, accordingly, the production of new ideas and more 
detailed research. 
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