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Abstract: This paper focuses on multi-echelon inventory systems
having an arborescent structure. In the structure each intermediate
facility has exacily one predecessor and possibly several successorss.
All inventory costs are assumed linear with ordering cost that is
independent of the order quantity for each stocking point. The model
takes account of dynamic cost structure and dynamic demand pattern
as well as capacity limitations. The paper exploits 2 mixed bivalent
programming model to determine what inventory levels, if any,
should be maintained at the various stocking poinis in order to
minimise total inventory cost of the entire system. A computationally
efficient Lagrangean relaxation-based procedure is developed to
decompose the model into submodels by each stocking point and
product.

Subject Classifications: Inventory/Production: Multi-Echelon Lot-
Sizing. Programming: Integer, Branch and Bound, Lagrangean
Relaxation. '

Key Words: Inventory, Integer Programming, Modelling, Production.

1. INTRODUCTION
A mulii-echelon or organisational hierarchy 1s a very common type
of hierarchy. In reality, multi-echelon structure exists in any complex
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system. An attribute specific for multi-echelon systems lies in the
partially conflicting goals and objectives between decision problems
on different echelons. These partial conflicts are not only a result of
the composition of the multi-echelon system, but are also necessary
for efficient functioning of the overall system. In this sense, most
actual inventory problems of significance have multi-echelon aspects.

The most commeon notion of a multi-echelon wventory system is one
involving a number of retail outlets in business to satisfy customer
demands for goods and which, in turn, act as customers of higher-
level wholesale activities. The wholesale activities themselves may be
customers of still higher-level wholesale activities or production
facilities. The customer demands occur only at the stocking points in
the lowest echelon. Echelon n has its stocks replenished by shipments
from the echelon n+1. In this paper we shall consider the problem of
the determining optimal purchasing quantities in a multi-echelon
system of this type.

A sequence of purchasing decision 1s made at the beginning of a
number of regularly spaced intervals. The cost of purchasing any
amount of goods will be a constant value for each product during
each period. The model can be extended to handle cases in which
there are delivery lead times in moving batches between stocking
points. During each period the stock on hand is depleted by an
amount equal to the demand during that period, which is known at
t=0 {i.e., dynamic deterministic demand).

In addition to the ordering cost, it is customary to charge several
other costs during each peried. The first of these costs is the holding
cost proportional to the stock on hand at the end of the pertod if 1t is
positive, and the other is the penalty cost proportional to the deficit
of available stock also at the end of the period if there 1s such a
defictt. The crucial point about penalty cost 1s that only the stocking
points in the first echelon {1.e., the lowest echelon) incur this cost.
The penalty cost is infinite for the other stocking points. In this
regard, it 1s assumed that all excess demand for the first echelon is
backlogged. However, the backlogging of the demand for other
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echelons is not permitted. Otherwise, echelon j+1 supplies echelon ]
in spite of the fact that echelon j+1 is out of stock. This would permit
increase in the amount of inventory in echelon j without receiving
goods from echelon j+1. The backlogging in echelons 2,... M allows
this to occur. In many inventory problems the above situations are
meaningless because echelen j could not meet the demand without the
mputs from echelon j+1.

Another aspect of the model is that it permits capacity limitations for
each stocking point and in consequence the trade-off between the
storage of different types of products at each stocking point is
considered. The capacity limitations at various stocking points may
be different from each other and that gives more fiexibility to the
model,

The paper is organised as follows: In §2 the previous work on
deterministic multi-echelon problem is summarised. In §3 the model
notation i3 presented. The muxed bivalent programnung formulation
of the problem is given in §4 and the reformulation of the problem
i terms of echelon stocks is given in §5, §6 is devoted to the
decomposition of the model into smaller subproblems by means of
the Lagrangean relaxation method. Finally, conclusions and directions
for further research are presented in §7.

2. PREVIOUS WORK

From computational point of view, lotsizing problems in multi-stage
systems seem to be extremely difficult, mainly due to their complex
combinatorial structure. An attempt was made to solve these problems
with an integer programming method by McLaren[1]; he used a
general smxed integer programming code and failed to solve problems
with more than three facilities and twelve periods. This lack of
success was in part due to the fact that the formulation used were
intractable for conventional Integer Programming techniques.
Following that failure, Afentakis et al[2] presented a linear
transformation of that formulation and showed that the lot-scheduling
problem can be formulated in terms of its "echelon stocks." In their
model, two costs are incurred in the production process: set-up and
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holding costs. No backlogging is permitted and capacity limitations
are not considered. Their new formulation leads to a straightforward
decomposition of the problem using Lagrangean relaxation methods.
The Lagrangean problem is solved by a subgradient optimisation
procedure. The sharp bounds obtained are subsequently used in
developing an efficient Branch and Bound algorithm. In this regard,
this paper is an extension of the aforementioned study of Afentakis
et'al - - -

Some other papers on this topic are presented by Crowston and
Wagner [3] and Graves [4]. ‘A detailed literature review of multi-
echelon inventory systems is given by Tarim(5].

3, MODEL NOTATION

Considér a particular echelon m of the multi-echelon structure. Let
the number of stocking points at this echelon be N For each of
these stocking points, we define $™ to be the set of descending
{n<m) or immediate ascending (n=m+1) stocking points that are
connected to the ith (i:1,..,N_) stocking point of the mth echelon.
G{i,m) is the set of all successors of the stocking point i in the mth
“echelon {L.e., G{i,m}:Sm‘{jﬁ%} ). V(i,m) is the set of all stocking points
that are in the first echelon and originate from stocking point 1 of the
mih echelon. This multi-echelon structure is iltustrated in the figure.

The indices, used in modelling process, are i, ], k, and 1, which
denote stocking point, echelon, period and product respectively.
Additional notation associated with the multi-echelon structure
mcludes:

o aconstant value greater than the total demand of each stocking
point,

T - iotal number of planning periods,

¢ - total number of products stored in the multi-echelon inventory
systemnt,

M - total number of echelons,

4 ' volume per item,

Py - Lagrange multiplier used for relaxing volume constraint set,
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'y_";jk . Lagrange multiplier used for relaxing nonnegativity of echelon
stocks, ‘

l, ____________ ECHELON M

Figure - Multi-Echelon Inventory System

Pl : penalty cost per unit of inventory shoritage at end of any
period,

HY, @ cost to carry a positive unit of inventory from period i to
pertod 1+1,

e "echelon stock” holding cost (clearly defined in §3),

.« . echelon stock” {clearly defined in §5),

K[’ . fixed procurement cost per order,

Ciy © capacity limitation in volume,

D', : instantaneous external deterministic demand,

: -00<X‘ijx<oo g=1y; X‘iﬂczo (=2,...,M}, inventory level just before
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the dehvery of the orders (ie., the iﬁvéntoi'y” level at the end
of period k-1),

Uy amount ordered; from the definitions of U'y and D'y, Ule=D',,

zhy  Z4u20 (i71,..,N)), level of excess closing inventory,

Yy o lk"_O (=1 Nl), amount of inventory shortage at the end of
permd k, '

61ij[( : 6 ijk

=0 1f no order is placed or 611—1 if order 1s placed at the
beginning of period k. :

4. THE MIXED BIVALENT PROGRAMMING MODEL

The formulation of the problem is given in four steps. The first step
deals with the formulation of the rudimentary constraints of the
system. The second step is for the determination of the constraints for
the lowest, i.e., first echelon. In the third step, expressions for the
echelon 2,,..,M are presented. Finally, the fourth step aims at tackling
the objective function.

" Step 1
At each stocking point, the inventory level at the beginning of period
k+1 equals imventory level augmented by the amount of the order
delivered at the beginning of period k and depleted by an amount
equal to the total demand during the period k.

-2 - 1
X gony =XigetUige™ E Umijk

meS

{1}

(i=l,...,Nj g F=1l,..M ; k=1,.,T; I=1,..,1)

At each stocking point, the total inventory volume could not exceed
the capacity limitations during the planning period (k=1,...T). Since
the total inventory volume may expand only after the delivery of
orders in each period, controlling the total inventory level only after
the delivery in each period for each stocking poeint is sufficient to
constraint the volume with the capacity limitations. The constraint set
for echelons j=2,...,M is given below; case for echelon 1 is considered
i Eq. 6.
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E a { J_Jki-Ule)SC' 2)

(i=1,..,N; ; 7=2,.,M ; k=1,.,T)

As it has been mentioned before, the ordering cost is assumed to be
independent of order quantity. In other words, the ordering cost is
considered as a constant value. The model allows different ordering
costs for different periods at different stocking points. These relations
are included in the model by means of the following inequality.

1
U_L_':k

<8 (3)

{i=1,.. Ny i=1,.. M k=1,..,T7 ; 1=1,..,I)

From the definition of ﬁuk, if Ul gets any value different from zero
then 6‘UL equals I, which means that an order is placed and the
ordering cost is incurred. Otherwise, & .« equals 0, which means that
no order is placed so no ordering cost is incurred. It is obvious that
o must be at least the total of U’uk for k=1 to T, to ensure that the
ratio is not greater than 1.

Step 2

It's crucial to distinguish between the amount of out-of-stock and
stock on hand at the end of the each period for the stocking points in
the first echelon. These two quantities determine the inventory costs
for the first echelon except the ordering cost. The two variables, 7
and Y% are used to monitor the aforementioned inventory levels.

1
Zhe Xt Ule-Dix

{4}
(i=1,.., ¥ ; k=1,.,T ; 1=1,.., 1)

1 1 1 1
YiezDip=Xine Uik

(5}
(i=1,..,N, ; k=1,.,T7 ; 1=1,..,1)

As it can be seen easily, since Z', and Y', are non-negative variables,
at a time only one of them takes a nan-zero value and the other is
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netted out. The following inequality is the capacity hmitation for the
first echelon:

. 'r ’
Zal(ziﬂkwiﬁk}scm (i=1,.,N, ; k=1,..,7) (6)
I=1 .

Step 3

An aforementioned aspect of the model is that it allows backlogging

only at the first echelon -in order to be meaningful. The following
' inequality assures that the mventory Ievels at the echelons, except the

first, is"non-negative.

1 1/

E Umijkﬂxijk*'gijk
‘.
m,-_jGSj_Jl

{7}

{(i=1,..,N; ; F=2,.,M ; k=1,..,T ; 1=1,.,r1)

‘Actually, from the definition of variable X' j=2,.. .M in which et
is forced to be nonnegative, Eq.7 is redundant and can be omitted.
‘However, for the sake of future reference and clarity 1t 15 included in
: the model explicitly.

Step 4

The last step is the determination of the objective function. The
following expression comprises three cost components. These are total
‘ordering, holding {for echelons 2,.,M and echelon 1) and penalty
costs (for echelon 1) respectively from left to right.

Minimise )
I T Ny
E E E E K).Jka k+z E hljhxljk+z -h lkzdc plﬂylkl
_1=1 =1 7= J=2 1= J
(8)

The objective function completes the model. The eatire model is
given below for the sake of convenience.
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Mixed Bivalent Programming Model

Minimise
r T |u A s
z E Z E K13k§13k+z Z hlij13k+ z hllkzlk +p).kylk
i=1 k=1 |31 i=1 J=2 i=1
Subject T ' '
(k=1,. Tll,-,rl}’. N
1 ,
(1) ij(kﬂ):ijk*Uijk' Z U;i.jk (F=1,.., M)
mijﬁsj."fl ‘
= 1 1
{2) Eal {(Xip+Uize) sCipe {(§=2,.., M)
=1
Uk ,
(3) ;:“"séuk (F=1, .. )
(4) ZieX{y+ U Dik (i=1,..,},)
(5) YieDi-Xin-Ubk .- (i=1,.., M)
X
- {6) }:al(z;cw;m)scm {i=1, ., 20)
(7) E UniijXig‘k*Uiﬁk {(7=2,.., M)
UﬁS I3

U{}kzo ;- Xide ; Zhe0

Yﬁkzo H §§3k={ﬂ,1} H Xl;ljk =0
=2, M

5, AN ALTERNATIVE FORMULATION

The essential innovation of this alternative formulation is the
interpretation of the inventory systern as a nested set of echelons (Le,
in terms of "echelon" stocks and "echelon" holding costs) rather than
as individual activities. The model associates, with each activity, an
echelon consisting of all stock in the system at that activity and
below, including all on-hand and in-transit amounts. With this
interpretation, the multi-state variable problem for the system as a
whole can be decomposed into a set of interconnected one-state
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variable problems, ‘one for each echelon in the systern. The echelon
stock and echelon holding cost concepts are first introdoced by Clark
and Scarf [6] and used by many authors (see for example Blackburn
and Millen [7], Crowsten et al.{8,9], Schwarz and Schrage [10]). The
echelon stock for product 1 at stocking point i in the echelon j during
the period k is denoted by E'y, and €Yy is the corresponding echelon
holding cost. The definitions of Ely and €}, are as follows: "

C{Fel.en M i=1,.,00)

. (3)
1 I 1 1y
eijk:hijk“{hmijk’mijeSjgj_}

1 1 . Ira_a
Eijk= {Xijk13>1: Zik[J=1}+
| | (10)
] 3

2 , {Xmijk|mij$V(i.j> ‘ me:klmiievfilﬁ}
my €61, 7)

Using the above linear transformations, without loss of generality, the
mixed bivalent programming model of §4 can be written as below.
The concept behind this transformation is kmown in the MRP
literature as "explosion” (see Afentakis [11]).

‘The Eq.{A1) is the inumediate result of Eq.1; however, the lowest
echelon is not considered as a resuit of the unboundedness of the
inventory levels in the first echelon. This bit is considered in
Egs.(A4), (A5), and (A6). The non-negativity constraint of inventory
levels given in Eq.7 vields Fq.(A2). The Egs.(A3), (A4), and (AS) are
he same as the Egs.3, 4, and 3 respectively except the consideration
of the echelon stocks instead of the stocks of the individual stocking
-points. The last, bui certainly not the least, constraint set {1e,
“ Eq.{AT)) is obtained by subsiituting Bq.10 in Egs.2 and 6, and
- rearranging it. It is clear that the objective function is an immediate
resuli of Eq.8 and Egs.9 and 10,
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Alternative Formulation

Minimise
r MMy N
E E Z Z (Kljk'ﬁ k+eljkE13k} + plkylk
=1 k=1 { 7=1 i=1 F=1 .
Subject To : S S
{i=1,..,N I k=1,..,T7; I=1,..,1}
. l r ,-'" -
Bt ony =Eiet Uiz~ E D sk (j=2,..M) (A1)
o w0577 .
~Eipt Y, Eﬂi.jksa (F=1,..M) {A2)
mijES;_jl
Ui
;J Sﬁl}k (j=l,---.M} (A3)
2 1 2 1 L (
Ein2XintUine—Dik (1=1,..,0,) {(A4d)
Y DX Ude = {i=1,..,N;) {A5)
o1 2 1 1 :
Xizeer) = Kizet Uik~ Dik {(i=1,..N) (A6)

i 2 .
Z al J.]}(: 2 Emljk+Uljk) Scljk {le, .-‘;M) (A?)

my 6840

6, LAGRANGEAN RELAXATION

One of the most computationatly useful ideas of the 1970s is the
observation that many hard problems like the alternative model can
he viewed as easy problems complicated by a relatively small set of
side constraints. Dualizing the side constrainis produces a Lagrangean
problem that is easy to solve and whose optimal value is a lower
bound on the optimal value of the original problem. The Lagrangean
problem can thus be vsed in place of a linear programming relaxation
to provide bounds in a Branch and Bound aigonthm The birth of the
Lagrangean approach as it exists today occurred in 1970 when Held
and Karp [12] used a Lagrangean problem based on minimum
spanning trees to devise a dramatically successful algorithm for the
travelling salesman problem. Motivated by Held and Karp's success
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Lagrangean methods were applied in the early 1970s to scheduling
problems (see Fisher [13]) and the general Integer Programming
problem (Shapiro [14], Fisher and Shapiro [15]). Lagrangean methods
had gained considerable currency by 1974 when Geoffrion [16]
coined the perfect name for this approach -"Lagrangean Relaxation.”
The reader is referred to Geoffrion [16], Fisher [17], {18] and Shapiro
[19] for theory and survey of Lagrangean relaxation.

In this section, Lagrangean relaxation is used to decompose the
alternative formulation into smaller subproblems. Multiplying the
second and last constraint sets by Lagrange multiplier vectors Y20
and B0 respectively and adding them to the objective function
yields the following relaxed problem.

Lagrangean Relaxed Model

Minimise

LN N 1 g1 1 g1 S

D 2 Z E (KizbigreixFie + (5@'&2 Usie=B :5xC1ix)

o= N § T _ =
- 1 1 S N

1
+ﬁijkE (1-vi%) (B E Emijk) * Pix¥ix

T=1 ij A=1 k=1 1=1

m_ijr-:Sj_l

subject To (1=1,..,N; ; k=1i,..,T; 1=1,.,7)

1 i sl 2 .

Elpen =Ebct Ul 3 Dage (=20 M)
mijev{itj)

.

Uijk a1 )
. ;J Sﬁijk (32114--1M)

1 1 1 1 1 H 1 7
EfneXin Ui Dic  +  Yiu2DieXin Vi

1 o1t 1
X ey =Xzt Ulnx~Dik

Hence the relaxed problem is decomposed into subproblems of the
form SP1 and SP2 given below.
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Subproblem SP1
{1=1,.,r ; F7=2,..,.M ; i=1,..,,Nj]-
Minimise |

T

Y 1 ol
3. (BinlintKizdinte Bkt
=

1 i 1 1
P (1-Yigid i B x (1-Yi50) Eia 1)
Subject To (k=1,..,T)
1 1 1 1
Eijre1) =Bt Ulze— E D,k
m“-jevulj)

1
Uik 51
2G5k

Subproblem SP2

[1=1,.,r ; 1=1,..,N]
Minimise
T

14,1 1 1 4l
Y (Pix¥ixtP Uit Kizediant
=i

1 o1 2 1
€i1Eiant B inFine Ba, uBm 3 . )
Mmy1€5; *

Subject To {k=1,..,T)
7 1 1 7
Kia ey =X iax Ui~ Dk
1
Uik

1
<@gk

1 1 2 1
Eixe2Xiet Uiz~ Dig
viepl-xi~Uf

kTl AT Uik

Hence, SP! separates by stocking points (except the ones in the
lowest echelon) and by products into a smaller mixed bivalent
programming subproblems. Each of these subproblems can be solved
efficiently using any minimum cost flow network algorithm. Another,
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more popular approach in the lotsizing literature is to formulate it as
shortest path network flow problem and te solve it by dynamic
programming (see Zangwill [20]). SP2 is very similar to SP1 except
the consideration of the penalty cost. However, SP2 can still be
solved by dynamic programming approach of Zangwill which permits
backlogging. ,

One crucial point that should be made clear is the process of
determination of Lagrange multipliers, 7={yly,By}. It is well known
that the optimal value of the relaxed problem is less than or equal to
the optimal value of the mixed bivalent programming problem. As
mentioned before, this fact allows Lagrangean relaxed problem toc be
used in place of lincar programming relaxation o provide lower
bounds in a Branch and Bound algorithm. It is clear that the best
choice for Lagrange muitipliers would be an optimal selution to the
dual problem, Z,,, where Z(m) is the Lagrangean relaxed problem.

Z,= max Z,(7)
.. =

Most schemes for determining T have as their objective finding
optimal or near optimal solution 1o the mixed bivalent programming
problem. One of these schemes is ihe subgradient method. The
subgradient method is a brazen adaptation of the gradient method in
which gradients are replaced by subgradients. Given an initial value
m° a sequence {m} is generated by the rule

T (gary =M+ by (AX D)

where x* is an optimal solution to relaxed problem, t, 1s a positive
scalar step size, and Ax*-b is the relaxed constraint set. Because the
subgradient method 1s easy to program and has worked well on many
practical problems, it has become the most popular method for
maximisation of Zp(m). There have also been many papers, such as
Camerini et al.[21], which suggest improvements to the basic
subgradient method. Computationai performance and theoretical
convergence properties of the subpradient method are discussed in

Held et al.[27] and their references. The fundamental theoretical result
1s that ) "
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(te = 0) A (3£, » =) = Zym)-Z,

The step size used most commonly 1n practice is

A2 -Z,(m))
jAx <D

where 4, is a scalar satisfving 0<A,<2 and Z" is an upper bound on
Zp, frequently obtained by applying a heuristic to the problem under
consideration. Justification of this formula is given in Held et al.[22].
Often the sequence A, is determined by setting A,=2 and halving A,
whenever Zp(m) has failed to increase m some fixed number of
iterations. Unless we obtain a © for which Zy(n) equals the cost of a
known feasible solution, there is no way of proving optimality in the
subgradient method. To resolve this difficulty, the method 1s usually
terminated upon reaching an arbitrary tteration limit.

k

7. CONCLUSIONS :
Lagrangean relaxation is an smportant new computational technigue
in the operational researcher's arsenal. In this paper we have
developed algorithms that generate optimal solutions for multi-
product, multi-echelon inventory systems with capacitated dynamic
lotsizing using Lagrangean relaxation method. Work is now in
progress on incorporating stochastic aspects and other ideas such as
control theory into an algomthm which will extend the range of
problems that can be solved to optimality and extending the
applicability of those procedures to other problem classes. Two
research areas that deserve further attention are the development and
analysis of Lagrangean heuristics and the analysis (worst-case or
probabilistic) of the quality of bounds preduced by Lagrangean
relaxation.
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