
International Journal of Innovative Engineering Applications vol. 9, issue 1 (2025)

*Corresponding author.
E-mail address: turgay.bilgin@btu.edu.tr (T. T. Bilgin)

Received 09 October 2024; Received in revised form 23January 2025; Accepted 10 February 2025

2587-1943 | © 2025 IJIEA. All rights reserved. Doi: https://doi.org/10.46460/ijiea.1563777

International Journal of Innovative Engineering Applications

Journal homepage: https://dergipark.org.tr/ijiea

OPTIMIZING BIG DATA MANAGEMENT ON MICROSOFT SQL SERVER: ENHANCING
PERFORMANCE THROUGH NORMALIZATION AND ADVANCED ANALYTICAL
TECHNIQUES

Süleyman Burak Altınışık1 , Turgay Tugay Bilgin*2

1Department of Project Management, Mert Software Electronics, Bursa, Turkey
2Department of Computer Engineering, Faculty of Enginerring and Natural Sciences, Bursa Technical University, Bursa, Turkey

Abstract
Original scientific paper

This study investigates Big Data management challenges and solutions in cable manufacturing using Microsoft SQL Server (MSSQL),

focusing on performance optimization, normalization, and advanced analytical techniques. Addressing the 4Vs of Big Data, our case study

collects data from 45 TAGs at one-minute intervals, generating approximately 56 million daily records. We employ OPC technology for

data acquisition, strategic normalization processes, and advanced MSSQL optimization techniques. Normalization significantly reduced

data redundancy, decreasing the dataset from 56 million to 283 rows per day and improving query execution times from over 40 minutes

to less than 0.1 seconds for complex analytical queries. We also propose a database-independent software development approach to balance

cost and performance. This research contributes practical insights into performance optimization, scalability, and cost-effective solutions

for organizations managing large-scale data processing challenges in industrial settings, offering a blueprint for efficient Big Data

management that balances technical performance with economic considerations.

Keywords: Big data management, data normalization, cable manufacturing, performance optimization.

MİCROSOFT SQL SERVER’ DA BÜYÜK VERİ YÖNETİMİNİN OPTİMİZASYONU:
NORMALİZASYON VE İLERİ ANALİTİK TEKNİKLER İLE PERFORMANSININ ARTIRILMASI

Özet

Orijinal bilimsel makale

Bu çalışma, kablo üretim sektöründe Microsoft SQL Server (MSSQL) kullanarak Büyük Veri yönetimi zorluklarını ve çözümlerini

incelemekte, performans optimizasyonu, normalizasyon ve ileri düzey analitik tekniklere odaklanmaktadır. Büyük Veri'nin 4V'sini ele alan

örnek olay incelemesinde, 45 TAG'dan bir dakikalık aralıklarla veri toplanmakta ve günlük yaklaşık 56 milyon kayıt oluşturulmaktadır.

Veri toplamak için OPC teknolojisini, stratejik normalizasyon süreçlerini ve ileri düzey MSSQL optimizasyon tekniklerini kullanmaktayız.

Normalizasyon, veri tekrarını önemli ölçüde azaltmış, veri setini günde 56 milyondan 283 satıra düşürmüş ve karmaşık analitik sorgular

için sorgu yürütme sürelerini 40 dakikadan 0.1 saniyenin altına indirmiştir. Ayrıca, maliyet ve performans dengesini sağlamak için

veritabanından bağımsız yazılım geliştirme yaklaşımı önermekteyiz. Bu araştırma, endüstriyel ortamlarda büyük ölçekli veri işleme

zorluklarıyla karşılaşan organizasyonlar için performans optimizasyonu, ölçeklenebilirlik ve maliyet etkin çözümler konusunda pratik

bilgiler sunmakta, teknik performans ile ekonomik hususlar arasında denge kuran etkili bir Büyük Veri yönetimi için bir yol haritası

sunmaktadır.

Anahtar Kelimeler: Büyük veri yönetimi, veri normalizasyonu, kablo üretimi, performans optimizasyonu.

1 Introduction

The rapid evolution of Big Data has transformed data

management and analytics, creating new opportunities

and challenges for organizations across industries and

academia [1]. With data volumes growing exponentially,

effectively managing, processing, and analyzing large

datasets has become a crucial skill [2]. This growth is

characterized by the "4Vs" of Big Data: Volume,

Velocity, Variety, and Veracity. These dimensions

increase the complexity of handling data, requiring

innovative solutions for storage, processing, and analysis

[3].

Despite advancements in database technologies,

balancing technical performance and economic feasibility

remains a significant challenge [4]. Traditional database

https://doi.org/10.46460/ijiea.1563777
https://dergipark.org.tr/ijiea
https://orcid.org/0009-0005-0987-1798
https://orcid.org/0000-0002-9245-5728

S. B. Altınışık and T. T. Bilgin

International Journal of Innovative Engineering Applications 9, 1(2025), 23-36 24

management systems (DBMSs) often fall short in

addressing the demands of modern data environments,

particularly in scenarios where real-time data processing

is essential [5]. Microsoft SQL Server (MSSQL) has

emerged as a reliable platform for managing complex data

operations due to its advanced querying capabilities,

indexing methods, and robust data processing

mechanisms [6]. However, its adaptability and cost-

effectiveness in Big Data applications continue to be key

areas of investigation.

One underexplored aspect of Big Data management is

the role of data normalization in enhancing database

performance. Data normalization minimizes redundancy

and improves data integrity, making it a foundational

principle in database design [7]. However, its application

in high-velocity data environments, such as those

requiring real-time processing, has not been sufficiently

addressed. Current research often prioritizes technical

innovations like query optimization, indexing strategies,

and hardware upgrades [8]. Yet, the potential of

normalization to improve performance while conserving

resources remains inadequately examined.

Another critical gap involves the economic

implications of database-dependent software systems.

Organizations adopting such systems often face

challenges related to vendor lock-in, limited database

portability, and higher long-term maintenance costs [9].

These constraints can hinder flexibility and scalability,

especially for businesses transitioning between database

platforms. Addressing this issue requires database-

independent software development strategies that ensure

seamless integration across different systems while

maintaining cost-effectiveness and operational flexibility

[10].

This study aims to address these gaps by exploring

how MSSQL can be optimized using data normalization

techniques and how database-independent software

design can alleviate economic burdens. The research

hypothesizes that combining MSSQL’s technical

strengths with effective normalization strategies can

significantly enhance performance in Big Data

environments. Furthermore, adopting database-

independent approaches can improve cost-efficiency and

scalability by enabling interoperability across various

DBMSs.

To test these hypotheses, this study examines data

collected in milliseconds from 45 TAGs in a cable

manufacturing plant. This high-velocity data environment

represents the challenges of managing and analyzing

large-scale, real-time production data. By implementing

data normalization techniques within MSSQL, the

research evaluates the impact on performance, scalability,

and resource utilization. Additionally, it investigates the

advantages of database-independent software in reducing

costs and ensuring adaptability in industrial settings.

The findings of this research aim to provide

actionable insights into balancing technical and economic

considerations in Big Data management. By focusing on

normalization as a cost-effective optimization tool and

database independence as a strategy for flexibility, the

study contributes to both academic literature and practical

applications. These insights are particularly relevant for

industrial environments, where real-time data analysis is

essential for maintaining production quality and

operational efficiency.

This study not only addresses gaps in the current

literature but also offers practical solutions for

organizations grappling with the complexities of Big

Data. By combining theoretical exploration with real-

world application, it provides a comprehensive

perspective on effective strategies for managing large-

scale data operations.

2 Literature Review

Several effective techniques have been identified for

optimizing SQL Server performance in Big Data

environments [5]. Key strategies include indexing,

partitioning, sharding, and caching, which collectively

enhance query performance and resource utilization [15].

Advanced query optimization methods, such as multi-

level indexing and query rewriting, have achieved

significant success by reducing data access and execution

times by approximately 40% and 35%, respectively [6].

Additionally, implementing a query caching mechanism

can further improve data access performance by

prioritizing frequently used data and reducing execution

times [17]. Innovative approaches, such as genetic

algorithms, have demonstrated adaptability and efficiency

in managing complex queries in the context of Big Data,

effectively optimizing query performance [18]. While

these techniques offer significant improvements, their

implementation may vary depending on specific database

architectures and workloads, necessitating a tailored

approach to achieve optimal results [20]. In conclusion, a

versatile strategy that combines these techniques is crucial

for effectively managing the challenges SQL Server faces

in Big Data environments.

Database performance optimization, particularly in

SQL-based systems, has been extensively studied.

Myalapalli et al. (2015) examined various SQL tuning

techniques, such as indexing and query optimization,

demonstrating their significant impact on reducing query

execution times in large-scale databases [15]. Pedrozo and

Vaz (2014) developed a tool for automatic index selection,

which is critical in database management systems

handling large volumes of data [16]. This tool optimizes

query performance by automatically selecting the most

efficient indexes based on query patterns, thereby

significantly reducing computational load.

In the field of data warehousing, Correia et al. (2018)

discussed the implementation of Fast Online Analytical

Processing (OLAP) techniques in Big Data environments

[17]. Their study emphasizes the necessity of real-time

data processing capabilities for timely decision-making

processes in large enterprises. They also address the

challenges of maintaining high performance in the context

of large data volumes. Sulistiani et al. (2020) explored the

application of Agile methodologies in the development of

OLAP systems for sales data analysis [18]. Their work

demonstrated the effectiveness of the Agile approach in

adapting to changing business needs and improving

overall system response times.

The debate between normalization and

denormalization in database design remains a critical

topic. Erdinc et al. (2018) analyzed the impact of database

Optimizing Big Data Management on Microsoft SQL Server: Enhancing Performance Through Normalization and Advanced Analytical Techniques

International Journal of Innovative Engineering Applications 9, 1(2025), 23-36 25

design on software performance by comparing

normalization and denormalization strategies [19]. They

found that normalization reduces data redundancy and

ensures data integrity; however, denormalization can

significantly enhance query performance in certain

scenarios by reducing the need for complex join

operations [21]. Milicev (2021) introduced the concept of

hyper models for the denormalization of transactional

relational databases, offering a flexible framework for

balancing performance and data consistency [22]. This

approach provides a versatile solution for optimizing

databases in environments where performance is a critical

factor.

In addition to these studies, Alshemaimri et al. (2021)

conducted a comprehensive survey on problematic

database code snippets in software systems, highlighting

how these issues negatively impact database performance

[20]. Their work underscores the importance of code

quality and its direct effect on database efficiency.

The role of SQL in big data processing has extended

beyond the limitations of traditional databases to meet

modern data analytics requirements. Silva et al. (2016)

analyzed the transition of SQL from traditional databases

to big data platforms and examined the challenges that

arise during this process. The importance of techniques

developed to optimize SQL for large-scale data workloads

was emphasized [28].

A study by Santos et al. (2017) focused on the

performance of SQL-on-Hadoop solutions. It examined

how data warehouses could be optimized on low-

performance hardware using SQL-on-Hadoop. The study

demonstrated that effective data processing is achievable

even on cost-effective infrastructures through SQL query

optimization [26].

Real-time data analytics has emerged as a critical

requirement in big data environments. Yang et al. (2014)

introduced Druid, a real-time analytical data store

designed to enhance speed and efficiency in query

processing. The study provided significant insights into

managing and analyzing high-velocity data streams [27].

Rahman et al. (2024) explored advanced optimization

techniques to improve real-time query performance in

SQL databases for big data analytics. The study evaluated

the impact of indexing, query caching, and parallel

processing techniques on handling large-scale data

workloads [29].

Optimizing SQL in big data processing plays a crucial

role in enhancing system performance. Uzzaman et al.

(2024) reviewed best practices and techniques for

optimizing SQL databases to handle big data workloads.

The study highlighted innovative approaches in storage

management and query planning [30].

Panwar (2024) proposed the use of advanced stored

procedures to improve the capacity of SQL Server for

processing big data. The study demonstrated how stored

procedures optimize query operations, reducing both

processing time and resource consumption under heavy

data loads [32].

Performance comparisons of big data analytics

platforms have been widely discussed in the literature.

Pirzadeh et al. (2017) conducted a comprehensive

evaluation of various big data analytics platforms. The

study highlighted the advantages and limitations of SQL-

based systems in query processing [31].

Ordonez (2013) questioned whether big data analytics

could be performed directly within a DBMS and discussed

the advantages of such an approach. The study noted that

performing analytics at the database level reduces data

transfer costs but poses challenges in performance

optimization [33].

3 Methodology

This study utilized a comprehensive approach to

examine Big Data management strategies within a cable

manufacturing environment, focusing on the capabilities

of Microsoft SQL Server. Data collection was carried out

using OPC technology, which captured information from

45 TAGs across various production stages at a

millisecond-level frequency [3][8]. The system

architecture ensured efficient and reliable data transfer

from production sensors to the MSSQL database, enabling

seamless data ingestion and storage [5]. The dataset was

carefully selected based on its relevance to critical

production parameters, such as temperature, speed, and

diameter. These factors were chosen for their importance

in monitoring production quality and operational

efficiency. The selection process also aimed to ensure the

dataset’s representativeness, making it applicable to other

industrial scenarios.

The sensors are integrated with the machine and

transmit data to the database via the integrated

KEPSERVER using OPC technology. A Microsoft

service within the database continuously monitors the

KEPSERVER and transfers millisecond-level records to

the database. As shown in Figure 1, signals obtained from

the machine are transferred to the KEPSERVER. A

Windows service, specifically designed to transfer OPC

data to the database located on the local server,

continuously monitors the KEPSERVER and transfers

any changed tag values to the database. This structure is

as seen in figure 1.

A structured data normalization process was

implemented to enhance database performance and

maintain data integrity. Two techniques were primarily

employed: z-score normalization and min-max scaling. Z-

score normalization was used to standardize variables by

centering them around the mean and scaling to unit

variance, which is particularly useful for data following a

Gaussian distribution. Min-max scaling, on the other

hand, rescaled data to a range of [0, 1], making it suitable

for bounded datasets. These methods ensured uniformity

across the dataset while preserving relationships between

variables. Additionally, denormalization was selectively

applied to improve query efficiency in read-intensive

scenarios, such as generating reports. This approach

balanced the benefits of normalization, including reduced

redundancy and improved consistency, with the

performance advantages of denormalized structures for

specific use cases.

S. B. Altınışık and T. T. Bilgin

International Journal of Innovative Engineering Applications 9, 1(2025), 23-36 26

Figure 1. Machine – KepSERVER – DB diagram example.

The data processing phase involved the design and

execution of optimized SQL queries to group and analyze

the collected data [13]. These queries were tailored to

extract statistical metrics, such as mean values, variances,

and trend patterns, which are essential for monitoring

production processes. Performance improvement

techniques, including the use of indexed views, data

partitioning, and execution plan analysis, were applied to

minimize query execution times and optimize system

resource usage.

To address challenges related to vendor lock-in and

database portability, a database-independent software

development strategy was adopted. This approach

involved creating abstraction layers to decouple

application logic from database-specific functionalities,

allowing compatibility with various DBMS platforms. By

implementing this strategy, the study demonstrated

enhanced flexibility and potential cost savings, which are

critical for scalable Big Data solutions.

The evaluation of the implemented methods relied on

performance metrics such as query execution times, CPU

usage, and memory consumption. These metrics provided

measurable insights into system efficiency. Security

protocols, including access controls and data encryption,

were incorporated to ensure data reliability. Moreover,

data integrity checks, such as consistency constraints and

validation rules, were performed to maintain accuracy.

Statistical analyses were conducted on the processed data

to extract meaningful insights. Techniques such as

regression analysis and anomaly detection were utilized to

identify trends and outliers, contributing to improved

production quality and decision-making.

To ensure transparency and reproducibility, future

research should provide more detailed technical

explanations of the normalization processes and

algorithms employed. For instance, specifying the

formulas, software tools, or custom scripts used would

enhance methodological clarity. Additionally, further

elaboration on the criteria for dataset selection could

improve the study’s generalizability to other industrial

contexts. By addressing these aspects, this research

contributes to advancing practical Big Data management

strategies while balancing technical efficiency with

economic feasibility.

3.1 Data Collection Process

The data collection process, a critical component of

this study, was designed to ensure accurate, reliable, and

continuous data gathering from various stages of the cable

production line [8]. This process utilizes OPC (OLE for

Process Control) technology, a standard that facilitates

data exchange between devices and software in industrial

automation systems [9].

OPC technology is used to collect data from

numerous sensors, measurement devices, and control

systems on the production line [10]. This approach

enables the consolidation of data from different

production lines and devices into a single centralized

Microsoft SQL Server (MSSQL) database [11]. The OPC

server regularly pulls data from the sensors and devices,

and a Windows service on the OPC server ensures that this

information is recorded in the MSSQL database in a

specified format [12].

Data is collected from 45 TAGs in milliseconds,

capturing critical parameters of the cable production

process [8]. These parameters are essential for the

efficient monitoring and analysis of the production

process [15].

These data points are collected from various stages of

the production process, reflecting the current state of the

system. The collected data is critical for monitoring and

optimizing the production line, identifying potential

issues, and conducting quality control procedures.

Data collection intervals, data volume, and collection

methods are key factors that influence the overall

performance of the system [7]. These factors are carefully

evaluated to balance the need for comprehensive data with

system efficiency and resource utilization [8]. This data

collection process forms the foundation for subsequent

data processing, analysis, and performance optimization

steps in the study, enabling a comprehensive investigation

of Big Data management in the context of cable

production [11].

Optimizing Big Data Management on Microsoft SQL Server: Enhancing Performance Through Normalization and Advanced Analytical Techniques

International Journal of Innovative Engineering Applications 9, 1(2025), 23-36 27

Table 1. Key data collected during cable production process by chamber.

Data Description Chamber

Metre

Measures the length of

the produced cable and

is used to monitor the

total production

quantity. This data is

critical for determining

how long the

production line has

been operational and

the volume of products

manufactured.

1

HatHizi (Line

Speed)

Monitors the speed of

the cable production

line. This data is used

to evaluate the

efficiency of the

production process and

ensure that the line

operates at an optimal

speed.

1

SicakCapReel

(Hot

Diameter)

Measures the diameter

of the cable during

production. This data

is an important factor

influencing the cable’s

physical properties and

final quality.

1

SogukCapReel

(Cold

Diameter)

Monitors the diameter

of the cable after

production. This

measurement ensures

that the final

dimensions and shape

stability of the cable

are maintained.

1

Spark

Tracks sparks that

occur during

production. This data

helps detect electrical

issues in the

production process.

1

VidaDevri

(Screw RPM)

Measures the rotational

speed of the screw

mechanism used in the

cable production line.

This data directly

affects the cable’s

quality and is

monitored to ensure

process stability.

1

1BolgeReel -

6BolgeReel

Monitors the

measurements in

different regions of the

cable production line.

These data are

essential for tracking

and optimizing

changes occurring in

various regions of the

production line.

2

3.1.1 Implementation of OPC Technology

In this study, the implementation of OPC (OLE for

Process Control) technology constitutes a critical

component of the data collection process [9]. OPC serves

as a standardized interface for industrial automation

systems, facilitating seamless communication between

various hardware devices and software applications

involved in the cable production process [12].

In our setup, OPC technology is used to establish a

robust and efficient data collection system [10]. The

implementation consists of several key components:

 OPC Server: A dedicated OPC server was set up to

mediate between the physical devices on the

production line and the data collection software. This

server is responsible for reading data in real-time from

various sensors, measurement devices, and control

systems [13].

 Device Integration: Each of the 45 TAGs designated

for data collection is configured to communicate with

the OPC server [8]. These TAGs represent different

parameters at various stages of production, such as

cable length, line speed, hot diameter, and cold

diameter [14].

 Data Formatting: The OPC server is programmed to

format the collected data into a standard structure

compatible with the Microsoft SQL Server database.

This ensures consistency in data representation and

facilitates ease of processing and analysis in

subsequent stages [11] [16]. A Windows service on

the OPC server accesses the SQL Server and is

programmed to record the data in a structure that fits

the database architecture. This minimizes resource

usage on the OPC server [12].

 Communication Protocol: The implementation uses

standard OPC protocols such as OPC DA (Data

Access) or OPC UA (Unified Architecture),

depending on the specific requirements of the devices

and systems in use [9] [10]. These protocols ensure

reliable and secure data transmission from the

production site to the database [11].

 Data Buffering: To address potential network

interruptions or database outages, a data buffering

mechanism is included in the OPC implementation

[12]. This prevents data loss during temporary

communication failures [15].

 Time Synchronization: The OPC server is

synchronized with a central time source to provide

accurate timestamps for all collected data points. This

is crucial for maintaining data integrity and enabling

time-based analyses [8].

 Security Measures: The OPC implementation

includes security features such as encryption and

authentication to protect the data transmission process

from unauthorized access or interference [17].

 Scalability: The OPC configuration is designed to be

scalable, allowing new TAGs or devices to be added

easily as the production system expands or evolves

[18].

S. B. Altınışık and T. T. Bilgin

International Journal of Innovative Engineering Applications 9, 1(2025), 23-36 28

By leveraging OPC technology in this manner, we

establish a reliable and efficient data collection

infrastructure that forms the foundation of our Big Data

management strategy [10]. This implementation enables

us to capture comprehensive and real-time data from the

cable production process, providing the raw data

necessary for subsequent processing and analysis stages

[8] [14].

3.1.2 Data Collection in Cable Manufacturing

The data collection process in cable manufacturing is

designed to capture comprehensive information on

various aspects of the production process [7]. This process

aims to provide a holistic view of cable manufacturing

operations by gathering data from critical points along the

production line. The data collection system utilizes 45

TAGs distributed across these production areas. Each

TAG corresponds to a specific sensor or measurement

device on the production line. These TAGs are configured

to transmit data at regular intervals, ensuring a continuous

flow of information about the production process [12].

Data flows into the system in real-time in millisecond

format, contributing to the formation of Big Data [13].

The collected data is instantly transmitted to the

centralized Microsoft SQL Server database via the OPC

infrastructure. This real-time data transfer allows

production managers and analysts to access up-to-date

information about the production process.

Various measures are implemented to ensure data

integrity and reliability:

 Sensor Calibration: Regular calibration of sensors

and measurement devices is essential to maintain

accuracy [14].

 Data Validation: Automated checks are employed to

identify and flag anomalous readings.

 Redundancy: Critical measurements are typically

captured by multiple sensors to ensure data continuity

in case of sensor failure.

This approach provides a rich dataset for subsequent

analysis and optimization efforts. By collecting detailed

information on production parameters, the system offers

in-depth insights into production efficiency, product

quality, and areas with potential for improvement within

the cable manufacturing process.

3.1.3 Data Collection Intervals

In cable manufacturing, the effective management of

Big Data systems critically relies on the determination and

implementation of appropriate data collection intervals.

This study adopts a carefully considered approach to data

collection scheduling that balances the need for detailed

information with system efficiency and resource

management [11].

The primary data collection interval has been set to

one minute. This interval was selected after considering

several factors:

1. Dynamics of the Production Process: A one-minute

interval is well-aligned with the typical rate of change

in cable manufacturing parameters. It is frequent

enough to capture significant fluctuations in

production conditions while avoiding the omission of

critical events.

2. Data Volume Management: Shorter intervals may

provide more detailed data but also significantly

increase the volume of collected data. A one-minute

interval maintains a manageable level of data volume

for storage and processing, while still providing

adequate detail.

3. System Resource Utilization: More frequent data

collection increases the load on both the OPC server

and the SQL database. The chosen interval helps to

optimize the use of system resources [15].

4. Analysis Requirements: A one-minute interval

provides sufficient resolution for most analytical

needs, including trend analysis, quality control, and

production optimization.

However, the system is designed with the flexibility

to adjust collection intervals based on specific production

scenarios:

1. Critical Process Stages: During critical stages of

production or when new processes are being tested,

the system allows for a temporary increase in

collection frequency, potentially reducing intervals to

as short as one minute.

2. Low Activity Periods: During periods of low

production activity or machine downtime, the

collection interval can be extended to reduce

unnecessary data accumulation [18].

3. Event-Triggered Collection: In addition to regular

intervals, the system is configured to capture data

instantaneously when specific thresholds are

exceeded or particular events occur. This ensures that

critical information is not missed between regular

collection points.

4. Adaptive Intervals: The system includes an adaptive

mechanism that automatically adjusts collection

intervals based on the rate of change in key

parameters. This allows for more frequent data

collection during periods of high variability and less

frequent collection during stable periods [17].

The implementation of these data collection intervals

includes:

1. Configuration of the OPC Server: Configuring the

OPC server to retrieve data from sensors at specified

intervals.

2. Synchronization of Data Communication:
Ensuring that data transmission to the SQL database

is synchronized with these intervals.

3. Timestamping: Applying timestamps to each data

point to ensure accurate temporal analysis.

By carefully managing the data collection intervals,

the system ensures comprehensive and efficient capture of

production data. This approach facilitates detailed and

reliable monitoring and analysis of the cable production

process.

Optimizing Big Data Management on Microsoft SQL Server: Enhancing Performance Through Normalization and Advanced Analytical Techniques

International Journal of Innovative Engineering Applications 9, 1(2025), 23-36 29

3.1.4 System Architecture

The architecture of the data collection system is

designed to ensure efficient collection, transmission, and

storage of data from the cable production process. This

system integrates various components to provide a

seamless flow of data from the production line to

analytical tools. The architecture consists of the following

key components:

1. Sensors and Measurement Devices: These devices

are distributed along the production line and capture

various parameters such as cable length, line speed,

hot diameter, and cold diameter. They serve as

primary data sources that continuously monitor the

production process.

2. OPC Server: This server acts as an intermediary

between physical devices and the database. It collects

data from sensors and measurement devices and

standardizes the data format to ensure consistent data

representation.

3. Windows Service: This service is located on the OPC

server and is designed to write the standardized data

to the SQL Server. It continuously performs

connection checks and validations. In the event of a

disruption, it temporarily stores data in a local

directory on the OPC server at one-minute intervals

to maintain data integrity. Once the connection is

reestablished, it sequentially reads the data and

continues writing to the SQL Server.

4. Microsoft SQL Server Database: This is the central

repository where all collected data is stored. It is

designed to handle large volumes of data efficiently,

supporting rapid data retrieval and complex queries.

5. Monitoring and Control Interface: This component

provides a user-friendly interface for real-time

monitoring of the production process. It allows

operators and managers to view current production

parameters and historical data.

In this architecture, the data flow follows a specific

path:

1. Data Origin: Data originates from sensors and

measurement devices on the production line.

2. Data Collection: The OPC server collects this data at

regular intervals (typically every minute).

3. Data Transmission: The collected data is then

transmitted to the Microsoft SQL Server database for

storage.

4. Data Retrieval: The monitoring and control interface

retrieves data from the database to display real-time

and historical information.

This architecture is designed with several key

features:

1. Scalability: The system can accommodate additional

sensors or increased data collection rates as

production needs evolve [18].

2. Reliability: Redundancy measures are in place to

ensure continuous data collection even in the event of

component failures.

3. Security: Data transmission and storage incorporate

encryption and access control measures to protect

sensitive production information [17].

4. Performance Optimization: The architecture is

optimized to handle high-frequency data collection

and storage operations without compromising system

performance.

5. Integration Capability: The system is designed to

easily integrate with other enterprise systems, such as

ERP or quality management software, to facilitate

comprehensive data analysis and decision-making

processes [20].

This robust system architecture provides efficient and

reliable data collection in the cable manufacturing

environment, forming the foundation for effective Big

Data management. By enabling real-time monitoring,

historical analysis, and data-driven decision-making

processes, it contributes to improvements in production

efficiency and quality control.

3.2 Data Processing

The data processing phase is one of the fundamental

components of this study and focuses on transforming raw

data into meaningful and actionable information [5]. This

process leverages the capabilities of Microsoft SQL

Server to efficiently handle large volumes of data and

derive valuable insights from the cable manufacturing

process [13].

At the core of data processing is a complex SQL query

structure that performs multiple operations

simultaneously. This query is designed to process data

collected from various stages of the production line, such

as Chamber 1 and Chamber 2, and to generate

comprehensive production metrics for each reel [6]. The

key components of data processing are given below:

1. Data Relational Mapping: The query establishes

relationships between different tables in the database,

particularly focusing on the relationships between the

"Reel" and "ReelReadings" tables [12]. This

relationship is based on matching the ReelID values

and ensures the aggregation of all relevant data for

each reel.

2. Data Grouping: Data is grouped by ReelID,

allowing for the analysis of production metrics for

each reel. This grouping is essential for understanding

the performance and characteristics of each

production unit.

3. Statistical Calculations: For each reel, the query

computes several statistical measures:

o Minimum, maximum, and average values of

meter readings

o Minimum, maximum, and average values of line

speed

o Minimum, maximum, and average values of hot

diameter

o Minimum, maximum, and average values of cold

diameter

4. Time-Based Filtering: The query includes a time-

based filter, typically using the StartDate and

S. B. Altınışık and T. T. Bilgin

International Journal of Innovative Engineering Applications 9, 1(2025), 23-36 30

EndDate fields from the Reel table, to focus on

specific production periods [16].

5. Data Aggregation: Results are consolidated to

provide a comprehensive view of production metrics

for each reel.

The SQL query utilized in the data processing phase

is designed to group the data collected during cable

production meaningfully and perform various statistical

calculations. This query establishes relationships between

different tables, integrates relevant data, and extracts key

statistical information such as minimum, maximum, and

average values. The primary aim of the query is to provide

detailed insights into the various stages of the production

process and the events occurring at these stages by

conducting statistical analyses on the collected production

data.

This data processing procedure facilitates in-depth

analyses of the different stages of the cable production

process and enables an understanding of the performance

of these stages. The statistical information obtained is

crucial for optimizing the production process and for

quality control.

Figure 2. Analysis query.

To understand the operation of the SQL query, it is

important to examine the functions of the tables used and

the logic of the query. Below is a detailed explanation of

these tables and the query logic:

 PRECEIPTOT (PR) Table: This table contains

transaction records related to the production process.

Fields such as PR.COMPANYID,

PR.PWORKSTATIONID, PR.RECEIPTID, and

PR.TRANSDATE indicate the company,

workstation, and time period in which the production

process occurred. This table plays a central role in the

data processing phase.

 PRECEIPTOM (PM) Table: This table is linked to

the PR table and contains details of the processes

within the production workflow. The

PR.COMPANYID and PR.RECEIPTID fields

establish the relationship between these two tables.

 STOCK (S) Table: This table provides information

about the inventory used in production. It is connected

to the PM table and provides details about the

materials used during the production process.

 PORT_DEFINITION (DP) Table: This table

contains definitions of the data collected via OPC.

The PR.COMPANYID and

PR.PWORKSTATIONID fields link this table to the

PR table. The DP.OPCTAGDEFID field specifies a

unique identifier for each measurement point.

 OPCTAGRESULT (OP) Table: This table includes

real-time data collected through OPC. The

DP.OPCTAGDEFID and OP.INSERTDATE fields

link this table to the DP table. It stores data collected

within specific time periods.

The query combines records from the PR table with

corresponding records in the PM, S, DP, and OP tables.

This join operation is performed using the INNER JOIN

command. INNER JOIN ensures that only records with

matches in both tables are retrieved, allowing for the

processing of relevant data only.

One of the primary functions of the query is to

calculate the minimum, maximum, and average values of

data collected within a specific time frame (between

PR.WORKSTARTTIME and PR.INSERTDATE). These

statistical calculations make the data more meaningful and

enable the evaluation of performance at various stages of

the production process.

An important phase of the query is data grouping.

This grouping process allows for the aggregation of data

based on specific fields and facilitates statistical analysis

within these groups. The GROUP BY clause used in the

query enables the grouping of data by fields such as

PR.COMPANYID, PR.PWORKSTATIONID, PR.PID,

PR.TRANSDATE, PR.RECEIPTID, and

DP.OPCTAGDEFID. This grouping allows for the

segregation of data from different stages of the production

process and makes it possible to perform comparisons

between these stages. For example, comparing data

collected at different time intervals on the same

production line can help identify deviations in the

production process and determine the causes of these

deviations.

The processed data provides valuable insights into

production efficiency, quality control, and areas with

potential for improvement in the cable manufacturing

process. Additionally, it enables the identification of

trends, anomalies, and correlations among various

production parameters. These insights contribute to

optimizing the production process, addressing quality

issues, and enhancing overall operational efficiency.

Optimizing Big Data Management on Microsoft SQL Server: Enhancing Performance Through Normalization and Advanced Analytical Techniques

International Journal of Innovative Engineering Applications 9, 1(2025), 23-36 31

3.3 Query Optimization Techniques

Optimizing the data processing phase is crucial for

efficiently handling large data sets and maximizing

system performance. To minimize lock contention and

enhance concurrency, the WITH(NOLOCK) hint has

been strategically employed in queries. This technique

allows read operations to bypass locks held by other

transactions, significantly reducing query wait times. By

decreasing database locking, this method facilitates faster

query execution and improves overall system

performance. However, it is important to note that this

approach might occasionally read uncommitted data. This

trade-off is considered acceptable in real-time monitoring

scenarios where immediate data access is more critical

than absolute consistency.

A comprehensive indexing strategy has been

implemented to optimize query performance. Key indexes

such as IX_PRECEIPTOT_6 and IX_OPCTAGRESULT

have been created on frequently queried columns as

shown in Figure 3. These indexes are regularly maintained

and adjusted according to query patterns and performance

metrics.

Figure 3. Create index.

For fact tables with a large number of rows,

columnstore indexes have been applied. These indexes

provide significant performance improvements for

analytical queries that scan large sections of the table.

4. Performance Analysis

Efficient data processing in industrial environments

managing large data sets is critical due to its direct impact

on operational efficiency and cost-effectiveness. In the

context of cable production, reducing data processing

times enhances both production line efficiency and overall

system performance. This section highlights significant

performance improvements achieved through

normalization and other optimization techniques by

examining their impact on data processing.

4.1 Impact of Normalization on Data Processing

At the beginning of the data processing phase, the

system collected data from 45 TAGs at one-minute

intervals, resulting in approximately 13,500 records per

interval. During peak production periods, data was

collected from 81 machines and 824 TAGs, creating a

substantial data load. On a single day, this data extraction

process accumulated approximately 56 million rows in the

database, placing significant pressure on system

resources.

According to Table 2, as the number of records

increased from 10,000 to 56 million, the corresponding

size of the dataset grew from 551 MB to over 3 TB, further

intensifying the pressure on the system.

Table 2. Growth of Dataset Size and Record Count Impact on System

Load

Sequence ID Record Count Size

(megabyte)

1 10.000 551

2 25.000 1380

3 50.000 2765

4 100.000 5546

5 200.000 11136

6 300.000 16815

7 400.000 22622

8 500.000 28595

9 1.000.000 57647

10 1.500.000 87508

11 2.000.000 118428

12 2.500.000 150640

13 3.000.000 184383

14 4.000.000 250638

15 5.000.000 320316

16 6.000.000 393989

17 7.000.000 944520

18 12.000.000 1111568

19 25.000.000 1290530

20 56.000.000 3000000

The total data processing time extended to

approximately 40 minutes and 45 seconds, illustrating the

challenges of processing such large datasets in real-time

(refer to Figure 4 for the SQL query used in the pre-

normalization data analysis).

Figure 4. Pre-normalization query.

To address these inefficiencies, a comprehensive

normalization process was implemented. Normalization

significantly reduced the dataset size by eliminating

redundancy and unnecessary data points. For every 1-

minute interval, the number of rows decreased from

13,500 to just 45. This reduction dramatically improved

query performance, reducing the daily dataset to only 283

rows and lowering the query processing time to an

impressive 0.1 seconds (see Figure 5 for the SQL query

used in the post-normalization analysis). The application

of normalization clearly demonstrated its ability to

optimize large-scale data processing, resulting in faster

query times and more efficient system resource usage.

S. B. Altınışık and T. T. Bilgin

International Journal of Innovative Engineering Applications 9, 1(2025), 23-36 32

Figure 5. Post-Normalization query.

4.2 Performance Improvements

Normalization led to significant performance

enhancements overall [19]. Before normalization,

processing the dataset consisting of 56 million rows (as

indicated in Table 1, over 3 TB) took more than 40

minutes, causing substantial delays in critical operations.

After normalization, the reduced dataset allowed query

processing times to fall below one second. This dramatic

reduction in both data size and processing time

underscores the value of normalization as a performance

optimization strategy [21].

In addition to faster query times, the reduction in data

size also optimized disk I/O operations, which are crucial

in large-scale databases [22]. Normalization enabled more

efficient data retrieval, thereby improving overall system

performance and reducing storage demands. As a result,

the system was able to achieve higher query throughput

without performance degradation, thereby enhancing

scalability and operational capacity.

4.2.1 Resource Utilization and System Optimization

Normalization and optimization techniques have

significantly improved query performance while

enhancing resource utilization. By eliminating redundant

and repetitive data, the load on critical resources such as

CPU, memory, and disk I/O has been substantially

reduced [20]. These improvements have made data

processing more efficient and minimized the operational

burden on the system. In industrial environments

requiring high data processing capacities, such as cable

manufacturing, these advancements have directly

contributed to maintaining production efficiency and

reducing operational costs.

As shown in Figure 6, prior to normalization, the

database often experienced performance bottlenecks

caused by excessive resource consumption due to large

datasets. For example, during query execution, CPU usage

averaged 88%, memory usage reached 84%, and disk I/O

utilization was negligible at 1 MB. However, as

demonstrated in Figure 7, significant improvements were

observed after normalization: CPU usage decreased to

20%, memory usage dropped to 37%, and disk I/O

utilization slightly increased to 6 MB. These

measurements were obtained using SQL Server Profiler,

clearly indicating improved resource utilization.

These optimizations have enabled the system to

process data more effectively, reduced the risk of resource

exhaustion, and increased its capacity to handle growing

data volumes. Furthermore, the system’s scalability has

been enhanced without requiring additional resources,

contributing to its long-term sustainability.

Figure 6. Before Normalization – Resource Usage

Figure 7. Before Normalization – Resource Usage

4.2.2 Reduction in Query Times

Normalization has had a profound impact on reducing

query execution times. Initially, querying large datasets

could take up to 40 minutes, significantly affecting the

system’s response capability and real-time data

acquisition. After the implementation of normalization,

the reduction in data size directly led to a significant

decrease in query times.

Table 3 presents a comparison of query execution

times before and after normalization. For instance, prior

to optimization, querying 1 million records took

approximately 12 seconds, whereas after optimization, the

same query was processed in just 0.91 seconds. This

dramatic reduction in query time demonstrates the

effectiveness of normalization and other optimization

techniques in enhancing system performance.

Table 3. Execution times of SQL queries.

Sequence

ID

Before Norm. (secs) After Norm. (secs)

1 0,4 0,001

2 0,5 0,003

3 1,3 0,005

4 1,4 0,008

5 2,6 0,011

6 3,3 0,016

7 4,1 0,032

8 5,2 0,04

9 8,4 0,82

10 12 0,91

11 14,6 1,02

12 16,7 1,13

13 22,3 1,54

14 29,5 1,82

15 39,9 2,01

16 44,5 2,26

17 51,1 2,41

18 289 2,92

19 612 3,47

20 1835 3,88

0

50

100

Before Normalization

CPU RAM I\O

0

20

40

After Normalization

CPU RAM I\O

Optimizing Big Data Management on Microsoft SQL Server: Enhancing Performance Through Normalization and Advanced Analytical Techniques

International Journal of Innovative Engineering Applications 9, 1(2025), 23-36 33

Figure 8. Before normalization.

Figure 8 further illustrates the stark difference in

query performance before and after optimization. The

system's ability to handle more queries in parallel with

reduced latency has increased overall data processing

capacity and enabled the handling of larger datasets

without compromising performance.

Figure 9. After normalization.

The reduction in query times is crucial in real-time

production environments, as timely data analysis is

essential for decision-making and process optimization

[17]. Faster query execution also enables the system to

handle multiple queries simultaneously, thereby

enhancing overall operational efficiency.

4.3 Strategic Importance of Normalization

In this study, normalization has enabled the system to

allocate resources more efficiently by reducing the overall

dataset size, which has directly contributed to faster

processing times and improved resource utilization [19].

The long-term benefit of normalization lies in its ability to

scale the system as data volumes increase, without

compromising performance or requiring significant

additional resources. As demonstrated in Table 2 and

Figures 8 and 9, normalization has had a tangible impact

on reducing query execution times and improving system

operations.
However, normalization is not a one-time solution; it

should be part of a continuous data management strategy

[21]. As data sets evolve and expand, regular review and

adjustment of the normalization process are necessary to

ensure sustained performance gains. In dynamic industrial

environments like cable production, this approach helps

maintain operational efficiency, supports scalability, and

lays the groundwork for more advanced data analysis

techniques.

In conclusion, the strategic importance of

normalization lies in its ability to optimize both short-term

performance and long-term sustainability [22]. By

integrating normalization as a fundamental part of the data

management process, organizations can ensure that their

systems remain responsive and scalable in the face of

increasing data complexity.

5 Results and Recommendations

Effective data management is crucial for modern

industrial processes, where the ability to process large

datasets directly impacts operational efficiency and

business competitiveness [23]. This study examined the

optimization of database performance through

normalization and indexing techniques on Microsoft SQL

Server (MSSQL). The results highlight both the strengths

and limitations of MSSQL in managing large-scale data

and provide insights for its application in industrial

environments.

One of MSSQL's key strengths is its advanced

indexing capabilities, particularly the use of non-clustered

indexes on fields such as DATE and TAGID. These

indexes significantly reduce data access times, enhancing

query performance. This feature is especially beneficial

for managing frequent queries on large datasets. The

flexibility of MSSQL in performance optimization, such

as the WITH(NOLOCK) query hint, further improves

efficiency by minimizing locking during query execution.

This makes MSSQL a valuable tool for large-scale data

processing.

MSSQL also excels in data security and integrity,

offering robust tools for auditing, error management, and

security. These features ensure consistent and reliable data

storage, minimizing the risks of data loss or corruption. Its

scalability allows MSSQL to grow with increasing data

volumes, supporting long-term data management

strategies in expanding industrial environments. This

scalability is particularly relevant for real-time data

collection systems, such as those used in production lines,

where large amounts of sensor data are generated

continuously.

However, the study identifies several limitations of

MSSQL. The high licensing costs of its advanced features

pose a financial challenge, especially for small and

medium-sized enterprises (SMEs). These costs can make

it difficult for organizations with limited budgets to adopt

MSSQL for large-scale applications. Additionally, as

databases increase in size and complexity, MSSQL may

experience performance degradation, requiring regular

maintenance and optimization. Index fragmentation is a

common issue that requires frequent monitoring.

Fragmented indexes must be reorganized or rebuilt based

on their fragmentation levels to maintain optimal query

performance.

Another limitation is MSSQL's restricted support for

distributed data management [24]. In scenarios requiring

the management of large datasets across multiple

0

500

1000

1500

2000

Before Normalization

0

10

20

30

40

50

After Normalization

S. B. Altınışık and T. T. Bilgin

International Journal of Innovative Engineering Applications 9, 1(2025), 23-36 34

geographic locations or systems, MSSQL’s limited

capabilities in distributed databases and clustering

solutions can hinder its effectiveness. Alternative

platforms, such as cloud-based or open-source solutions,

may offer more suitable options for such use cases.

Exploring these alternatives could reveal opportunities for

improving scalability and flexibility in distributed

environments.

Normalization, while improving data integrity and

reducing redundancy, presents its own challenges. It can

introduce additional complexity and computational

overhead during query execution, particularly in

environments requiring real-time data access. These

trade-offs, such as increased response times for complex

queries or challenges in maintaining normalized forms

during rapid data updates, should be acknowledged. A

deeper understanding of these trade-offs could guide the

development of hybrid approaches that balance

normalization and denormalization to achieve optimal

performance.

The findings of this study are not limited to the cable

manufacturing sector but are applicable to other industries

with similar production processes. In sectors such as

healthcare, logistics, and finance, where real-time data

collection and processing are critical, MSSQL’s

optimization techniques can be adapted to meet specific

operational needs. Key factors such as the volume of data

collected, the number of tags (TAGs) used, and data

collection intervals play a crucial role in determining the

success of database management strategies. Further

exploration of these industries could help generalize the

findings and provide industry-specific recommendations.

With the increasing adoption of machine learning and

advanced analytics, MSSQL's role in supporting these

technologies is becoming increasingly important.

Predictive modeling and analytics require clean,

consistent, and enriched datasets. MSSQL’s compatibility

with programming languages such as R and Python

enables seamless integration of machine learning models

directly into the database environment. Future research

should explore how MSSQL can be optimized to

streamline data preparation and enhance its support for

advanced analytics workflows.

Dynamic optimization techniques that adapt to

workload changes in real time could further enhance

MSSQL’s performance. For example, machine learning

algorithms could be employed to monitor query execution

patterns and dynamically optimize indexes, queries, and

data structures. These approaches could improve resource

management and ensure consistent performance, even in

high-demand environments.

Finally, MSSQL’s potential in federated learning

scenarios should be explored. Federated learning allows

for distributed data management while maintaining data

privacy, making it a suitable option for industries where

data security is critical. Additionally, MSSQL’s

integration with visualization tools like Power BI and

Tableau offers significant potential for enhancing

reporting and decision-making processes.

This study highlights the strengths of MSSQL in

indexing, query optimization, and data integrity while also

addressing its limitations in cost, distributed management,

and normalization trade-offs. Acknowledging the

overhead and complexity introduced by normalization

helps present a more balanced view. The insights gained

provide a foundation for future research to explore

alternative platforms, hybrid optimization techniques, and

advanced analytics workflows. These advancements

could lead to more scalable, adaptable, and cost-effective

data management solutions for modern industrial

applications.

5.1 General Evaluation of Our Processes

This study aimed to optimize MSSQL performance

for managing large-scale data by employing data

processing and normalization techniques. By simplifying

data workflows, the approach successfully reduced

processing times and enhanced overall system efficiency.

The SQL queries designed for this purpose utilized non-

clustered indexing, which significantly decreased data

access times and improved query execution speeds,

particularly in scenarios involving datasets with millions

of rows. Among the optimization strategies applied,

normalization emerged as the most impactful. By

reducing redundancy, minimizing dataset size, and

retaining only essential information, normalization not

only enhanced data integrity but also optimized resource

utilization. This led to shorter query times and more

responsive system performance. However, the

normalization process introduced certain trade-offs, such

as increased complexity in real-time data access and

added processing overhead, which need to be carefully

considered when implementing such strategies.

5.2 Recommendations for Future Work

To sustain the benefits of normalization and indexing

in MSSQL, continuous monitoring and optimization are

essential. Index fragmentation is a common issue that can

degrade query performance over time, particularly in large

and dynamic databases. Regular maintenance is necessary

to rebuild fragmented indexes and ensure consistent query

efficiency. Similarly, normalization, which organizes data

into structured formats, must be revisited periodically to

adapt to evolving datasets and changing system

requirements. This approach ensures that the performance

improvements achieved during initial implementation are

preserved and even enhanced.

Future studies should explore the applicability of

these techniques to alternative database platforms.

MSSQL, while effective in managing large datasets, has

certain limitations in distributed data management and

clustering environments. Research into open-source

systems such as PostgreSQL or cloud-based solutions like

Amazon Aurora and Google BigQuery could reveal how

these platforms address similar optimization challenges.

Comparative analyses would provide valuable insights

into the scalability, flexibility, and cost-effectiveness of

normalization and indexing across various systems.

Additionally, studying hybrid approaches that balance

normalization and denormalization could address some of

the trade-offs identified in this study, particularly in

scenarios requiring real-time data access.

As industries increasingly adopt machine learning

and advanced analytics, the role of MSSQL in supporting

Optimizing Big Data Management on Microsoft SQL Server: Enhancing Performance Through Normalization and Advanced Analytical Techniques

International Journal of Innovative Engineering Applications 9, 1(2025), 23-36 35

these technologies becomes more significant. Predictive

modeling, classification, and other advanced analytics

require clean, consistent, and well-managed datasets.

Preparing MSSQL infrastructure to handle such

workflows should be a key area of focus. Research could

examine how data cleansing and enrichment processes

within MSSQL can be automated to streamline data

preparation for machine learning applications.

Furthermore, integrating MSSQL with programming

languages like R and Python could enable the efficient

implementation of machine learning models directly

within the database environment. This integration offers

significant potential for predictive and prescriptive

analytics, especially in industries like manufacturing,

healthcare, and finance.

Dynamic optimization techniques also deserve further

investigation. These methods, which adapt in real time to

workload changes, could improve both query

performance and resource management in MSSQL. For

example, machine learning-based algorithms could

monitor query execution patterns and dynamically

optimize indexes, queries, and data structures. These

advancements would ensure that MSSQL remains

efficient even in high-demand environments with

fluctuating workloads.

Finally, the role of MSSQL in federated learning

scenarios should be explored. As data privacy and security

become increasingly critical, federated learning offers a

promising approach for distributed data management

without sharing sensitive data. MSSQL’s ability to

manage large datasets while maintaining strong privacy

controls makes it a suitable candidate for such

architectures. Future research could focus on optimizing

MSSQL for federated learning workflows, ensuring data

privacy and security while enabling efficient data

handling and processing. Additionally, its integration with

data visualization tools like Power BI and Tableau could

enhance reporting capabilities, enabling organizations to

make data-driven decisions more effectively.

In conclusion, addressing these areas in future

research will not only enhance the scalability, flexibility,

and efficiency of MSSQL but also ensure its continued

relevance in the evolving landscape of industrial data

management.

Declaration

Ethics committee approval is not required.

References

[1] Malik, P. K., Sharma, R., Singh, R., Gehlot, A., Satapathy,

S. C., Alnumay, W. S., Pelusi, D., Ghosh, U., & Nayak, J.

(2021). Industrial internet of things and its applications in

industry 4.0: State of the art. Computer Communications,

166, 125–139.

[2] Ghasemaghaei, M. (2021). Understanding the impact of big

data on firm performance: The necessity of conceptually

differentiating among big data characteristics. International

Journal of Information Management, 57, 102055

[3] Fan, C., Yan, D., Xiao, F., Li, A., An, J., & Kang, X. (2021).

Advanced data analytics for enhancing building

performances: From data-driven to big data-driven

approaches. Building Simulation, 14(1), 3–24.

[4] Naeem, M., Jamal, T., Diaz-Martinez, J., Butt, S. A.,

Montesano, N., Tariq, M. I., De-la Hoz-Franco, E., & De-

La-Hoz-Valdiris, E. (2022). Trends and future perspective

challenges in big data. In Advances in Intelligent Data

Analysis and Applications (pp. 309–325). Springer.

[5] Ranjan, J., & Foropon, C. (2021). Big data analytics in

building the competitive intelligence of organizations.

International Journal of Information Management, 56,

102231.

[6] Larrea, M. L., & Urribarri, D. K. (2021). Visualization

technique for comparison of time-based large data sets. In

Conference on Cloud Computing, Big Data & Emerging

Topics (pp. 179–187). Springer.

[7] Dinneen, J. D., & Brauner, C. (2017). Information-not-

thing: Further problems with and alternatives to the belief

that information is physical.

[8] Vaitis, M., Feidas, H., Symeonidis, P., Kopsachilis, V.,

Dalaperas, D., Koukourouvli, N., Simos, D., & Taskaris, S.

(2019). Development of a spatial database and web-GIS for

the climate of Greece. Earth Science Informatics, 12(1), 97–

115.

[9] Amin, M., Romney, G. W., Dey, P., & Sinha, B. (2019).

Teaching relational database normalization in an innovative

way. Journal of Computing Sciences in Colleges, 35(2), 48–

56.

[10] Alqithami, S. (2021). A serious-gamification blueprint

towards a normalized attention. Brain Informatics, 8(1), 1–

13.

[11] Oditis, I., Bicevska, Z., Bicevskis, J., & Karnitis, G. (2018).

Implementation of NoSQL-based data warehouse. Baltic

Journal of Modern Computing, 6(1), 45–55.

[12] Hrubaru, I., Talabă, G., & Fotache, M. (2019). A basic

testbed for JSON data processing in SQL data servers. In

Proceedings of the 20th International Conference on

Computer Systems and Technologies (pp. 278–283).

[13] Chung, Y. G., Haldoupis, E., Bucior, B. J., Haranczyk, M.,

Lee, S., Zhang, H., Vogiatzis, K. D., Milisavljevic, M.,

Ling, S., Camp, J. S., et al. (2019). Advances, updates, and

analytics for the computation-ready, experimental metal–

organic framework database: Core MOF 2019. Journal of

Chemical & Engineering Data, 64(12), 5985–5998.

[14] Bouros, P., & Mamoulis, N. (2019). Spatial joins: What’s

next? SIGSPATIAL Special, 11(1), 13–21.

[15] Myalapalli, V. K., Totakura, T. P., & Geloth, S. (2015).

Augmenting database performance via SQL tuning. In 2015

International Conference on Energy Systems and

Applications (pp. 13–18). IEEE.

[16] Pedrozo, W. G., & Vaz, M. S. M. G. (2014). A tool for

automatic index selection in database management systems.

In 2014 International Symposium on Computer, Consumer

and Control (pp. 1061–1064). IEEE.

[17] Correia, J., Santos, M. Y., Costa, C., & Andrade, C. (2018).

Fast online analytical processing for big data warehousing.

In 2018 International Conference on Intelligent Systems

(IS) (pp. 435–442). IEEE.

[18] Sulistiani, H., Setiawansyah, S., & Darwis, D. (2020).

Penerapan metode agile untuk pengembangan online

analytical processing (OLAP) pada data penjualan (Studi

kasus: CV Adilia Lestari). Jurnal CoreIT: Jurnal Hasil

Penelitian Ilmu Komputer dan Teknologi Informasi, 6(1),

50–56.

[19] Erdinç, H. N., Buluş, N., & Erdoğan, C. (2018). Veritabanı

tasarımının yazılım performansına etkisi: Normalizasyona

karşı denormalizasyon. Süleyman Demirel Üniversitesi Fen

Bilimleri Enstitüsü Dergisi, 22(2), 887–895.

[20] Alshemaimri, B., Elmasri, R., Alsahfi, T., & Almotairi, M.

(2021). A survey of problematic database code fragments in

software systems. Engineering Reports, 3(10), e12441.

S. B. Altınışık and T. T. Bilgin

International Journal of Innovative Engineering Applications 9, 1(2025), 23-36 36

[21] Milicev, D. (2021). Hyper-relations: A model for

denormalization of transactional relational databases. IEEE

Transactions on Knowledge and Data Engineering.

[22] Chaparro-Cruz, I. N., & Montoya-Zegarra, J. A. (2021).

Borde: Boundary and sub-region denormalization for

semantic brain image synthesis. In 2021 34th SIBGRAPI

Conference on Graphics, Patterns and Images (SIBGRAPI)

(pp. 81–88). IEEE.

[23] Costa, R. L. D. C., Moreira, J., Pintor, P., dos Santos, V., &

Lifschitz, S. (2021). A survey on data-driven performance

tuning for big data analytics platforms. Big Data Research,

25, 100206.

[24] Chillón, A. H., Ruiz, D. S., & Molina, J. G. (2021). Towards

a taxonomy of schema changes for NoSQL databases: The

Orion language. In International Conference on Conceptual

Modeling (pp. 176–185). Springer.

[25] Gupta, E., Sural, S., Vaidya, J., & Atluri, V. (2021).

Attribute-based access control for NoSQL databases. In

Proceedings of the Eleventh ACM Conference on Data and

Application Security and Privacy (pp. 317–319).

[26] Santos, M. Y., Costa, C., Galvão, J., Andrade, C., Martinho,

B. A., Lima, F. V., & Costa, E. (2017, July). Evaluating

SQL-on-Hadoop for big data warehousing on not-so-good

hardware. In Proceedings of the 21st International

Database Engineering & Applications Symposium (pp.

242-252).

[27] Yang, F., Tschetter, E., Léauté, X., Ray, N., Merlino, G., &

Ganguli, D. (2014, June). Druid: A real-time analytical data

store. In Proceedings of the 2014 ACM SIGMOD

international conference on Management of data (pp. 157-

168).

[28] Silva, Y. N., Almeida, I., & Queiroz, M. (2016, February).

SQL: From traditional databases to big data. In Proceedings

of the 47th ACM Technical Symposium on Computing

Science Education (pp. 413-418).

[29] Rahman, M. M., Islam, S., Kamruzzaman, M., & Joy, Z. H.

(2024). Advanced Query Optimization in SQL Databases

For Real-Time Big Data Analytics. Academic Journal on

Business Administration, Innovation & Sustainability, 4(3),

1-14.

[30] Uzzaman, A., Jim, M. M. I., Nishat, N., & Nahar, J. (2024).

Optimizing SQL databases for big data workloads:

techniques and best practices. Academic Journal on

Business Administration, Innovation & Sustainability, 4(3),

15-29.

[31] Pirzadeh, P., Carey, M., & Westmann, T. (2017,

December). A performance study of big data analytics

platforms. In 2017 IEEE international conference on big

data (big data) (pp. 2911-2920). IEEE.

[32] Panwar, V. (2024). Optimizing Big Data Processing in SQL

Server through Advanced Utilization of Stored

Procedures. Journal Homepage: http://www. ijmra.

us, 14(02).

[33] Ordonez, C. (2013, October). Can we analyze big data

inside a DBMS?. In Proceedings of the sixteenth

international workshop on Data warehousing and

OLAP (pp. 85-92)

.

