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Abstract
This paper introduces an axiomatic approach in the theory of energy dissipation in Hilbert envelopes on motion
waveforms emanating from various vibrating dynamical systems. A Hilbert envelope is a curve tangent to peak
points on a motion waveform. The basic approach is to compare non-modulated vs. modulated waveforms in
measuring energy loss during the vibratory motion m(t) at time t of a moving object such as a walker, runner, biker
or the action of any spring system recorded in a video. Modulation of m(t) is achieved by using Mersenne primes
to adjust the frequency ω in the Fourier transform m(t)e± j2πωt on motion waveform m(t), where the frequency ω

is a Mersenne prime. Expenditure of energy Em(t) by a system is measured in terms of the area bounded by the
motion m(t) waveform at time t. Energy dissipation is measured in terms of the difference between modulated
and non-modulated m(t).
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1. Introduction
Dynamical system vibrations appear as varying oscillations in motion waveforms [1, 2]. The focus in this paper is on

the detection of energy dissipation that commonly occurs in vibrating dynamical systems. For a motion waveform m(t) at
time t, the measure of motion dissipated energy is a mapping Ediss : R×R→ R defined in terms of the difference between
non-modulated energy Enmod(t) and modulated energy Emod(t), i.e.,

Ediss(Enmod(t),Emod(t)) = |Enmod(t)−Emod(t)|
= |non-modulated Em(t)−modulated Em(t)|

at time t of a vibratory dynamical system. In this work, two forms of motion waveform energy are considered, namely,
non-modulated (non-smoothing) m(t) and modulated (smoothing) m(t) that results from the product of m(t) and the exponential
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e± j2πωt introduced by Euler [3]. A formidable source of waveform energy measurement results from the Fourier transform
m(t)e± j2πωt [4](see, e.g., [5]).

A non-modulated form of waveform energy Em(t) is associated with the planar area bounded by motion curve beginning at
instant t0 and ending instant t1, namely, Em(t) =

∫ t1
t0 |m(t)|2 dt. In other words, system energy is identified with system waveform

area, instead of the more usual energy graph [6]. Modulated system energy is measured using Emod(t) =
∫ t1

t0

∣∣m(t)e± j2πωt
∣∣2 dt.

An application of the proposed approach in measuring energy dissipation is given in terms of the Hilbert envelope on the
peak points on waveforms derived from the up-and-down movements of the up-and-down movements of a walker, runner
or biker recorded in a sequence of video frames. An important finding in this paper is the effective use of Mersenne primes
to adjust the frequency ω of the Euler exponential to achieve waveform modulation with minimal energy dissipation (in the
uniform waveform case (see Conjecture 1.i). This usage of Mersenne primes [7] of the form 2p−1(p, a prime) in modulating
motion waveforms first appeared in [8]. We prove that waveform energy is a characteristic, which maps to the complex plane
(See Theorem 2.10. This result extends the waveform energy results in [9], [10]) as well as in [11, 12, 13].

Symbol Meaning
2A Collection of subsets of a nonempty set A

Ai ∈ 2A Subset Ai that is a member of 2A

C Complex plane
t Clock tick

e jωt cos(ωt)+ jsin(ωt) [3]
M Mersenne prime
ω Waveform Oscillation Frequency

Em(t) Energy of motion waveform m(t)
Ediss Energy dissipation

ϕt : 2A→ C ϕ maps 2A to complex plane C at time t
ϕt(Ai ∈ 2A) ∈ C Characteristic of ϕ(Ai ∈ 2A) ∈ C at time t.

Table 1.1. Principal Symbols Used in this Paper

2. Preliminaries
Highly oscillatory, non-periodic waveforms provide a portrait of vibrating systems behavior. Energy dissipation (decay) is a

common characteristic of every vibrating dynamical system. Included in this paper is an axiomatic basis for measuring this
characteristic of dynamical systems. A characteristic is a mapping ϕt : Ai→ C, which maps a subsystem Ai in a system A to a
point in the complex plane C.

Figure 2.1. Morse instants clock

Definition 2.1. (System)
A system A is a collection of interconnected components (subsystems Ai ∈ 2A) with input-output relationships.
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Definition 2.2. (Dynamical System)
A dynamical system is a time-constrained, changing physical system.

Definition 2.3. (Dynamical System Output Waveform)
The output of a dynamical system is a time-constrained sequence of discrete values.

It has been observed that the theory of dynamical systems is a major mathematical discipline closely aligned with many
areas of mathematics [14]. Energy dissipation is considered in many contexts such as heating, liquid (viscosity) and water-wave
scattering. In this work, the focus is on energy decay represented by the difference between the energy of non-smooth
(non-modulated) and smooth (modulated) motion waveforms. A motion waveform is a graphical portrait of the radiation
emitted by moving system (e.g., walker, runner, biker) with oscillatory output.

Axiom 1. (Instants Clock)
Every system has its own instants clock, which is a cyclic mechanism that is a simple closed curve with an instant hand with
one end of the instant hand at the centroid of the cycle and the other end tangent to a curve point indicating an elapsed time in
the motion of a vibrating system. A clock tick occurs at every instant that a system changes its state.

Remark 2.4. (What Euler tells us about time)
On an instants clock, every reading t ∈ (C), a point t = a+ jb,a,b ∈ R in the complex plane. For example, t0.25 = 0.25+ j0 = 0.25
in Fig. 2.1. The Morse instants clock is also called a homographic clock [15], since the tip of an instant clock t-hand moves on
the circumference of a circle, where t is a complex number [15]. For t at the tip of a vector with radius r = 1, angle θ and
a = cosθ ,b = sinθ in the complex plane, then

t = a+ jb = cosθ + jsinθ = e jθ .

An instant of time viewed as an exponential is inspired by Euler [3].

Example 2.5. A sample Morse instants clock is shown in Fig. 2.1. The clock hand points to the elapsed time in the interval
(t0.25 ≤ t ≤ t0.25) in milliseconds (ms) after a system has begun vibrating. The clock face is a polyhedral surface in a Morse-
Smale surface in a convex polyhedron in 3D Euclidean space. A Morse-Smale polyhedron is an example of a mechanical
shape descriptor ideally suited as clock model because of its underlying piecewise smooth geometry. This form of an instants
clock has been chosen to emphasize that the elapsed time tk is a real number in an instants interval [t0, tk] ∈ C2 in which
tk is indeterminate. From a planar perspective, the proximity of sets of instants clock times is related to results given for
computational proximity in the digital plane [16]. In this example, the instant hand is pointing to an elapsed time between t0.25
ms and t0.50 ms.

Definition 2.6. (Clocked Characteristic of a subsystem)
The clocked characteristic of a subsystem Ai of a system A at time ϕt(Ai) is a mapping ϕt : Ai ∈ 2A→ C defined by ϕt(Ai) =
a+b j ∈ C,a,b ∈ R, j =

√
(−1),ϕt(Ai) ∈ C.

Axiom 2. (Subsystem Motion Characteristic)
Let Ai ∈ 2A (subsystem Ai in the collection of subsystems 2A in system A) that emits changing radiation due to system movements
(motion) and let t be a clock tick. The motion characteristic of subsystem motion Ai ∈ 2A is a mapping mt : Ai→ C defined by

mt(Ai) = a+b j ∈ C,a,b ∈ R, j =
√
(−1), t ∈ R.

i.e., a subsystem Ai motion characteristic of a system A is a mapping mt(Ai ∈ 2A) ∈ C at time t.

Remark 2.7. For the motion characteristic, we write dm(t) when it is understood that motion is on a subset Ai ∈ 2A in a
dynamical system A. Axiom 2 is consistent with the view [17] of the characteristic vector field, represented here with a planer
characteristic vector field ξ of a dynamical system with points p(x,y, t) ∈ ξ that has positive complex characteristic coordinates
at clock tick (time) t such that
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Figure 2.2. Sample spring system waveforms

ϕt(Ai ∈ 2A) = p ∈ ξ = (a− jb) ∂ξ

∂x +(a− jb) ∂ξ

∂y +(a− jb) ∂ξ

∂ t ,a,b ∈ R.

The 1-1 correspondence between every point p having coordinates in the Euclidean plane and points in the complex plane
is lucidly introduced by D. Hilbert and S. Cohn-Vossen [18, §38, 263-265]. For an introduction to characteristic groups,
see [19],[20],[21].

Example 2.8. Spring system vibration
A pair of sample sinusoidal waveforms emitted by an expanding and contracting spring system is shown in Fig. 2.2.

Vibrating system waveform m(t) modulation (smoothing) is achieved by adjusting the frequency ω in an Euler exponential
e± j2πωt , which is used in oscillatory waveform curve smoothing. It has been found that Mersenne primes provide an effective
means an effective means of adjusting the frequency ω . It has been observed by G.W. Hill [22] that Mersenne primes
Mp = 2p−1 = 3,7,31, ... for prime p = 2,3,5, ... are useful in estimating variability as well as in estimating average values in
sequences of discrete values.

Axiom 3. (Waveform Energy)
A measure of dynamical system energy is the area of a finite planar region bounded by system waveform m(t) curve at time t,
defined by

Em(t) =
∫ t1

t0 |m(t)|2 dt.

Lemma 2.9. Dynamical system energy is time-constrained and is always limited.

Proof. Let Em be the energy of a dynamical system, defined in Axiom 3. From Axiom 3, system energy always occurs in a
bounded temporal interval [t0, t1]. Hence, Em is time constrained. From Axiom 1, the length of a system waveform is finite,
since, from Axiom 3, system duration is finite. From Axiom 3, system energy is derived from the area of a finite, bounded
region. Consequently, system energy is always finite.

Theorem 2.10. If X is a dynamical system with waveform m(t) at time t and which changes with every clock tick, then observe
1o System waveform characteristic values are in the complex plane.
2o System energy varies with every clock tick.
3o System radiation characteristics are finite.
4o All system characteristics map to the complex plane.
5o Waveform energy decay is a characteristic, which maps to C.

Proof.

1o From Def. 2.6, a system characteristic is a mapping from a subsystem to the complex plane at time t, From Axiom 2, every
waveform motion characteristic m(t) ∈ C at time t, which is the desired result.
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2o From Lemma 2.9, system energy is time-constrained and always occurs in a bounded temporal interval. From Axiom 1,
there is a new clock tick at every instant in time t ms. From Axiom 3, system energy varies with every clock tick.

3o From Axiom 1, all system radiation characteristics are finite, since system duration is finite.
4o From Axiom 2, every system A characteristic is a mapping from a subsystem Ai ∈ 2A to the complex plane, which is the

desired result.
5o From the proof of step 4, the desired result follows.

Figure 2.3. Hilbert envelope on modulated vibration waveform.

To obtain an approximation of system energy, a system waveform is represented by a continuous curve defined by a Hilbert
envelope [23] tangent to waveform peak points, forming what known as Hilbert lobes.

A Hilbert envelope (denoted by Henv) is a curve that is tangent to the peak points on a waveform [24, §18.4, p. 132].
A Hilbert envelope lobe (denoted by Henvlobe) is a tiny bounded planar region attached to single waveform peak point on a
waveform envelope, defined by

Henv =
√

m(t)2 +(−m(t))2 [23]

The energy represented by a lobe Henvlobe area of a tiny planar region attached to an oscillatory motion waveform m(t) is defined
by

Henvlobe =
∫ b

a
|m(t)|2 dt

It is lobe area that provides a measure of the energy represented by a waveform segment.

The modulated vibration waveform m(t) in Fig. 2.3 varies with lower peak points than the original motion waveform,
depending on the choice of Mersenne prime frequency. To minimize energy loss due to modulation, a Mersenne prime is
chosen for the frequency ω in an Euler exponential in m(t)e± jωt to obtain
result.1o Modulated system waveform m(t) is smoother for a particular Mersenne prime frequency (i.e., the waveform

oscillations are more uniform).
result.2o Modulated system energy loss is minimal, for a particular Mersenne prime frequency.

3. Application: Modulating System Waveform with Minimal Energy Dissipation
In this section, we illustrate how Mersenne primes can be used effectively to obtain the following results:

M→ ω-1o Usage of a M-prime as the frequency in the Euler exponential in
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m(t)e± jωMt

reduces motion m(t) waveform motion energy.
M→ ω-2o Energy dissipation varies in modulated vs. non-modulated waveforms for different choices of frequency M in

e± jωMt , depending on whether a waveform has uniformly or non-uniformly varying cycles around the origin.

Figure 3.1. 3 forms of m(t)e jωt

Conjecture 1. The choice of a Mersenne prime M ≤ 31 will always result in lower motion waveform peak values using M as
the frequency in the Euler exponential to achieve waveform modulation and minimal energy dissipation.

There are two cases to consider: [Partial Picture Proof]

Case(i) Assume m(t) waveform uniformly fluctuates and frequency ω = M = 1 results in the lowest energy loss

Proof. Partial picture proof: Recall that e jωt = cosωt + jsinωt, where m(t)e jωt forces the oscillation in a motion
waveform to increase. Let m(t) = sinc(t), introduced in 1822 by Fourier [4]. Then m(t) oscillates uniformly on either
side of the origin (see sample plot of sinct in Fig. 3.1). The area of m(t) =

∫ k
−k sinc(t)e jωtdt,ω ≥ 1 is always less

than the area
∫ k
−k sinc(t)dt. That is, e jωt partitions each m(t) cycle into regions with smaller areas whose total area is

less than the total area
∫ k
−k sinc(t)dt. With ω = M = 1, the modulated waveform energy is closest to non-modulated

waveform energy, which is the desired result.

Case(ii) Let m(t) be a non-uniform waveform. We make the unproved claim that the choice of ω = M, varies, i.e., M is not
always 1.

Example 3.1. Sample Energy Dissipation: Non-uniform waveform Case
Let m(t) = sinct, with cycles that vary uniformly relative to the origin. This is the case in Fig. 3.1. The result for 3 choices of
M ∈ {1,3,7} are shown in the plots in Fig. 3.1. This leads to the following energy dissipation levels:

Em(t) = 0.9028 non-modulated waveform energy

Em(t)e jt = 0.1503 M = 1,modulated waveform energy loss

Em(t)e j3t = 0.3371 M = 3,modulated waveform energy loss

Em(t)e j7t = 0.8954 M = 7,modulated waveform energy loss

Em(t)e j31t = 0.9021 M = 31,modulated waveform energy loss

The ω = M = 31 case is not shown in Fig. 3.1.
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Figure 3.2. Energy Analysis for M = 1 of Walker: Comparison of Non-Modulated and Modulated Motion Signals of Frame =
60

Evidence of the correctness of our Conjecture for the non-uniform waveform case in the choice of the Mersenne prime to
achieve minimal energy dissipation can be seen in the following two examples.

Example 3.2. Sample Energy Dissipation for a walker waveform
A sample collection of non-modulated and modulated waveforms for a walker for M = 1 is shown in Fig. 3.2. In Table 2, M = 1
for the exponential frequency of a modulated waveform results in the lowest energy dissipation.

However, if consider the choice of M for the modulation frequency for a biker, this choice differs from the choice of M = 1
in Example 3.2.

M Non-Modulated Energy Modulated Energy Energy Dissipation
(Ex) (Em) Percentage

1 1.2359 0.9709 21.44%
3 1.2359 0.9222 25.38%
7 1.2359 0.9559 22.65%

31 1.2359 0.9166 25.83%
Table 3.1. Energy Dissipation for Walking

M Non-Modulated Energy Modulated Energy Energy Dissipation
(Ex) (Em) Percentage

1 0.9635 0.6317 34.43%
3 0.9635 0.6729 30.16%
7 0.9635 0.6561 31.90%

31 0.9635 0.6396 33.61%
Table 3.2. Energy Dissipation for Biking
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Figure 3.3. Energy Analysis for M = 3 of Biker: Comparison of Non-Modulated and Modulated Motion Signals of Frame = 60

Example 3.3. Sample Energy Dissipation for a biker waveform
A sample collection of non-modulated and modulated waveforms for a biker for M = 3 is shown in Fig. 3.3. In Table 3, M = 3
for the exponential frequency of a modulated waveform results in the lowest energy dissipation.

4. Conclusion
This paper focuses on the frequency characteristic in modulating dynamical system waveforms. The appropriate choice

of Mersenne prime M as the frequency ω for the Euler exponential e jωt → e jMt is considered in modulating a dynamical
system waveform to obtain a smoother waveform and achieve minimal energy dissipation. It has been found that M = 1 is
the best choice for waveforms whose cycles vary uniformly about the origin. Choice of M ∈ {1,3,7,31} for the non-uniform
waveforms varies, depending on how extreme the lack of self-similarity present in waveforms that vary in a chaotic fashion on
either side of the origin. The appropriate choice of M in modulating a non-uniform waveform is an open problem.
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