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Abstract
In this work, an illustrative discussion has been made on sufficient conditions under which
all vector solutions of first order 2-dim nonautonomous neutral delay difference systems
of the form

∆
[
u(θ) + b(θ)u(θ − κ)
v(θ) + b(θ)v(θ − κ)

]
=

[
a1(θ) a2(θ)
a3(θ) a4(θ)

] [
g1(u(θ − γ))
g2(v(θ − η))

]
+

[
φ1(θ)
φ2(θ)

]
, θ ≥ ρ

are oscillatory, where κ > 0, γ ≥ 0, η ≥ 0 are integers, aj(θ), j = 1, 2, 3, 4, b(θ), φ1(θ),
φ2(θ) are sequences of real numbers for θ ∈ N(θ0) and g1, g2 ∈ C(R,R) are nondecreasing
with the properties ϕg1(ϕ) > 0, ψg2(ψ) > 0 for ϕ ̸= 0, ψ ̸= 0. We verify our results with
the examples.
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1. Introduction
In this piece of writing, we have explored the oscillatory tendencies of vector solutions

of 2-dim first order nonlinear nonautonomous neutral delay difference systems of the form:

(NS1) ∆
[
u(θ) + b(θ)u(θ − κ)
v(θ) + b(θ)v(θ − κ)

]
=

[
a1(θ) a2(θ)
a3(θ) a4(θ)

] [
g1(u(θ − γ))
g2(v(θ − η))

]
+

[
φ1(θ)
φ2(θ)

]
,

where θ ≥ ρ and ρ = max{κ, γ, η}, κ > 0, γ ≥ 0, η ≥ 0 are integers, a1(θ), a2(θ), a3(θ), a4(θ),
b(θ), φ1(θ), φ2(θ) are real-valued functions, and g1, g2 ∈ C(R,R) are non-decreasing func-
tions with the properties ϕg1(ϕ) > 0 for ϕ ̸= 0, ψg2(ψ) > 0 for ψ ̸= 0. The objective
of this study is to shed light on the discussion pertaining to sufficient conditions for the
oscillation of all vector solutions U(θ) = [u(θ), v(θ)]T of (NS1) for various ranges of the
neutral coefficient b(θ) under a suitable choice of the forcing vector.

The impetus for the current study originates from an earlier work [16], where Tripa-
thy investigated the oscillation criteria for two-dimensional linear neutral delay difference
systems of the form:

(NS2) ∆
[
u(θ) − b(θ)u(θ − κ)
v(θ) − b(θ)v(θ − κ)

]
=

[
a1(θ) a2(θ)
a3(θ) a4(θ)

] [
u(θ − γ)
v(θ − η)

]
, θ ≥ ρ.

∗Corresponding Author.
Email addresses: sunitadas.sd92@gmail.com (S. Das), arun_tripathy70@rediffmail.com (A.K. Tripathy)
Received: 07.10.2024; Accepted: 12.01.2025

https://orcid.org/0000-0002-1661-3560
https://orcid.org/0000-0002-5417-9064


2 Das and Tripathy

The system (NS2) affirms the necessary and sufficient conditions under which all bounded
vector solutions of (NS2) either oscillate or converge to zero as θ → ∞. Secondly, we are
motivated by the population model described in [4], where u(θ) and v(θ) are the population
size of matured males and females and u(θ−κ) and v(θ−κ) are the unmatured males and
females size at time θ and (θ−κ) respectively. After κ period, the growth of the population
size depends on matured males and females along with the converted unmatured males
and females which can be modeled as (NS1).

Motivated by the work of [16], Tripathy and Das in [17] have discussed the necessary
and sufficient conditions for oscillation of 2-dim nonlinear neutral delay difference systems
of the form:

(NS3) ∆
[
u(θ) − b(θ)u(θ − κ)
v(θ) − b(θ)v(θ − κ)

]
=

[
a1(θ) a2(θ)
a3(θ) a4(θ)

] [
g1(u(θ − γ))
g2(v(θ − η))

]
, θ ≥ ρ.

To simplify the problems raised between the works [16] and [17], the present authors have
discussed the neutral autonomous system

(NS4) ∆
[
u(θ) − bu(θ − κ)
v(θ) − bv(θ − κ)

]
=

[
a1 a2
a3 a4

] [
u(θ − γ)
v(θ − η)

]
, θ ≥ ρ,

where a1, a2, a3, a4, b ∈ R, b > 1, γ, η ∈ N in [18].
In [19], the authors have studied the oscillatory behaviour of all vector solutions of

two-dimensional nonlinear neutral delay difference system (NS3). Here, we are interested
in discussing the same for the system (NS1) which is the nonhomogeneous counterpart of
(NS3). (NS1) has been studied to establish sufficient conditions for the oscillation of all
vector solutions in the presence of a suitable forcing vector. However, we take into account
of the work [19] for the existence of a nonoscillatory vector solution. Regarding difference
equations and system of difference equations, we refer to monographs by Agarwal et al.
[1–3] and by Elyadi [7]. On the qualitative behaviour of vector solutions of a system of
difference equations, we refer to some of the works [5, 6, 8–18] in the literature.

Definition 1.1. By a solution of (NS1) we mean a vector U(θ) = [u(θ), v(θ)]T which
satisfies (NS1) for θ ∈ N(−ρ) = {−ρ,−ρ+ 1, ...0, 1, 2, ...}. We say that the solution U(θ)
oscillates componentwise or simply oscillates or strongly oscillates, if each component
oscillates. Otherwise, the solution U(θ) is called non-oscillatory. Therefore, a solution of
(NS1) is non-oscillatory, if it has a component which is eventually positive or eventually
negative and strongly non-oscillatory if both components of U(θ) are non-oscillatory. A
vector solution U(θ) of (NS1) has the property oscillates, if each component of U(θ) has
the property.

2. Some oscillation criteria
In this section, sufficient conditions for the oscillation of all vector solutions of the

system (NS1) are established. We need the following assumptions for our use in the
sequel:

(A1)
∞∑

θ=0
a2(θ) < ∞,

∞∑
n=0

a3(θ) < ∞;

(A2)
∞∑

θ=0
a1(θ) = −∞,

∞∑
θ=0

a4(θ) = −∞;

(A3) There exists sequences H1(θ), H2(θ) of real numbers such that H1(θ) changes
the sign with lim inf

θ→∞
H1(θ) = σ1, and lim sup

θ→∞
H1(θ) = τ1, whereas H2(θ) changes

the sign with lim inf
θ→∞

H2(θ) = σ2 and lim sup
θ→∞

H2(θ) = τ2, where −∞ < σ1 < 0,

−∞ < σ2 < 0, 0 < τ1 < ∞, 0 < τ2 < ∞, and ∆H1(θ) = φ1(θ), ∆H2(θ) = φ2(θ);
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(A4) There exists a subsequences {θj} ⊂ {θ} such that
∞∑

j=0
a1(θj) = −∞,

∞∑
j=0

a4(θj) = −∞;

(A5) lim inf
θ→∞

H1(θ) = −∞, lim sup
θ→∞

H1(θ) = +∞,

lim inf
θ→∞

H2(θ) = −∞, lim sup
θ→∞

H2(θ) = +∞,

where ∆H1(θ) = φ1(θ) and ∆H2(θ) = φ2(θ);
(A6) g1, g2 ∈ BC(R,R);

(A7) There exists an ϵ with 0 < ϵ < 1 such that
∞∑

θ=γ
a1(θ)g1(H+

1 (θ − γ) − ϵ) = −∞ =
∞∑

θ=γ
a1(θ)g1(H−

1 (θ + κ− γ)),
∞∑

θ=η
a2(θ)g2(H+

2 (θ − η) − ϵ) = ∞ =
∞∑

θ=η
a2(θ)g2(H−

2 (θ + κ− η)),
∞∑

θ=γ
a3(θ)g1(H+

1 (θ − γ) − ϵ) = ∞ =
∞∑

θ=γ
a3(θ)g1(H−

1 (θ + κ− γ)),
∞∑

θ=η
a4(θ)g2(H+

2 (θ − η) − ϵ) = −∞ =
∞∑

θ=η
a4(θ)g2(H−

2 (θ + κ− η));

(A8)
∞∑

θ=γ
a1(θ)g1(−H+

1 (θ + κ− γ)) = ∞ =
∞∑

θ=γ
a1(θ)g1(−H−

1 (θ − γ) − ϵ),
∞∑

θ=η
a2(θ)g2(−H+

2 (θ + κ− η)) = −∞ =
∞∑

θ=η
a2(θ)g2(−H−

2 (θ − γ) − ϵ),
∞∑

θ=γ
a3(θ)g1(−H+

1 (θ + κ− γ)) = −∞ =
∞∑

θ=γ
a3(θ)g1(−H−

1 (θ − γ) − ϵ),
∞∑

θ=η
a4(θ)g2(−H+

2 (θ + κ− η)) = ∞ =
∞∑

θ=η
a4(θ)g2(−H−

2 (θ − η) − ϵ),

where
H+

1 (θ) = max{H1(θ), 0}, H+
2 (θ) = max{H2(θ), 0}, H−

1 (θ) = max{−H1(θ), 0},
H−

2 (θ) = max{−H2(θ), 0}.

Theorem 2.1. Let 0 ≤ b(θ) < ∞. Assume that a1(θ) < 0, a2(θ) > 0, a3(θ) > 0, a4(θ) < 0
for large θ. If (A1), (A3), (A4) and (A6) hold, then every vector solution of (NS1) strongly
oscillates.

Proof. If possible, let U(θ) = [u(θ), v(θ)]T be a strongly nonoscillatory vector solution of
(NS1) for any large θ ≥ θ0 > ρ. Without loss of generality, we undertake the following
four possible cases:
Case − 1 : u(θ) > 0, u(θ − κ) > 0, u(θ − γ) > 0 and v(θ) > 0, v(θ − κ) > 0, v(θ − η) > 0
for θ ≥ θ1.
Case − 2 : u(θ) < 0, u(θ − κ) < 0, u(θ − γ) < 0 and v(θ) < 0, v(θ − κ) < 0, v(θ − η) < 0
for θ ≥ θ1.
Case − 3 : u(θ) > 0, u(θ − κ) > 0, r(θ − γ) > 0 and v(θ) < 0, v(θ − κ) < 0, v(θ − η) < 0
for θ ≥ θ1.
Case − 4 : u(θ) < 0, u(θ − κ) < 0, u(θ − γ) < 0 and v(θ) > 0, v(θ − κ) > 0, v(θ − η) > 0
for θ ≥ θ1.
Considering the system (NS1), we set

Q1(θ) =
∞∑

i=θ

a2(i)g2(v(i− η)), Q2(θ) =
∞∑

i=θ

a3(i)g1(u(i− γ));

r1(θ) = u(θ) + b(θ)u(θ − κ), r2(θ) = v(θ) + b(θ)v(θ − κ).
If we define

M1(θ) = r1(θ) +Q1(θ), M2(θ) = r2(θ) +Q2(θ),
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then (NS1) reduces to
∆[M1(θ) −H1(θ)] = a1(θ)g1(u(θ − γ)) ≤ 0, (2.1)
∆[M2(θ) −H2(θ)] = a4(θ)g2(v(θ − η)) ≤ 0 (2.2)

for θ ≥ θ1 > θ0. Indeed, [M1(θ)−H1(θ)] and [M2(θ)−H2(θ)] are monotonic for θ ≥ θ2 > θ1.
For Case − 1, M1(θ) > 0. If [M1(θ) − H1(θ)] < 0 for θ ≥ θ2, then 0 < M1(θ) < H1(θ),
a contradiction due to (A3). Ultimately, [M1(θ) − H1(θ)] ≥ 0 for θ ≥ θ2. Therefore,
lim

θ→∞
[M1(θ) −H1(θ)] exists and so also, lim

θ→∞
M1(θ) due to (A6). Indeed,

M1(θ) = u(θ) + b(θ)u(θ − κ) +Q1(θ) ≥ u(θ)
implies that we can find l > 0 and θ3 > θ2 such that 0 ≤ u(θ) ≤ l for θ ≥ θ3. So, there
exists a subsequence {θj} ⊂ {θ} and L < l such that lim inf

j→∞
u(θj −γ) ≥ L. Rewriting (2.1)

in {θj}, we have
∆[M1(θj) −H1(θj)] ≤ a1(θj)g1(L), θj ≥ θ3,

that is,

g1(L)
∞∑

j=1
a1(θj) ≥

∞∑
j=1

∆[M1(θj) −H1(θj)] ≥ −[M1(θ1) −H1(θ1)] > −∞

gives a contradiction to (A4). The argument is similar for [M2(θ) −H2(θ)]. In Case − 2,
we set λ(θ) = −u(θ) and χ(θ) = −v(θ) for θ ≥ θ1. So, (NS1) can be written as

(NS5) ∆
[
λ(θ) + b(θ)λ(θ − κ)
χ(θ) + b(θ)χ(θ − κ)

]
=

[
a1(θ) a2(θ)
a3(θ) a4(θ)

] [
g∗

1(λ(θ − γ))
g∗

2(χ(θ − η))

]
+

[
φ∗

1(θ)
φ∗

2(θ)

]
, θ ≥ ρ,

where φ∗
1(θ) = −φ1(θ), φ∗

2(θ) = −φ2(θ), g∗
1(λ) = −g1(−λ), g∗

2(χ) = −g2(−χ). Let H∗
1 (θ) =

−H1(θ),H∗
2 (θ) = −H2(θ). Then ∆H∗

1 (θ) = φ∗
1(θ) and ∆H∗

2 (θ) = φ∗
2(θ). So, Case − 2 is

all about similar as Case − 1. For Case − 3, (2.1) and (2.2) resolve into
∆[M1(θ) −H1(θ)] = a1(θ)g1(u(θ − γ)) ≤ 0, (2.3)
∆[M2(θ) −H2(θ)] = a4(θ)g2(v(θ − η)) ≥ 0 (2.4)

for which [M1(θ) − H1(θ)] and [M2(θ) − H2(θ)] are monotonic. If [M1(θ) − H1(θ)] > 0,
then lim

k→∞
[M1(θ) −H1(θ)] exists and we are done in Case − 1. Suppose that −v(θ) = t(θ)

and H∗
2 (θ) = −H2(θ) in (2.4), then

∆[t(θ) + b(θ)t(θ − κ) −
∞∑

j=θ

a3(j)g1(u(j − γ)) −H∗
2 (θ)] = a4(θ)g∗

2(t(θ − η))

looks very much alike to (2.3) and the argument follows immediately. Case − 4 is analo-
gous to Case − 3. This completes the proof of the theorem. □
Theorem 2.2. Let −1 < α1 ≤ b(θ) ≤ 0 for large θ. If all conditions of Theorem 2.1 hold,
then every vector solution of (NS1) strongly oscillates.

Proof. On the contrary, we proceed as in Theorem 2.1 and we have four cases. So, we
can find θ2 > θ1 + ρ such that [M1(θ) − H1(θ)] and [M2(θ) − H2(θ)] are monotonic for
θ ≥ θ2. For Case − 1, if [M1(θ) −H1(θ)] > 0, then lim

k→∞
[M1(θ) −H1(θ)] exists and hence

lim
θ→∞

M1(θ) = lim
θ→∞

[Q1(θ) + r1(θ)] exists, that is, lim
θ→∞

r1(θ) exists. If M1(θ) > 0, then we
have done in Theorem 2.1. If M1(θ) < 0, then r1(θ) +Q1(θ) < 0. We have Q1(θ) > 0 that
implies r1(θ) < 0, that is, u(θ) + b(θ)u(θ − κ) < 0 which implies

u(θ) < −b(θ)u(θ − κ) < u(θ − κ) < u(θ − 2κ) < u(θ − 3κ) < · · · < u(θ2) < ∞
and hence r1(θ) is bounded. Therefore, proceeding as in Theorem 2.1, we get a contradic-
tion to (A4). Next, we let [M1(θ) −H1(θ)] ≤ 0 for θ ≥ θ2. We assert that u(θ) is bounded.



Oscillatory first order NFDS 5

Suppose that u(θ) is unbounded. So, there exists a subsequence {δj} of {θ} such that
δj → ∞ and u(δj) → ∞ as j → ∞ and u(δj) = max{u(θ) : θ2 ≤ θ ≤ δj}. We can choose
δj sufficiently large such that δj − κ > θ2 and hence

[M1(δj) −H1(δj)] = u(δj) + b(δj)u(δj − κ) +
∞∑

i=δj

a2(i)g2(v(i− η)) −H1(δj)

≥ (1 + α1)u(δj − κ) +
∞∑

i=δj

a2(i)g2(v(i− η)) −H1(δj)

→ ∞ as j → ∞,

a contradiction. Thus, our assertion holds and consequently, lim
θ→∞

[M1(θ) − H1(θ)] exists
and lim

θ→∞
M1(θ) = lim

θ→∞
[Q1(θ) + r1(θ)] exists. As a result, lim

θ→∞
r1(θ) exists. Hence, the

above conclusion follows.
Case − 2 follows from Theorem 2.1. For Case − 3, we have (2.3) and (2.4) for which

[M1(θ) − H1(θ)] and [M2(θ) − H2(θ)] are monotonic. The rest of the proof is similar to
Theorem 2.1. This completes the proof of the theorem. □

Theorem 2.3. Let −∞ < α2 < b(θ) < −1 for large θ. If all conditions of Theorem 2.1
hold, then every vector solution of (S1) strongly oscillates.

Proof. On the contrary, the proof follows from the proof of Theorem 2.2. But, we have
to show that u(θ) is bounded in each case. If M1(θ) > 0 for θ ≥ θ2, then r1(θ) > 0 which
implies u(θ) > −b(θ)u(θ − κ) > b(θ)u(θ − κ) > u(θ − 2κ) > u(θ − 3κ) > · · · > u(θ2), that
is, lim inf

θ→∞
u(θ) > 0. We claim that u(θ) is bounded. If not, then there exists a subsequence

{θj} ⊂ {θ} such that u(θj − γ) > B. Hence, (2.1) becomes

∆[M1(θj) −H1(θj)] = a1(θj)g1(u(θj − γ)).

Summing from j = 1 to ∞, we get
∞∑

j=1
a1(θj)g1(u(θj − γ)) =

∞∑
j=1

∆[M1(θj) −H1(θj)]

which implies

g1(B)
∞∑

j=1
a1(θj) >

∞∑
j=1

∆[M1(θj) −H1(θj)],

that is,
∞∑

j=1
a1(θj) >

∑∞
j=1 ∆[M1(θj) −H1(θj)]

g1(B)
> −∞,

which is a contradiction to (A4). Hence, M1(θ) < 0 for θ ≥ θ2, that is, r1(θ) < 0 for given
Q1(θ) > 0. If r1(θ) > 0, then we may also write

r1(θ) = u(θ) + b(θ)u(θ − κ) ≥ b(θ)u(θ − κ) ≥ α2u(θ − κ)

this implies
r1(θ) ≥ α2u(θ − κ),

that is,

u(θ) ≥ 1
α2
r1(θ + κ)

and hence lim inf
θ→∞

u(θ) > 0. Therefore, proceeding as in Theorem 2.1, we get a contradiction
to (A4). Hence, u(θ) is bounded, which completes the proof of the theorem. □
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Example 2.4. Consider a 2-dimensional nonlinear nonautonomous neutral delay differ-
ence system of the form:

(NS6) ∆
[
u(θ) + (1 + e1−θ)u(θ − 2)
v(θ) + (1 + e1−θ)v(θ − 2)

]

=
[

−4(2 + e
2 + e−θ

2 + e1−θ) 10
3 e

1−θ

6e−θ −10(4 + e2

3 + 2e−θ + e1−θ)

]  u(θ−4)
1+u2(θ−4)

v(θ−6)
1+v2(θ−6)

 +
[

(−1)θe
(−1)θe2

]

for θ > 6. Clearly, (A1) and (A2) hold. If we setH1(θ) = e
2(−1)θ+1 andH2(θ) = e2

2 (−1)θ+1,
then (A3) is satisfied. By Theorem-2.1, every vector solution of (NS6) is strongly oscilla-
tory. In particular, U(θ) = [(−1)θ, 3(−1)θ]T is such a solution of the given system.

Fig. 1

Remark 2.5. It is observed that, Theorem 2.1 holds if we replace (A3) by (A5). However,
Theorem 2.2 and Theorem 2.3 do not work for (A5). Hence, we have the following result
without proof:

Theorem 2.6. Let 0 ≤ b(θ) < ∞. Assume that a1(θ) < 0, a2(θ) > 0, a3(θ) > 0, a4(θ) < 0
for large θ. If (A1), (A4), (A5) and (A6) hold, then every vector solution of (NS1) strongly
oscillates.

Example 2.7. Consider a 2-dimensional nonlinear nonautonomous neutral delay differ-
ence system of the form:

(NS7) ∆
[
u(θ) + (−2 + e−θ)u(θ − 3)
v(θ) + (−2 + e−θ)v(θ − 3)

]

=
[

−10(6 + eθ

3 − e−θ) 78
5 e

1−θ

50
3 e

−θ −26(6 + 2eθ

5 − e1−θ)

]  u(θ−4)
1+u2(θ−4)

v(θ−4)
1+v2(θ−4)

 +
[

(−1)θeθ

2(−1)θeθ

]

for θ > 4. Clearly, (A1) and (A2) hold. If we set H1(θ) = (e + 1)−1(−1)θ+1eθ and
H2(θ) = 2(e+1)−1(−1)θ+1eθ, then (A5) is satisfied. We note that (NS7) has an oscillatory
vector solution U = [3(−1)θ, 5(−1)θ]T aside to the Remark 2.5.

Example 2.8. Consider a 2-dimensional nonlinear nonautonomous neutral delay differ-
ence system of the form:

(NS8) ∆
[
u(θ) + (1 + e−5θ)u(θ − 2)
v(θ) + (1 + e−5θ)v(θ − 2)

]

=
[
a1(θ) a2(θ)
a3(θ) a4(θ)

]  u(θ−2)
1+u2(θ−2)

v(θ−2)
1+v2(θ−2)

 +
[

(−1)θ+1eθ

2(−1)θ+1eθ

]
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for θ > 2. Here, we take a1(θ) = −(1 + e2θ−4)(1 + e + e3 + 2e−5θ−4 + e−5θ), a2(θ) =
1
2(1+4e2θ−4)e−5θ−4, a3(θ) = 2(1+ e2θ−4)e−5θ, a4(θ) = −(1+4e2θ−4)(1+e+e3 +e−5θ−4 +
2e−5θ). Clearly, (A1) and (A2) hold. If we set H1(θ) = (e + 1)−1(−1)θeθ and H2(θ) =
2(e+ 1)−1(−1)θeθ, then (A5) is satisfied. By Theorem 2.6, every vector solution of (NS8)
is strongly oscillatory. In particular, U = [(−1)θeθ, 2(−1)θeθ]T is such a solution of the
given system.

Fig. 2

Theorem 2.9. Let −1 ≤ β1 ≤ b(θ) ≤ 0. Assume that (A3), (A4), (A6), (A7) and (A8)
hold. Then every vector solution of (NS1) strongly oscillates.

Proof. If not, let [u(θ), v(θ)]T be a strongly nonoscillatory vector solution of (NS1). So,
we consider the four cases of Theorem 2.1.
Case − 1 : If u(θ) > 0, u(θ−κ) > 0, u(θ−γ) > 0 for θ ≥ θ1 and v(θ) > 0, v(θ−κ) > 0, v(θ−
η) > 0 for θ ≥ θ1. Setting Q1(θ), Q2(θ), r1(θ), r2(θ) as in Theorem 2.1 for θ ≥ θ2 > θ1, let
we define S(θ) = Q1(θ) + r1(θ) −H1(θ), W (θ) = Q2(θ) + r2(θ) −H2(θ). Therefore, (NS1)
can be written as

∆S(θ) = a1(θ)g1(u(θ − γ)) ≤ 0, (2.5)
∆W (θ) = a4(θ)g2(v(θ − η)) ≤ 0 (2.6)

for θ ≥ θ2, that is, {S(θ)} and {W (θ)} are monotonically decreasing real valued sequences
for θ ≥ θ2. If S(θ) > 0 for θ ≥ θ2, then

Q1(θ) + u(θ) + b(θ)u(θ − κ) −H1(θ) > 0

implies that

u(θ) > H1(θ) −Q1(θ) − b(θ)u(θ − κ)
> H1(θ) −Q1(θ).

Because, Q1(θ) > 0 and ∆Q1(θ) < 0, and then of course lim
θ→∞

Q1(θ) = 0. So, we can find
0 < ϵ < 1 and θ3 > θ2 such that Q1(θ) ≤ ϵ for θ ≥ θ3. As a result,

u(θ) > H1(θ) − ϵ, θ ≥ θ3.

Now, u(θ) + ϵ > 0 and u(θ) + ϵ > H1(θ) for θ ≥ θ3 implies that

u(θ − γ) ≥ H+
1 (θ − γ) − ϵ, θ ≥ θ4 > θ3. (2.7)

Using (2.7) and summing (2.5) from θ4 to (s1 − 1), we obtain
s1−1∑
θ=θ4

a1(θ)g1(u(θ − γ)) = −S(θ4) + S(s1) ≥ −S(θ4)
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and therefore,
∞∑

θ=θ4

a1(θ)g1(H+
1 (θ − γ) − ϵ) > −∞,

a contradiction to (A7). Hence, S(θ) < 0 for θ ≥ θ2, that is,
Q1(θ) + u(θ) + b(θ)u(θ − κ) < H1(θ).

Therefore,
u(θ) < H1(θ) −Q1(θ) − b(θ)u(θ − κ)

< H1(θ) −Q1(θ) + u(θ − κ)
implies that

u(θ) > u(θ + κ) −H1(θ + κ) +Q1(θ + κ)
≥ −H1(θ + κ)

for θ ≥ θ3 > θ2. So, we can find θ4 > θ3 such that
u(θ − γ) ≥ H−

1 (θ + κ− γ), θ ≥ θ4. (2.8)
Let lim

θ→∞
S(θ) = −∞, −∞ ≤ µ < 0. If µ = −∞, then lim

θ→∞
[u(θ) + b(θ)u(θ − κ)] = −∞.

Hence, we obtain u(θ) + b(θ)u(θ − κ) < 0, that is,
u(θ) < −b(θ)u(θ − κ) ≤ u(θ − κ) ≤ u(θ − 2κ) ≤ · · · ≤ u(θ4) < ∞

shows that u(θ) is bounded, a contradiction to our supposition. Now, using (2.8) and
summing (2.5) from θ4 to (s1 − 1), we obtain

s1−1∑
θ=θ4

a1(θ)g1(u(θ − γ)) = −S(θ4) + S(s1) ≥ S(s1)

for which
∞∑

θ=θ4

a1(θ)g1(H−
1 (θ + κ− γ)) > −∞,

a contradiction to (A7). The above argument can be seen for (2.6) as well.
Case − 2 : If we take u(θ) < 0, u(θ−κ) < 0, u(θ−γ) < 0 for θ ≥ θ1 and v(θ) < 0, v(θ−κ) <
0, v(θ − η) < 0 for θ ≥ θ1, and then proceeding as in Theorem 2.1, we can find the same
system as (NS5). Here, we note that

lim inf
θ→∞

H∗
1 (θ) = − lim sup

θ→∞
H1(θ) = −τ1, lim sup

θ→∞
H∗

1 (θ) = − lim inf
θ→∞

H1(θ) = −σ1,

lim inf
θ→∞

H∗
2 (θ) = − lim sup

θ→∞
H1(θ) = −τ2, lim sup

θ→∞
H∗

2 (θ) = − lim inf
θ→∞

H2(θ) = −σ2,

and also,
∞∑

θ=γ

a1(θ)g∗
1(H∗+

1 (θ − γ) − ϵ) = −
∞∑

θ=γ

a1(θ)g1(−H−
1 (θ − γ) − ϵ) = −∞,

∞∑
θ=γ

a1(θ)g∗
1(H∗−

1 (θ + κ− γ)) = −
∞∑

θ=γ

a1(θ)g1(−H+
1 (θ + κ− γ)) = −∞,

∞∑
θ=η

a2(θ)g∗
2(H∗+

2 (θ − η) − ϵ) = −
∞∑

θ=η

a2(θ)g2(−H−
2 (θ − η) − ϵ) = ∞,

∞∑
θ=η

a2(θ)g∗
2(H∗−

2 (θ + κ− η)) = −
∞∑

θ=η

a2(θ)g2(−H+
2 (θ + κ− η)) = ∞,
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∞∑
θ=γ

a3(θ)g∗
1(H∗+

1 (θ − γ) − ϵ) = −
∞∑

θ=γ

a3(θ)g1(−H−
1 (θ − γ) − ϵ) = ∞,

∞∑
θ=γ

a3(θ)g∗
1(H∗−

1 (θ + κ− γ)) = −
∞∑

θ=γ

a3(θ)g1(−H+
1 (θ + κ− γ)) = ∞,

∞∑
θ=η

a4(θ)g∗
2(H∗+

2 (θ − η) − ϵ) = −
∞∑

θ=η

a4(θ)g2(−H−
2 (θ − η) − ϵ) = −∞,

∞∑
θ=η

a4(θ)g∗
2(H∗−

2 (θ + κ− η)) = −
∞∑

θ=η

a4(θ)g2(−H+
2 (θ + κ− η)) − ∞.

Hence, proceeding as in Case − 1, we get a contradiction to (A8).
Case − 3 : In this case, (2.5) and (2.6) are of the form

∆S(θ) = a1(θ)g1(u(θ − γ)) ≤ 0, (2.9)
∆W (θ) = a4(θ)g2(v(θ − η)) ≥ 0. (2.10)

If we put −v(θ) = l(θ) and H∗
2 (θ) = −H2(θ) in (2.10), we get

∆[l(θ) + b(θ)l(θ − κ) −
∞∑

i=θ

a3(i)g1(u(i− γ)) −H∗
2 (θ)] = a4(θ)g2(l(θ − η)),

that is,
∆W ∗(θ) = a4(θ)g2(l(θ − η)) ≤ 0 (2.11)

which is similar to (2.9) and all we have discussed in Case − 1. Case − 4 is similar to
Case − 3. Hence, the details are omitted. □
Theorem 2.10. Let 0 ≤ b(θ) ≤ β2 < ∞. Assume that (A3), (A7), (A8)

(A9) there exists δ1 > 0, δ2 > 0 such that
g1(u) + g1(v) ≥ δ1g1(u+ v), g2(u) + g2(v) ≥ δ2g2(u+ v), u, v ∈ R+, and

(A10) g1(uv) = g1(u)g1(v), g2(uv) = g2(u)g2(v), u, v ∈ R
hold. Furthermore, assume that one of following conditions:

(A11)
∞∑

θ=γ
a∗

1(θ)g1(H+
1 (θ − γ) − ϵ) = −∞ =

∞∑
θ=γ

a∗
1(θ)g1(H−

1 (θ − γ)),
∞∑

θ=η
a∗

2(θ)g2(H+
2 (θ − η) − ϵ) = ∞ =

∞∑
θ=η

a∗
2(θ)g2(H−

2 (θ − η)),
∞∑

θ=γ
a∗

3(θ)g1(H+
1 (θ − γ) − ϵ) = ∞ =

∞∑
θ=γ

a∗
3(θ)g1(H−

1 (θ − γ)),
∞∑

θ=η
a∗

4(θ)g2(H+
2 (θ − η) − ϵ) = −∞ =

∞∑
θ=η

a∗
4(θ)g2(H−

2 (θ − η));

(A12)
∞∑

θ=γ
a∗

1(θ)g1(−H+
1 (θ + κ− γ)) = ∞ =

∞∑
θ=γ

a∗
1(θ)g1(−H−

1 (θ − γ) − ϵ),
∞∑

θ=η
a∗

2(θ)g2(−H+
2 (θ + κ− η)) = −∞ =

∞∑
θ=η

a∗
2(θ)g2(−H−

2 (θ − γ) − ϵ),
∞∑

θ=γ
a∗

3(θ)g1(−H+
1 (θ + κ− γ)) = −∞ =

∞∑
θ=γ

a∗
3(θ)g1(−H−

1 (θ − γ) − ϵ),
∞∑

θ=η
a∗

4(θ)g2(−H+
2 (θ + κ− η)) = ∞ =

∞∑
θ=η

a∗
4(θ)g2(−H−

2 (θ − η) − ϵ),

where
a∗

1(θ) = min{a1(θ), a1(θ − κ)}, a∗
2(θ) = min{a2(θ), a2(θ − κ)}, a∗

3(θ) = min{a3(θ),
a3(θ−κ)}, a∗

4(θ) = min{a4(θ), a4(θ−κ)}, and H+
1 ,H

−
1 ,H

+
2 ,H

−
2 are defined in (A8)

hold. Then every vector solution of (NS1) oscillates.
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Proof. On the contrary, let [u(θ), v(θ)]T be a strongly nonoscillatory vector solution
of (NS1). Proceeding as in Theorem 2.9, it follows that S(θ) and W (θ) are mono-
tonically decreasing real valued functions for θ ≥ θ1. If S(θ) < 0 for θ ≥ θ2, then
Q1(θ) + r1(θ) − H1(θ) < 0 implies r1(θ) − H1(θ) < 0. As a result, 0 < r1(θ) < H1(θ)
shows that lim inf

θ→∞
H1(θ) > 0, a contradiction. Ultimately, S(θ) > 0 for θ ≥ θ2, that is,

Q1(θ) + r1(θ) −H1(θ) > 0. Therefore, r1(θ) > H1(θ) −Q1(θ) and hence r1(θ) > H1(θ) − ϵ
for θ ≥ θ3 > θ2. Consequently, r1(θ) + ϵ > H1(θ) implies that r1(θ) + ϵ ≥ max{H1(θ), 0}
for θ ≥ θ4 > θ3. So, we have

r1(θ) > H+
1 (θ) − ϵ, θ ≥ θ4. (2.12)

If we look at (NS1), then

∆S(θ) − a1(θ)g1(u(θ − γ)) = 0 (2.13)

which can also be written as

∆S(θ − κ) − a1(θ − κ)g1(u(θ − κ− γ)) = 0. (2.14)

Clearly, (2.14) and (2.13) can be embedded in the following nonlinear equation

∆S(θ) − a1(θ)g1(u(θ − γ)) + g1(β2)
[
∆S(θ − κ) − a1(θ − κ)g1(u(θ − κ− γ))

]
= 0.

According to our hypothesis, we find

∆[S(θ) + g1(β2)S(θ − κ)] ≤ a∗
1(θ)

[
g1(u(θ − γ)) + g1(β2u(θ − κ− γ))

]
for θ ≥ θ5 > θ4. Again by (A9),

∆[S(θ) + g1(β2)S(θ − κ)] ≤ δ1a
∗
1(θ)[g1{u(θ − γ) + β2u(θ − κ− γ)}]

≤ δ1a
∗
1(θ) [g1(r1(θ − γ))] , (2.15)

where r1(θ−γ) ≤ u(θ−γ) +β2u(θ−κ−γ) for θ ≥ θ5. Summing (2.15) from θ5 to (θ− 1),
we get

−δ1

[ θ−1∑
s=θ5

a∗
1(s)g1(r1(s− γ))

]
≤ S(θ5) − S(θ) + g1(β2)S(θ5 − κ) − g1(β2)S(θ − κ).

Using (2.12), it follows that

−δ1

[ ∞∑
s=θ5

a∗
1(s)g1(H+

1 (s− γ) − ϵ)
]

≤ S(θ5) + g1(β2)S(θ5 − κ) < ∞

which is a contradiction to (A11). The above argument we mean for W (θ) as well. The
rest of the proof analogous to Theorem 2.9. Hence, the theorem is proved. □

Theorem 2.11. Let −∞ ≤ β3 ≤ b(θ) < −1 for any large θ. If (A3), (A4), (A7), (A8) and
(A13) there exists an ϵ with 0 < ϵ < 1 such that

∞∑
θ=γ

a1(θ)g1

(
H+

1 (θ−γ)−ϵ
−β3

)
= −∞ =

∞∑
θ=γ

a1(θ)g1

(
H−

1 (θ+κ−γ)
−β3

)
,

∞∑
θ=η

a2(θ)g2

(
H+

2 (θ−η)−ϵ
−β3

)
= ∞ =

∞∑
θ=η

a2(θ)g2

(
H−

2 (θ+κ−η)
−β3

)
,

∞∑
θ=γ

a3(θ)g1

(
H+

1 (θ−γ)−ϵ
−β3

)
= ∞ =

∞∑
θ=γ

a3(θ)g1

(
H−

1 (θ+κ−γ)
−β3

)
,

∞∑
θ=η

a4(θ)g2

(
H+

2 (θ−η)−ϵ
−β3

)
= −∞ =

∞∑
θ=η

a4(θ)g2

(
H−

2 (θ+κ−η)
−β3

)
;
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(A14)
∞∑

θ=γ
a1(θ)g1

(
−H+

1 (θ+κ−γ)
−β3

)
= ∞ =

∞∑
θ=γ

a1(θ)g1

(
−H−

1 (θ−γ)−ϵ
−β3

)
,

∞∑
θ=η

a2(θ)g2

(
−H+

2 (θ+κ−η)
−β3

)
= −∞ =

∞∑
θ=η

a2(θ)g2

(
−H−

2 (θ−γ)−ϵ
−β3

)
,

∞∑
θ=γ

a3(θ)g1

(
−H+

1 (θ+κ−γ)
−β3

)
= −∞ =

∞∑
θ=γ

a3(θ)g1

(
−H−

1 (θ−γ)−ϵ
−β3

)
,

∞∑
θ=η

a4(θ)g2

(
−H+

2 (θ+κ−η)
−β3

)
= ∞ =

∞∑
θ=η

a4(θ)g2

(
−H−

2 (θ−η)−ϵ
−β3

)
hold, then every bounded vector solution of (NS1) oscillates.

Proof. If possible, let [u(θ), v(θ)]T be a bounded strongly nonoscillatory vector solution
of (NS1). Proceeding as in Theorem 2.9, it follows that S(θ) and W (θ) are monotonically
decreasing real valued functions for θ ≥ θ1 and the case S(θ) > 0 is similar. If S(θ) < 0
for θ ≥ θ1, then lim

θ→∞
S(θ) exists since u(θ) is bounded. Equivalently, S(θ) < 0 gives

u(θ) + b(θ)u(θ − κ) < H1(θ),
that is,

u(θ) < H1(θ) − b(θ)u(θ − κ)
< H1(θ) − β3u(θ − κ).

As a result,
H1(θ + κ) − β3u(θ) > u(θ + κ)

implies
−β3u(θ − γ) > −H1(θ + κ− γ), θ ≥ θ2 > θ1

and we have u(θ− γ) > 0. Therefore, u(θ− γ) > H−
1 (θ+κ−γ)

−β3
for θ ≥ θ3 > θ2. Now, we can

read (2.1) as

∆S(θ) − a1(θ)g1

(
H−

1 (θ + κ− γ)
−β3

)
≤ 0.

Summing the preceding inequality from θ3 to (θ − 1), we get

−
θ−1∑
θ=θ3

a1(θ)g1

(
H−

1 (θ + κ− γ)
−β3

)
≤ −S(θ) + S(θ3) < S(θ).

Therefore,
∞∑

θ=θ3

a1(θ)g1

(
H−

1 (θ + κ− γ)
−β3

)
> −∞,

a contradiction to (A13). Similar analysis holds for W (θ). The rest of the part is similar to
Theorem 2.9. Hence, the details are omitted. This completes the proof of the theorem. □
Example 2.12. Consider a 2-dimensional nonlinear nonautonomous neutral delay differ-
ence system of the form:

(NS9) ∆
[
u(θ) − (1

3 + 1
5(−1)θ)u(θ − 1)

v(θ) − (1
3 + 1

5(−1)θ)v(θ − 1)

]

=
[

−2
3

3
643

4 − 1
6

] [
u3(θ − 2)
v3(θ − 2)

]
+

[
3(−1)θ+1

6(−1)θ+1

]
for θ > 2. Clearly, (A3), (A4), (A6), (A7) and (A8) are satisfied for (NS9) and if we set
H1(θ) = 3

2(−1)θ and H2(θ) = 3(−1)θ, then

∆
[
H1(θ)
H2(θ)

]
=

[
3(−1)θ+1

6(−1)θ+1

]
.
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Indeed,

H+
1 (θ) =

{
3
2 , θ even

0 , θ odd,
H−

1 (θ) =
{

0, θ even
3
2 , θ odd,

H+
2 (θ) =

{
3, θ even
0 , θ odd,

H−
2 (θ) =

{
0, θ even
3, θ odd

.

Choose ϵ = 1
2 . Therefore,

∞∑
θ=γ

a1(θ)g1(H+
1 (θ − γ) − ϵ) = −2

3

∞∑
θ=γ

g1(H+
1 (θ − γ) − ϵ)

= −2
3

∞∑
θ=γ

[(H+
1 (θ − γ) − ϵ)]3

= −2
3

∞∑
θ=2

[(H+
1 (θ − 2) − ϵ)]3

= −2
3

∞∑
2k+2=2

[(H+
1 (2k + 2 − 2) − ϵ)]3

= −2
3

∞∑
k=0

[(H+
1 (2k) − ϵ)]3 = −2

3

∞∑
k=0

(1)3 = −∞

and
∞∑

θ=γ

a1(θ)g1(H−
1 (θ + κ− γ)) = −2

3

∞∑
θ=γ

g1(H−
1 (θ + κ− γ))

= −2
3

∞∑
θ=γ

[(H−
1 (θ + κ− γ))]3

= −2
3

∞∑
θ=2

[(H−
1 (θ − 1))]3

= −2
3

∞∑
2k+2=2

[(H−
1 (2k + 2 − 1))]3

= −2
3

∞∑
k=0

[(H−
1 (2k + 1))]3 = −2

3

∞∑
k=0

(3
2

)3
= −∞.

Also, we can verify
∞∑

θ=η

a2(θ)g2(H+
2 (θ − η) − ϵ) = ∞ =

∞∑
θ=η

a2(θ)g2(H−
2 (θ − η))

∞∑
θ=γ

a3(θ)g1(H+
1 (θ − γ) − ϵ) = ∞ =

∞∑
θ=γ

a2(θ)g1(H−
1 (θ − η))

∞∑
θ=η

a4(θ)g2(H+
2 (θ − η) − ϵ) = −∞ =

∞∑
θ=η

a4(θ)g2(H−
2 (θ − η)).

Hence, (A7) is satisfied. Also, we can verified (A8). By Theorem-2.9, every vector solution
of the system (NS9) oscillates. In particular, U(θ) = [2(−1)θ, 4(−1)θ]T is such a vector
solution of the system.

Example 2.13. Consider a 2-dimensional nonlinear nonautonomous neutral delay differ-
ence system of the form:
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(NS10) ∆
[
u(θ) + (e−θu(θ − 1))
v(θ) + (e−θv(θ − 1))

]

=
[

(e−θ + e−θ−1 − 5) 8
3

6 (e−θ + e−θ−1 − 14
3 )

] [
u

1
3 (θ − 2)

v
1
3 (θ − 2)

]
+

[
2(−1)θ+1

4(−1)θ+1

]
for θ > 2. Clearly, (A3), (A7), (A8), (A9), (A10), (A11) and (A12) are satisfied for (NS10)
and if we set H1(θ) = (−1)θ and H2(θ) = 2(−1)θ, then

∆
[
H1(θ)
H2(θ)

]
=

[
2(−1)θ+1

4(−1)θ+1

]
.

Indeed,

H+
1 (θ) =

{
1, θ even
0 , θ odd,

H−
1 (θ) =

{
0, θ even
1, θ odd,

H+
2 (θ) =

{
2, θ even
0 , θ odd,

H−
2 (θ) =

{
0, θ even
2, θ odd

.

Choose ϵ = 1
3 < 1. Again,

a∗
1(θ) = min{a1(θ), a1(θ − 2)}

= min{(e−θ + e−θ−1 − 5), (e−θ+1 + e2−θ − 5)} = (e−θ + e−θ−1 − 5).

Therefore,
∞∑

θ=γ

a∗
1(θ)g1(H+

1 (θ − γ) − ϵ) =
∞∑

θ=γ

(e−θ + e−θ−1 − 5))g1(H+
1 (θ − γ) − ϵ)

=
∞∑

θ=γ

(e−θ + e−θ−1 − 5))[(H+
1 (θ − γ) − ϵ)]

1
3

=
∞∑

θ=2
(e−θ + e−θ−1 − 5))[(H+

1 (θ − 2) − ϵ)]
1
3

=
∞∑

2k+2=2
(e−2k−2 + e−2k−3 − 5)[(H+

1 (2k + 2 − 2) − ϵ)]
1
3

=
∞∑

k=0
(e−2k−2 + e−2k−3 − 5)[(H+

1 (2k) − ϵ)]
1
3

=
(2

3

) 1
3 ∞∑

k=0
(e−2k−2 + e−2k−3 − 5) = −∞

and
∞∑

θ=γ

a∗
1(θ)g1(H−

1 (θ + κ− γ)) =
∞∑

θ=γ

(5 − e−θ+1 − e2−θ)g1(H−
1 (θ + κ− γ))

=
∞∑

θ=γ

(5 − e−θ+1 − e2−θ)[H−
1 (θ + κ− γ)]

1
3

=
∞∑

θ=2
(5 − e−θ+1 − e2−θ)[H−

1 (θ − 1)]
1
3

=
∞∑

2k+2=2
(e−2k−2 + e−2k−3 − 5)[H−

1 (2k + 2 − 1)]
1
3
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=
∞∑

k=0
(e−2k−2 + e−2k−3 − 5)[H−

1 (2k + 1)]
1
3

= (1)
1
3

∞∑
k=0

(e−2k−2 + e−2k−3 − 5) = −∞.

Also, we can find
∞∑

θ=η

a2(θ)g2(H+
2 (θ − η) − ϵ) = ∞ =

∞∑
θ=η

a2(θ)g2(H−
2 (θ + κ− η)),

∞∑
θ=γ

a3(θ)g1(H+
1 (θ − γ) − ϵ) = ∞ =

∞∑
θ=γ

a2(θ)g1(H−
1 (θ + κ− γ)),

∞∑
θ=η

a4(θ)g2(H+
2 (θ − η) − ϵ) = −∞ =

∞∑
θ=η

a4(θ)g2(H−
2 (θ + κ− η)).

Hence, (A11) is satisfied. Similarly, we can verified (A12). By Theorem-2.10, every vector
solution of the system (NS10) oscillates. In particular, U(θ) = [2(−1)θ, 3(−1)θ]T is such
a vector solution of the system.

3. Discussion

Remark 3.1. We may note that if g1, g2 ∈ BC(R,R), then g1(u) and g2(v) could be of
the form: [

g1(u)
g2(v)

]
=

[ |u|sgnu
σ2+u2
|v|sgnv
τ2+v2

]
,

where σ, τ ∈ R\{0}. However, we could undertake[
g1(u)
g2(v)

]
=

[
|u|γ1sgnu
|v|γ2sgnv

]
,

where γ1, γ2 are the ratio of odd positive integers and g1, g2 are sublinear satisfying g1(u)+
g1(v) ≥ δ1g1(u+v), g2(u)+g2(v) ≥ δ2g2(u+v). On the other hand, any g1 and g2 satisfying
the conditions g1(uv) = g1(u)g1(v), g2(uv) = g2(u)g2(v), u, v ∈ R+ may be of the form:[

g1(u)
g2(v)

]
=

[
|u|γ1sgnu
|v|γ2sgnv

]
,

where γ1, γ2 are the ratio of odd positive integers.

Remark 3.2. In this work, we have not gone through the existence of nonoscillatory
vector solutions of (NS1). To have a look at the existence result, the analysis is similar
to [19]. For completeness, we state one of the results without proof:

Theorem 3.3. Suppose that −1 < β4 ≤ b(θ) ≤ 0 and a1(θ) < 0, a2(θ) > 0, a3(θ) >
0, a4(θ) < 0 for large value of θ. Let g1, g2 ∈ C(R,R) such that ϕg1(ϕ) > 0, ϕ ̸= 0,
ψg2(ψ) > 0, ψ ̸= 0. Assume that g1 and g2 are Lipschitzian in the interval of the form
[c, d],−∞ < c < d < ∞. If (A1), (A3) and

(A15)
∞∑

θ=0
a1(θ) > −∞,

∞∑
θ=0

a4(θ) > −∞

hold, then (NS1) admits a bounded strongly nonoscillatory vector solution.
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Remark 3.4. To complete our undertaken problem, we have used different types of nonlin-
ear functions g1 and g2 as long as the neutral coefficient b(θ) is concerned. From Theorem
2.1 to Theorem 2.9, we use (A6). However, we couldn’t use this for Theorem 2.10 and
Theorem 2.11 rather than the sublinear condition (A9) and (A10). But in Theorem 2.11,
g1 and g2 could be either superlinear or sublinear due to only (A10). So, this work predicts
more open problems for future work in this direction.
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