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Graphical/Tabular Abstract (Grafik Özet) 

This study applies a SWARA–weighted Pythagorean Fuzzy MULTIMOORA framework to 
evaluate AI-based energy management strategies for electric vehicles, with the results 
validated through sensitivity and comparative analyses. / Bu çalışmada, elektrikli araçlar için 
yapay zekâ tabanlı enerji yönetim stratejilerini değerlendirmek amacıyla SWARA–ağırlıklı 
Pisagor Bulanık MULTIMOORA yöntemi uygulanmakta ve elde edilen sonuçlar, duyarlılık ve 
karşılaştırmalı analizler ile doğrulanmaktadır. 

 
Figure A:Hierarchical Structure /Şekil A:.Hiyerarşi Yapısı  

Highlights (Önemli noktalar)  
 Development of a SWARA–weighted Pythagorean Fuzzy MULTIMOORA framework 

for evaluating AI-based energy management strategies in electric vehicles. / Yapay 
zekâ tabanlı EV enerji stratejileri için SWARA–ağırlıklı Pisagor Bulanık 
MULTIMOORA yönteminin geliştirilmesi 

 Top strategies: Smart Battery Management, Predictive Energy Optimization, AI-
Enabled Smart Charging / En iyi stratejiler: Akıllı Batarya Yönetimi, Tahmine 
Dayalı Enerji Optimizasyonu, Yapay Zekâ Tabanlı Akıllı Şarj 

 Validation of results through 21-scenario sensitivity analysis and comparative 
analysis with the Pythagorean Fuzzy TOPSIS method. / Sonuçlar 21 senaryolu 
duyarlılık analizi ve Pisagor Bulanık TOPSIS kullanılarak yapılan karşılaştırma 
analizi ile doğrulanmıştır.  

Aim (Amaç): The aim of this study is to comprehensively evaluate AI-based energy 
management strategies for electric vehicles to enhance efficiency, extend battery life, and 
promote the use of sustainable energy sources. / Bu çalışmanın amacı, elektrikli araçlarda 
yapay zekâ tabanlı enerji yönetim stratejilerini değerlendirerek verimliliği artırmak, batarya 
ömrünü uzatmak ve sürdürülebilir enerji kaynaklarının kullanımını teşvik etmektir. 

Originality (Özgünlük): This study is original in providing a comprehensive framework that 
prioritizes AI-based energy management strategies for electric vehicles using a structured 
hybrid method, addressing the gap left by most studies that focus only on isolated aspects 
without in-depth AI strategy evaluation. / Bu çalışma, yapay zekâ tabanlı enerji yönetimi 
stratejilerini önceliklendiren yapılandırılmış bir hibrit yöntem sunarak, çoğu çalışmanın 
yalnızca tekil alanlara odaklanıp AI stratejilerini derinlemesine değerlendirmemesi nedeniyle 
oluşan boşluğu doldurmaktadır. 

Results (Bulgular): Smart Battery Management Systems emerged as the top AI-based energy 
strategy, followed by Predictive Energy Optimization and AI-Enabled Smart Charging, with 
21-scenario sensitivity analysis and PF-TOPSIS comparison confirming the robustness, 
stability, and reliability of the proposed hybrid framework. / Akıllı Batarya Yönetimi ilk sırada 
öne çıkarken, Tahmine Dayalı Enerji Optimizasyonu ve Yapay Zekâ Tabanlı Akıllı Şarj ikinci 
ve üçüncü sırada yer almakta; 21 senaryolu duyarlılık analizi ve PF-TOPSIS karşılaştırması, 
önerilen hibrit yöntemin sağlamlığını ve güvenilirliğini doğrulamaktadır.  

Conclusion (Sonuç): This study provides actionable insights to guide engineering 
professionals and promote the adoption of sustainable energy solutions. / Bu çalışma, 
mühendislik profesyonellerine yol gösteren ve sürdürülebilir enerji çözümlerinin 
benimsenmesini destekleyen uygulanabilir bilgiler sunmaktadır. 

https://orcid.org/0000-0003-3754-2631


 

*Corresponding author, e-mail: gozde.bakioglu@marmara.edu.tr                                                                          DOI: 10.29109/gujsc.1566197 

GU J Sci, Part C, 10(1): 76-84 (2022) 
 Gazi Üniversitesi Gazi University  

Fen Bilimleri Dergisi Journal of Science 
PART C: TASARIM VE 

TEKNOLOJİ 
PART C: DESIGN AND 

TECHNOLOGY 

http://dergipark.gov.tr/gujsc 

Evaluating AI-Based Energy Management Strategies for Electric Vehicles 
using SWARA - weighted Pythagorean Fuzzy MULTIMOORA 
Gözde BAKİOĞLU1*   
1Marmara University, Faculty of Engineering, Department of Civil Engineering, İstanbul, Türkiye 

Article Info 

Research article 
Received: 24/04/2025 
Revision: 28/07/2025 
Accepted: 03/08/2025 

Keywords 

Energy Management 
Electric Vehicles 
Artificial Intelligence 
Multi-Criteria Decision-
Making 
Pythagorean Fuzzy Sets 

 
 

 Abstract 

The growing adoption of electric vehicles (EVs) has formed a pressing need for intelligent energy 
management systems to extend battery life, improve efficiency and encourage the use of 
sustainable energy sources. As the complexity of energy optimization increases, the integration 
of artificial intelligence (AI) has become essential for enabling real-time decision-making and 
adaptive control. However, a significant gap remains in the literature regarding the 
comprehensive evaluation and prioritization of AI-based energy management strategies for EVs. 
This study addresses this gap by developing a multi-criteria decision-making (MCDM) 
framework that combines the Stepwise Weight Assessment Ratio Analysis (SWARA) method to 
determine the importance of evaluation criteria with the Pythagorean Fuzzy MULTIMOORA 
method to rank alternative strategies. The results show that Smart Battery Management Systems 
is the most critical strategy, followed by Predictive Energy Optimization and AI-Enabled Smart 
Charging and Grid Integration. A sensitivity analysis involving 21 weight variation scenarios 
confirms the robustness and stability of the suggested model. The findings offer practical insights 
for policymakers and professionals in engineering and present a flexible methodological 
framework that can be applied to other complex decision-making problems in sustainable energy 
and transportation systems.  
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 Öz 

Elektrikli araçların yaygınlaşması, verimliliği artırmak, batarya ömrünü uzatmak ve yenilenebilir 
enerji kaynaklarını entegre etmek amacıyla akıllı enerji yönetim sistemlerine olan ihtiyacı 
artırmıştır. Artan karmaşıklık karşısında, yapay zekâ entegrasyonu gerçek zamanlı karar verme 
ve uyarlanabilir kontrol açısından büyük önem taşımaktadır. Ancak literatürde, elektrikli araçlar 
için yapay zekâ tabanlı enerji yönetim stratejilerinin kapsamlı şekilde değerlendirilmesine 
yönelik sınırlı çalışma bulunmaktadır. Bu çalışmada, değerlendirme kriterlerinin önemini 
belirlemek için SWARA, stratejileri önceliklendirmek için Pisagor Bulanık MULTIMOORA 
yöntemlerinin entegre edildiği çok kriterli karar verme tabanlı bir model geliştirilmiştir. 
Bulgulara göre, “Akıllı Batarya Yönetim Sistemleri” en öncelikli strateji olarak belirlenmiş, 
ardından “Tahmine Dayalı Enerji Optimizasyonu” ve “Yapay Zekâ Tabanlı Akıllı Şarj ve Şebeke 
Entegrasyonu” gelmiştir. Yirmi bir senaryoda yapılan duyarlılık analizi, modelin sağlamlığını 
ortaya koymuştur. Elde edilen sonuçlar, politika yapıcılar ve mühendislik uzmanları için stratejik 
karar alma süreçlerinde yol gösterici niteliktedir. 

1. INTRODUCTION (GİRİŞ) 

The transportation sector remains one of the largest 
consumers of energy globally, with a significant 
portion of this demand being met by fossil fuels 
such as natural gas, oil, coal. This substantial fossil 
fuel dependence is a major contributor to 
greenhouse gas emissions, air pollution, and the 

acceleration of climate change. The growing 
scarcity of fossil fuels has led to increased energy 
costs and raised concerns about long-term economic 
stability, particularly for nations heavily dependent 
on energy imports [1]. In response to these 
challenges, the global focus has shifted toward 
cleaner, more energy-efficient alternatives, with 
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electric vehicles (EVs) emerging as a key solution. 
By decreasing the release of carbon and making 
possible to include sources of clean energy, EVs 
play a vital role in reshaping the future of 
transportation toward greater sustainability and 
energy independence. 

According to recent data from Eurostat (2025) [2], 
the transportation industry accounted for 31.0% of 
the EU’s ultimate energy usage in 2022, 
highlighting its significant role in overall energy 
demand. Within this sector, road transport alone 
consumed 73.6% of the total energy used, with the 
vast majority—90.6%—originating from fossil 
fuels such as motor oil with gasoline or diesel. As 
shown in Figure 1, the dominance of gas/diesel oil 
has steadily increased since 1990, overtaking motor 

gasoline as the primary energy source in road 
transport. Although electricity usage remains 
marginal at just 0.3% in 2022, it has seen a 
noticeable upward trend, increasing more than six-
fold between 2018 and 2022. This modest but 
promising growth indicates a gradual shift toward 
electrification in transport. Simultaneously, 
electricity prices across the EU have shown mixed 
trends—with some countries like Ireland 
experiencing steep increases, while others, such as 
the Netherlands, have seen notable reductions. For 
non-household consumers, the average electricity 
price dropped by 13% in the first half of 2024 
compared to the same period in 2023, signaling 
improved conditions for commercial and industrial 
electric vehicle usage [3].  

Figure 1. Energy product-based changes in road transport's final energy usage, EU, 1990–2022 (PJ) 
(Karayolu taşımacılığında nihai enerji kullanımındaki enerji ürününe dayalı değişimler, AB, 1990–2022 (PJ)) [4]

These statistics clearly demonstrate the urgent need 
to accelerate the transition toward electric vehicles 
as a means to minimize environmental effects and 
dependence on fossil fuels. However, the benefits of 
electrification can only be fully realized through the 
implementation of intelligent energy management 
systems. As electricity becomes a more central 
energy source in transport, optimizing its use 
through AI-based strategies is essential—not only 
to ensure energy efficiency and cost-effectiveness, 
but also to support the stability of the electricity 
grid. In this context, the development and 
evaluation of advanced energy management 
solutions for electric vehicles becomes a critical 
step toward achieving sustainable, resilient, and 
future-ready transportation systems.  

Recent studies have underscored the increasing 
significance of intelligent energy management 
strategies for electric vehicles, particularly with the 
integration of artificial intelligence. Lin et al. [5] 
emphasize the advantages of hybrid energy storage 

systems—such as combinations of batteries and 
supercapacitors—in addressing key challenges like 
vehicle autonomy, battery degradation, and 
performance optimization. In broader energy 
networks, Shakeel and Malik [6] explore the 
application of artificial intelligence in energy 
microgrids, demonstrating its role in improving 
energy production and demand management when 
electric vehicles are integrated into distributed 
systems. Energy management optimization with the 
use of reinforced learning and machine learning, as 
discussed by Pardhasaradhi and Shilaja [7], offers 
potential for real-time control, operational cost 
reduction, and enhanced system responsiveness. 
Similarly, Badran and Toha [8] highlights artificial 
intelligence in battery management systems for 
monitoring, cell balancing, and state estimation—
critical functions for maintaining battery health and 
extending lifespan. 

Additional advancements have expanded the scope 
of artificial intelligence across other critical areas of 
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energy management in electric vehicles. Ghalkhani 
and Habibi [9] investigate its impact on thermal 
regulation and lithium-ion battery performance, 
while other studies highlight the role of edge 
computing in enabling faster, vehicle-level 
decision-making. Research has also addressed 
intelligent regenerative braking and the use of 
harvesting energy mechanically in traffic settings. 
The transition toward autonomous, connected and 
shared vehicles has further accelerated the adoption 
of artificial intelligence in mobility systems. Deep 
learning, artificial neural networks, and 
reinforcement learning have been effectively 
applied in microgrids to optimize energy dispatch 
and integrate renewable sources. Moreover, genetic 
optimization algorithms have been developed to 
manage energy storage in residential solar-powered 
systems, minimizing costs and increasing self-
consumption. Integrated models for forecasting 
photovoltaic energy and EV charging platforms 
have also been proposed, aiming to support carbon 
neutrality and sustainable energy transitions [9].  

Given the complexity and multi-dimensional nature 
of energy management in electric vehicles, 
evaluating and prioritizing AI-based strategies 
requires a structured and comprehensive approach. 
These strategies often involve trade-offs between 
technical performance, economic feasibility, 
environmental impact, and integration challenges, 
making simple decision rules insufficient. In this 
context, multi-criteria decision-making (MCDM) 
methods have proven to be highly effective, 
particularly when used in combination with fuzzy 
set theory to deal with ambiguity and subjectivity in 
expert evaluations. The integration of fuzzy logic 
allows for more realistic modeling of human 
judgment, which is especially valuable in complex 
engineering and energy systems. For instance, 
Alrifaie et al. [10] employed a hybrid Fuzzy 
Analytical Hierarchical Process and Multi-Attribute 
Decision-Making approach to support user-centric 
electric vehicle charging station selection. 
Similarly, Ghoushchi et al. [11] applied an 
integrated MCDM model to improve effectiveness 
in networked self-driving vehicles by incorporating 
artificial intelligence and IoT-based criteria. Stecyk 
and Miciuła [12] utilized fuzzy AHP and TOPSIS 
to evaluate collaborative AI-based platforms for 
energy optimization, while Imran et al. [13] 
leveraged fuzzy decision-making techniques to 
formulate strategies aimed at maximizing electric 
vehicle utility. 

Despite growing interest in electric vehicle 
technologies and energy optimization, a notable gap 
exists in the literature concerning the 
comprehensive identification and evaluation of AI-

based energy management strategies specifically for 
electric vehicles. Most existing studies have focused 
on isolated aspects, such as selecting optimal 
charging stations, enhancing the efficiency of 
autonomous or connected vehicles, or reviewing 
general energy management systems, without 
providing an in-depth prioritization of AI-driven 
strategies. Furthermore, the integration of SWARA-
weighted MULTIMOORA methods has not been 
explored within the electric vehicle industry, 
particularly in the context of evaluating complex, 
AI-enabled decision alternatives. This study fills 
that methodological and thematic gap by 
introducing a novel framework that combines these 
decision-making tools with Pythagorean Fuzzy 
Sets, enabling more accurate and flexible modeling 
of expert judgment under uncertainty. This 
integrated approach offers a significant 
advancement in supporting strategic decision-
making for intelligent, sustainable energy 
management in electric vehicles.  

This study aims to bridge the current research gap 
by establishing a broad evaluation framework for 
AI-based energy management strategies in electric 
vehicles. Specifically, the study defines key 
evaluation criteria and introduces a structured 
multi-criteria decision-making approach by 
integrating the Stepwise Weight Assessment Ratio 
Analysis (SWARA) and Multi-Objective 
Optimization by Ratio Analysis plus Full 
Multiplicative Form (MULTIMOORA) methods 
within a Pythagorean Fuzzy set environment. This 
integrated framework enables a more robust and 
uncertainty-aware assessment of AI-driven energy 
strategies. The primary contributions of this 
research are summarized as follows: 

• Conducting a thorough expert consultation and 
literature review to identify and define the main 
AI-based energy management strategies 
relevant to electric vehicles. 

• Employing the SWARA method ascertain the 
proportional significance of evaluation criteria 
based on expert judgment. 

• Implementing the Pythagorean Fuzzy 
MULTIMOORA method to rank and prioritize 
the identified strategies under conditions of 
uncertainty. 

• Performing a sensitivity analysis by 
systematically altering the weights derived 
from the SWARA method and recalculating the 
Ratio System (RS) scores. A total of 21 distinct 
scenarios are examined to test the robustness of 
the results. 
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The findings of this study offer valuable guidance 
for policy makers and professionals in computer 
engineering and electrical and electronics fields. For 
policy makers, the prioritization of AI-based energy 
management strategies provides a data-driven 
foundation for shaping supportive policies, 
investment plans, and infrastructure development 
aimed at accelerating the transition to sustainable 
electric mobility. Meanwhile, professionals and 
researchers in technical fields can benefit from the 
study’s insights to guide the design, development, 
and implementation of advanced AI algorithms, 
battery systems, and smart charging technologies—
ultimately contributing to more efficient, reliable, 
and intelligent electric vehicle ecosystems. 
 

2. METHODOLOGY (YÖNTEM) 

The evaluation of AI-based energy management 
strategies for electric vehicles involves multiple, 
often conflicting factors like cost, flexibility, and 
energy efficiency, and technological integration. 
These factors require a multi-criteria decision-
making (MCDM) approach to ensure a balanced 
and systematic assessment. In this research, an 
integrated methodology combining the SWARA 
and Pythagorean Fuzzy MULTIMOORA methods 
is employed to address the complexity and 
uncertainty inherent in strategic evaluations. The 
SWARA method is utilized to specify the relative 
importance of evaluation criteria based on expert 
judgments. Its strength lies in its simplicity, 
efficiency, and reduced number of pairwise 
comparisons, making it especially suitable for 
expert-driven weighting processes. On the other 
hand, the MULTIMOORA method, known for its 
robustness and stability, offers a comprehensive 
evaluation framework by incorporating three 
distinct models—Ratio System, Reference Point, 
and Full Multiplicative Form—to ensure 
consistency and reliability in ranking alternatives. 

By embedding these methods in a Pythagorean 
fuzzy environment, the approach effectively 
captures the ambiguity and vagueness present in 
human assessments, thus enhancing decision 
quality. For this study, SWARA and Pythagorean 
Fuzzy MULTIMOORA were selected because of 
their capacity to combine mathematical precision 
with expert knowledge, offering a flexible and 
reliable framework for ranking AI-based tactics in 
the electric vehicle industry. 

There are three primary phases to the methodology 
used in this study. In the first stage, a 
comprehensive set of evaluation criteria and AI-
based energy management strategies for electric 
vehicles is identified through an extensive literature 
review and expert consultation. These components 
are then organized into a hierarchical decision 
framework. In the second stage, a hybrid multi-
criteria decision-making (MCDM) approach is 
applied. The Stepwise Weight Assessment Ratio 
Analysis (SWARA) method is used to determine the 
relative importance (weights) of each criterion 
based on expert evaluations. These weights are then 
utilized in the single-valued Pythagorean Fuzzy 
MULTIMOORA method, which evaluates and 
ranks the identified strategies by incorporating the 
Ratio System, Reference Point, and Full 
Multiplicative Form models to ensure a robust and 
comprehensive prioritization. In the third stage, a 
sensitivity analysis is conducted to test the 
robustness of the model. This is achieved by 
systematically altering the criterion weights derived 
from the SWARA method and recalculating the 
Ratio System scores across 21 distinct scenarios. 
The results highlight the ranking stability of top-
performing strategies and provide insight into how 
changes in evaluation perspectives affect the overall 
decision. The schematic figure shown in Figure 2 
depicts the specific procedures and integration of 
the suggested methodology. 
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Figure 2. Schematic diagram of methodology (Yöntemin şematik gösterimi)

 

2.1. Pythagorean Fuzzy Sets  (Pisagor Bulanık 
Kümeler) 

Decision-makers evaluating energy management 
strategies face various uncertainties and subjective 
judgments, making the analysis of such problems 
more complex. To handle uncertain information and 
derive specific outcomes, Zadeh [14] introduced 
fuzzy set theory and linguistic variables. Recent 
studies in the literature have expanded on these 
concepts by incorporating extended fuzzy sets, such 
as Pythagorean fuzzy sets and intuitionistic fuzzy 
sets, to more accurately reflect the ambiguity in 
decision-makers' perspective. 

Developed by Atanassov, intuitionistic fuzzy sets 
(IFSs) incorporate membership, non-membership, 
and hesitation degrees, with the constraint that 
degrees of membership and non-membership added 
together cannot be greater than one. However, since 
IFSs sometimes fail to adequately model complex 
uncertainty in practical applications, generalized 
fuzzy sets such as Pythagorean fuzzy sets (PFSs) 
have been introduced [15]. The total of the 

membership and non-membership degrees in PFSs 
may be greater than one, but the sum of their squares 
cannot. A geometric comparison between the 
Pythagorean fuzzy set space and the intuitionistic 
fuzzy set space reveals that the latter has a wider 
coverage. As a result, Pythagorean fuzzy sets are 
more effective in representing uncertainty and 
imprecision than intuitionistic fuzzy sets. 

Definition 1: Let x be an element of the universal 
set X. A Pythagorean fuzzy set 𝑃𝑃� in X is defined as 
follows [15]: 

𝑃𝑃� = �〈𝑥𝑥,𝑃𝑃�𝜇𝜇𝑃𝑃(𝑥𝑥),𝑣𝑣𝑃𝑃(𝑥𝑥)�〉�𝑥𝑥 ∈ 𝑋𝑋�                    (1)       
          

where 𝜇𝜇𝑃𝑃(𝑥𝑥) ϵ [0,1] represents the membership 
degree, and 𝑣𝑣𝑃𝑃(𝑥𝑥) ϵ [0,1] denotes the non-
membership degree. These membership degrees 
must satisfy the following condition, given in 
Equation (2): 
 

0 ≤ �𝜇𝜇𝑃𝑃(𝑥𝑥)�2 + �𝑣𝑣𝑃𝑃(𝑥𝑥)�2 ≤ 1.    (2)                                   
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The hesitation degree of a Pythagorean fuzzy 
number in 𝑃𝑃� is identified in Equation (3) as follows: 

𝜋𝜋𝑃𝑃(𝑥𝑥) = �1 − �𝜇𝜇𝑃𝑃(𝑥𝑥)�2 − �𝑣𝑣𝑃𝑃(𝑥𝑥)�2       (3)                                   
                 

Definition 2: Let 𝑃𝑃�1 =  𝑃𝑃�𝜇𝜇𝑃𝑃1 ,𝑣𝑣𝑃𝑃1� and 𝑃𝑃�2 =  
𝑃𝑃�𝜇𝜇𝑃𝑃2 ,𝑣𝑣𝑃𝑃2� be two Pythagorean fuzzy numbers, and 
let λ be a positive number. The fundamental 
operations in Pythagorean fuzzy sets are shown 
below: 

𝑃𝑃�1 ⊗ 𝑃𝑃�2 = P 

� 𝜇𝜇𝑃𝑃1𝜇𝜇𝑃𝑃2 ,��𝑣𝑣𝑃𝑃1�
2 + �𝑣𝑣𝑃𝑃2�

2 − �𝑣𝑣𝑃𝑃1�
2�𝑣𝑣𝑃𝑃2�

2�    (4)                         

           

𝜆𝜆𝑃𝑃�1 = ��1 − (1 − �𝜇𝜇𝑃𝑃1�
2)𝜆𝜆, (𝑣𝑣𝑃𝑃1)𝜆𝜆     � ,    𝜆𝜆 > 0, 

      (5)                                              
          

�𝑃𝑃�1�
𝜆𝜆= �(𝜇𝜇𝑃𝑃1)𝜆𝜆, �1 − (1 − �𝑣𝑣𝑃𝑃1�

2)𝜆𝜆� ,    𝜆𝜆 > 0.                                    

                          (6) 

𝑃𝑃�1 Ө 𝑃𝑃�2 = ��𝜇𝜇12− 𝜇𝜇22

1−𝜇𝜇22
, 𝑣𝑣1
𝑣𝑣2
�   if 𝜇𝜇𝑃𝑃1≥ 𝜇𝜇𝑃𝑃2, 𝑣𝑣𝑃𝑃1 ≤ min 

�𝑣𝑣𝑃𝑃2 , 𝑣𝑣𝑃𝑃2π𝑃𝑃1  
π𝑃𝑃2

  �                                          (7) 

𝑃𝑃�1 
𝑃𝑃�2

 = �𝜇𝜇1
𝜇𝜇2

,�𝑣𝑣12− 𝑣𝑣22

1−𝑣𝑣22
 �    if 𝜇𝜇𝑃𝑃1≤ min �𝜇𝜇𝑃𝑃2 , 𝜇𝜇𝑃𝑃2π𝑃𝑃1  

π𝑃𝑃2
  �, 

𝑣𝑣𝑃𝑃1 ≥ 𝑣𝑣𝑃𝑃2                                              (8) 

Definition 3: Let 𝑃𝑃�𝑖𝑖=𝑃𝑃(𝜇𝜇𝑖𝑖, 𝑣𝑣𝑖𝑖), 𝑖𝑖 =  (1,2, … ,𝑛𝑛) be a 
group of Pythagorean fuzzy sets. The Pythagorean 
fuzzy weighted averaging (PFWA) formula, given 
in Equation (9), is used to aggregate this set.   

PFWA (𝑃𝑃�1,𝑃𝑃�2, … .𝑃𝑃�𝑛𝑛) = ��1 −∏ �1 −𝑛𝑛
𝑖𝑖=1

𝜇𝜇𝑖𝑖2�
𝑤𝑤𝑖𝑖�

1/2
, (∏ (𝑣𝑣𝑖𝑖)𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1 )�                        (9)       

         

where 𝑤𝑤𝑖𝑖 = (w1, w2, …,wn) be the weight vector of 
𝑃𝑃�𝑖𝑖, 𝑖𝑖 =  (1,2, … , 𝑛𝑛) with 𝑤𝑤𝑖𝑖  ϵ [0, 1] and ∑ 𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1  = 1.  

Definition 4: Let 𝑃𝑃�1 =  𝑃𝑃�𝜇𝜇𝑃𝑃1 ,𝑣𝑣𝑃𝑃1� and 𝑃𝑃�2 =  
𝑃𝑃�𝜇𝜇𝑃𝑃2 ,𝑣𝑣𝑃𝑃2� be two Pythagorean fuzzy numbers. To 
compare and rank these two numbers, score 
functions are used. The formula for the score 
function is shown in Equation (10): 

s(𝑃𝑃�1) = �𝜇𝜇𝑃𝑃1�
2 - �𝑣𝑣𝑃𝑃1�

2.                     (10)                                                                           
                     

2.2. SWARA Method  (SWARA Yöntemi) 

The Stepwise Weight Assessment Ratio Analysis 
(SWARA) method was introduced by Kersuliene et 
al. [16] to determine subjective criterion weights. 
One key advantage of SWARA is its simplicity, as 
it involves fewer computational steps and requires a 
minimal number of pairwise comparisons compared 
to other weighting techniques like Analytic 
Hierarchy Process (AHP). Another strength of 
SWARA lies in its reliance on decision-makers' 
judgments, where initial prioritization and relative 
importance are established based on expert 
opinions. The following are the steps involved in the 
SWARA method's process: 

Step 1: Identify alternatives (𝑖𝑖 = 1,2, … ,𝑚𝑚) and 
criteria (𝑗𝑗 = 1,2, … ,𝑛𝑛).  

Step 2: Experts' preferences are used to rank the 
criteria from most to least important. 

Step 3: Criteria are compared with each other to 
determine their relative importance levels. The (j)th 
criterion is compared to the (j-1)th criterion, and a 
value (𝑆𝑆𝑗𝑗) is assigned within the 0-1 range. 

Step 4: Compute the proportional significance of 
every criterion (𝑆𝑆𝑗𝑗) by comparing it with the 
previous criterion, and calculate the comparative 
coefficient (𝑘𝑘𝑗𝑗) using Equation (11). 

𝑘𝑘𝑗𝑗 = �
1, 𝑗𝑗 = 1

𝑆𝑆𝑗𝑗 + 1, 𝑗𝑗 > 1                 (11) 

Step 5: The initial weight for every factors (𝑞𝑞𝑗𝑗) is 
determined utilizing the Equation (12).  

 𝑞𝑞𝑗𝑗 = �
1, 𝑗𝑗 = 1

𝑞𝑞𝑗𝑗−1
𝑘𝑘𝑗𝑗

, 𝑗𝑗 > 1                    (12)      

Step 6: Final criterion weight (ωi) is computed with 
Equation (13).   

ωi =
𝑞𝑞𝑗𝑗

∑ 𝑞𝑞𝑗𝑗𝑛𝑛
𝑗𝑗=1

                           (13) 

2.3. Pythagorean Fuzzy MULTIMOORA  
(Pisagor Bulanık MULTIMOORA) 

In this study, the MULTIMOORA (Multi-Objective 
Optimization by Ratio Analysis plus Full 
Multiplicative Form) method is employed to 
evaluate and rank AI-based energy management 
strategies for electric vehicles. Initially, Brauers and 
Zavadskas [17]  introduced as an enhancement of 
the MOORA method, MULTIMOORA combines 
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three distinct approaches—Ratio System (RS), 
Reference Point (RP), and Full Multiplicative Form 
(FMF)—to improve the robustness and accuracy of 
multi-criteria decision-making (MCDM). This 
integrated framework is recognized for its ability to 
address conflicting objectives, handle a wide range 
of criteria, and provide consistent evaluations even 
in complex decision environments. To further 
strengthen its capacity to cope with vagueness and 
imprecise expert judgments often encountered in 
real-world evaluations, the method is extended 
using Pythagorean Fuzzy Sets, resulting in the 
Pythagorean Fuzzy MULTIMOORA (PF-
MULTIMOORA) approach. This extension 
enhances the model's ability to represent uncertainty 
more flexibly, thereby offering a more reliable and 
realistic framework for prioritizing energy 
management strategies in electric vehicle systems. 
The steps of PF-MULTIMOORA are as follows:  

Step 1: Construct Pythagorean fuzzy decision 
matrix 𝐷𝐷 = �𝐶𝐶𝑗𝑗(𝑥𝑥𝑖𝑖)�

𝑚𝑚×𝑛𝑛
using Equation (14), 

where 𝐶𝐶𝑗𝑗(𝑗𝑗 = 1,2, … ,𝑛𝑛) and 𝑥𝑥𝑖𝑖(𝑖𝑖 = 1,2, … ,𝑚𝑚) be 
the criteria and alternatives respectively.   
 

      𝐶𝐶1   ⋯     𝐶𝐶𝑛𝑛 

𝐷𝐷 = �𝐶𝐶𝑗𝑗(𝑥𝑥𝑖𝑖)�
𝑚𝑚×𝑛𝑛

=
𝑥𝑥1
⋮
𝑥𝑥𝑚𝑚

�
𝑃𝑃11 ⋯ 𝑃𝑃1𝑛𝑛
⋮ ⋱ ⋮

𝑃𝑃𝑚𝑚1 ⋯ 𝑃𝑃𝑚𝑚𝑚𝑚

�    (14)                    

        

Step 2: Combine the Pythagorean fuzzy decision 
matrix by applying the Pythagorean Fuzzy 
Weighted Averaging (PFWA) method, as outlined 
in Equation (9). 

Step 3: Construct the Pythagorean fuzzy score 
matrix S = �𝑋𝑋𝑖𝑖𝑖𝑖�𝑚𝑚×𝑛𝑛

 using Equation (10).  

Step 4: Build the normalized decision matrix N = 
�𝑛𝑛𝑖𝑖𝑖𝑖�𝑚𝑚×𝑛𝑛

, where the normalization is performed 
using Equation (15). In this step, 𝑋𝑋𝑖𝑖𝑖𝑖+ and 𝑋𝑋𝑖𝑖𝑖𝑖− 
represent the maximum and minimum values of 
each criterion across all alternatives, respectively. 
 

𝑛𝑛𝑖𝑖𝑖𝑖 = �

𝑋𝑋𝑖𝑖𝑖𝑖−𝑋𝑋𝑖𝑖𝑖𝑖−

𝑋𝑋𝑖𝑖𝑖𝑖+−𝑋𝑋𝑖𝑖𝑖𝑖−
        𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝐶𝐶𝑏𝑏 ,

𝑋𝑋𝑖𝑖𝑖𝑖+−𝑋𝑋𝑖𝑖𝑖𝑖
𝑋𝑋𝑖𝑖𝑖𝑖+−𝑋𝑋𝑖𝑖𝑖𝑖−

          𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝑐𝑐
                     (15)

               

where Cb and Cc show the benefit criteria and cost 
criteria.  

Step 5: Establish the normalized weighted matrix 
using Equation (16): 
 

 𝑛𝑛𝚤𝚤𝚤𝚤 =̇ 𝑛𝑛𝑖𝑖𝑖𝑖 ×  𝜔𝜔𝑗𝑗                     (16)
       
Step 6: Determine the ranking of the alternatives 
using the Ratio System (RS) model. In the 
MULTIMOORA method, the RS model is applied 
to establish the relative priority of each alternative 
and identify the most appropriate option. The scores 
for the alternatives within the ratio system 
framework are computed using Equation (17): 

𝑦𝑦𝑖𝑖 =  𝑦𝑦𝑖𝑖+ - 𝑦𝑦𝑖𝑖−  = ∑ nıȷ̇
𝑔𝑔
𝑗𝑗=1 − ∑ nıȷ̇𝑛𝑛

𝑗𝑗=𝑔𝑔+1           (17)
           

In this case, 𝑦𝑦𝑖𝑖 is the normalized value of the i-th 
choice across all criteria, g is the number of criteria 
to be maximized, and n is the number of criteria to 
be minimized. The optimal option is the one with 
the highest rating after the 𝑦𝑦𝑖𝑖  values are arranged in 
descending order.  

Step 7: Assess the alternatives using the reference 
point (RP) approach. The Tchebycheff Min-Max 
metric is computed using Equation (18). 

𝐷𝐷𝑖𝑖 = min
(𝑖𝑖)

�max
𝑗𝑗
�𝑛𝑛𝑗𝑗 −  nıȷ̇ ��               (18)

            

The reference point (𝑛𝑛𝑗𝑗) for each criterion is chosen 
from the greatest values of the alternatives in the 
case of maximizing and the lowest values in the case 
of minimization. For every option, the greatest 
value (𝐷𝐷𝑖𝑖) is computed. Next, the options are 
arranged in ascending order of preference.  

Step 8: Determine the ranking of the alternatives by 
applying the Full Multiplicative Form (FMF) 
technique. The overall utility score for each 
alternative is calculated using Equation (19): 

𝑈𝑈𝑖𝑖 =  ∏ nıȷ̇  /
𝑔𝑔
𝑗𝑗=1  ∏ nıȷ̇𝑛𝑛

𝑗𝑗=𝑔𝑔+1                  (19)
            

In this context, the benefit criteria are indexed from 
j = 1 to g, while the cost criteria are represented from 
j = g + 1 to n.  

Step 9: Rank the alternatives and compare the 
outcomes derived from the Reference Point (RP) 
approach, Ratio System (RS) model, and the Full 
Multiplicative Form (FMF) technique. 

3. CASE STUDY  (VAKA ÇALIŞMASI) 

As electric vehicles become more widespread, 
efficient energy management is essential for 
maximizing performance and sustainability. AI-
based strategies offer innovative solutions by 
enabling smart, adaptive control of energy use. 
However, due to the complexity of these 
approaches, a structured evaluation is needed. This 
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study is important as it provides a comprehensive 
assessment of key AI-driven energy management 
strategies, helping stakeholders identify the most 
effective and practical solutions for advancing 
intelligent and sustainable mobility. 

This study aims to evaluate and prioritize AI-based 
energy management strategies for electric vehicles 
using multi-criteria decision-making approaches. 
By assessing their energy efficiency, economic 
viability, environmental impact, and technological 
adaptability, the research offers a structured 
framework to guide stakeholders in identifying and 
adopting the most effective strategies. The primary 
AI-based energy management strategies are 
determined through a comprehensive literature 
review and expert consultations as follows:  

Predictive Energy Optimization (A1): AI-driven 
predictive models analyze real-time traffic, weather 
conditions, and historical driving patterns to 
optimize energy consumption [7]. Machine learning 
algorithms anticipate energy needs and dynamically 
adjust power distribution between the battery, 
motor, and auxiliary systems, ensuring extended 
range and reduced energy waste. 

Smart Battery Management Systems (A2): AI 
enhances battery performance by continuously 
monitoring charge levels, temperature, and health 
indicators. It predicts battery degradation, optimizes 
charging cycles, and balances cell voltages to 
extend battery lifespan while ensuring efficiency 
and safety [8]. Advanced deep learning techniques 
help prevent overcharging and overheating issues. 

AI-Optimized Route and Driving Assistance (A3): 
AI integrates GPS, traffic data, and energy 
consumption models to suggest the most energy-
efficient routes. By considering road gradients, 
congestion, and charging station availability, AI-
powered navigation helps EVs minimize energy use 
[5]. Additionally, AI-based driving assistants adjust 
acceleration and braking patterns to improve 
efficiency. 

AI-Powered Regenerative Braking Optimization 
(A4): Regenerative braking systems use AI to 
maximize energy recovery by adapting braking 
intensity based on road conditions and driver 
behavior [7]. AI optimally distributes the recovered 
energy back to the battery, reducing reliance on 
external charging and improving overall efficiency. 

AI-Enabled Smart Charging and Grid Integration 
(A5): AI synchronizes EV charging with smart grids 
by analyzing electricity demand, price fluctuations, 
and grid stability. It schedules charging during low-
demand hours to reduce costs and enables Vehicle-
to-Grid (V2G) technology, where EVs improve grid 

resilience by returning power to the grid during 
periods of peak demand [9]. 

AI-Driven Thermal Management (A6): AI regulates 
the vehicle’s thermal systems, optimizing battery 
cooling and cabin climate control to minimize 
unnecessary energy usage [18]. By predicting 
external temperature changes and driver 
preferences, AI efficiently distributes energy 
between the ventilation, heating and air 
conditioning (HVAC) system and other power 
needs, increasing overall vehicle efficiency. 

The evaluation of AI-based energy management 
strategies for electric vehicles requires a 
comprehensive and multidimensional approach, as 
these strategies directly affect the performance, 
sustainability, and practicality of electric vehicles. 
To ensure a thorough assessment, seven critical 
criteria are identified, capturing the most essential 
aspects of energy management in EVs. These 
criteria encompass technical, economic, 
environmental, and regulatory dimensions, enabling 
decision-makers to objectively compare and 
prioritize different AI-based strategies. The selected 
criteria and their detailed explanations are provided 
below: 

Energy Efficiency (C1): This criterion assesses how 
well the AI-based strategy optimizes energy 
consumption to extend the driving range. It 
considers intelligent power distribution, 
regenerative braking efficiency, and predictive 
energy management to minimize waste and improve 
overall vehicle performance. 

Economic Feasibility (C2): This evaluates the 
financial viability of the strategy, including 
implementation costs, operational expenses, and 
potential long-term savings. AI-driven solutions 
that reduce electricity consumption, optimize 
charging costs, and provide a favorable return on 
investment rank higher in this category. 

Time Efficiency & Performance (C3): This aspect 
considers how AI strategies impact charging time, 
route optimization, and overall operational 
efficiency. Strategies that reduce charging duration, 
minimize energy loss during transmission, and 
optimize real-time power management are rated 
more favorably. 

Adaptability & Scalability (C4): This measures the 
flexibility of AI strategies in handling different 
driving environments, vehicle models, and traffic 
conditions. AI systems that can be easily integrated 
into diverse EV fleets, adjust to dynamic energy 
demands, and scale with technological 
advancements receive a higher score. 
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Environmental Sustainability (C5): This criterion 
evaluates the extent to which the AI strategy reduces 
greenhouse gas emissions, promotes renewable 
energy integration, and minimizes environmental 
impact. AI solutions that enable smart grid 
interactions, prioritize clean energy sources, and 
support eco-friendly driving behavior perform 
better in this category. 

Technological Integration (C6): This assesses the 
compatibility of AI-based energy management with 
existing EV infrastructures, including smart 
charging systems, IoT devices, and cloud-based 
platforms. Solutions that ensure seamless 
integration with vehicle control systems, maintain 
high reliability, and minimize disruptions are 
prioritized. 

Regulatory Compliance (C7): This criterion 
examines whether the AI strategy aligns with 
government regulations, safety standards, and 
energy policies. Strategies that adhere to evolving 
legal frameworks, data privacy laws, and electric 

mobility regulations while ensuring cybersecurity 
are considered more effective. 

In this study, a hierarchical framework is developed 
to clearly structure the decision-making process for 
evaluating AI-based energy management strategies 
for electric vehicles. At the top level of the hierarchy 
lies the main objective—to prioritize and evaluate 
the most effective AI-driven strategies in the 
context of electric vehicle energy management. The 
second level comprises the evaluation criteria, 
which reflect key factors such as energy efficiency, 
economic feasibility, technological integration, and 
environmental sustainability. At the final level, the 
specific AI-based strategies identified through 
literature review and expert input are positioned as 
the alternatives to be assessed. This hierarchical 
structure provides a transparent and logical 
foundation for applying the integrated SWARA and 
Pythagorean Fuzzy MULTIMOORA methodology. 
The complete hierarchical decision model is 
visually represented in Figure 3.  

 
Figure 3. Hierarchical decision model of this study (Çalışmanın hiyerarşi karar modeli)

 

3.1. Application  (Uygulama) 

This study applies SWARA-weighted 
MULTIMOORA methodology under Pythagorean 
fuzzy environment to evaluate artificial 
intelligence-driven energy optimization strategies 
for electric vehicles. By reviewing the literature and 
consulting with academic and industry decision-
makers, evaluation criteria and strategies are 
established.  

In the initial stage of the methodology, the expert 
team evaluated and compared the criteria to 
determine their relative importance. In the third step 
of the SWARA method, each criterion is compared 
with the preceding one to determine its relative 

importance. The (𝑆𝑆𝑗𝑗) values in Table 1 reflect the 
comparison of criterion j with criterion (j–1). For 
example, Technological Integration (C6) is 
compared with Energy Efficiency (C1), and 
Regulatory Compliance (C7) is evaluated against 
Environmental Sustainability (C5). This sequential 
structure is consistent with the standard SWARA 
procedure, where each criterion is assessed relative 
to the one ranked just before it. Subsequently, the 
comparative coefficient (𝑘𝑘𝑗𝑗) was calculated using 
Equation (11), followed by the computation of the 
initial weight for each criterion (𝑞𝑞𝑗𝑗) using Equation 
(12). Finally, the final weights of the criteria (ωi) 
were obtained using Equation (13). The results of 
the SWARA approach are presented in Table 1.  
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Table 1. SWARA Method Results (SWARA yöntemi sonuçları) 

Criteria Sj Kj qj wj 
Energy Efficiency (C1) - 1.000 1.000 0.379 
Technological Integration (C6) 0.650 1.650 0.606 0.229 
Economic Feasibility (C2) 0.450 1.450 0.418 0.158 
Adaptability & Scalability (C4) 0.700 1.700 0.246 0.093 
Time Efficiency & Performance (C3) 0.350 1.350 0.182 0.069 
Environmental Sustainability (C5) 0.650 1.650 0.110 0.042 
Regulatory Compliance (C7) 0.400 1.400 0.079 0.030 

 

The results of the SWARA method reveal that 
Energy Efficiency (C1) is the most critical criterion 
in evaluating AI-based energy management 
strategies for electric vehicles, holding the highest 
weight of 0.379. This is followed by Technological 
Integration (C6) with a weight of 0.229, and 
Economic Feasibility (C2) with 0.158, reflecting 
their strong influence on decision-making. 
Adaptability & Scalability (C4) ranks fourth with 
0.093, while Time Efficiency & Performance (C3) 
holds a moderate importance at 0.069. 
Environmental Sustainability (C5) and Regulatory 
Compliance (C7) are considered less significant, 

with weights of 0.042 and 0.030, respectively. 
These results indicate a clear emphasis on technical 
performance and cost-effectiveness over regulatory 
or environmental aspects in the context of electric 
vehicle energy strategies.  

In the second phase, the single-valued Pythagorean 
Fuzzy MULTIMOORA method is applied using the 
criterion weights obtained from the first phase. To 
implement this approach, a decision matrix is 
established on the basis of linguistic variables 
represented by Pythagorean fuzzy numbers, as 
outlined in Table 2. 

 

Table 2. Pythagorean fuzzy number linguistic variables (Pisagor bulanık sayıların dilsel terimleri) 

Linguistic term  Corresponding Pythagorean Fuzzy Member (u,v) 

Very Low (VL) (0.15, 0.85) 

Low (L) (0.25, 0.75) 

Moderately Low (ML) (0.35, 0.65) 

Medium (M) (0.50, 0.45) 

Moderately High (MH) (0.65, 0.35) 

High (H) (0.75, 0.25) 

Very High (VH) (0.85, 0.15) 

The decision matrix, presented in Table 3, was 
developed based on evaluations provided by a panel 
of three experts, comprising one academic and two 
professionals from the automotive industry. During 
the evaluation process, the experts reached a 
consensus through direct discussion, eliminating the 
need for aggregating differing opinions using 
operators such as the Pythagorean Fuzzy Weighted 
Averaging (PFWA). Nevertheless, the PFWA 
operator is introduced conceptually in Section 2.1 to 
inform readers and support future studies that may 
require the integration of diverse expert judgments. 

After constructing the Pythagorean fuzzy decision 
matrix, a Pythagorean fuzzy score matrix was 
established using Equation (10) to transform fuzzy 
sets into crisp values. This transformation was 
carried out by applying a score function that 
quantifies each Pythagorean fuzzy number into a 
real number between 0 and 1, thereby enabling 
numerical comparison between alternatives. The 
resulting crisp values reflect the relative 
performance of each strategy under each criterion 
and are essential for subsequent normalization and 
aggregation steps. 
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Table 3. Decision matrix (Karar matrisi) 

Alternative/Criteria 
Energy 
Efficiency 
(C1) 

Economic 
Feasibility 
(C2) 

Time 
Efficiency 
& 
Performan
ce (C3) 

Adaptabili
ty & 
Scalabilit
y (C4) 

Environ
mental 
Sustainab
ility (C5) 

Technolog
ical 
Integratio
n (C6) 

Regulator
y 
Complian
ce (C7) 

Predictive Energy 
Optimization (A1) VH ML M H H H H 

Smart Battery 
Management 
Systems (A2) 

VH L ML VH VH VH H 

AI-Optimized 
Route and Driving 
Assistance (A3) 

H ML MH MH MH H MH 

AI-Powered 
Regenerative 
Braking 
Optimization (A4) 

MH M M M MH MH M 

AI-Enabled Smart 
Charging and Grid 
Integration (A5) 

H ML ML H VH H MH 

AI-Driven Thermal 
Management (A6) M ML H M MH M ML 

Following the transformation of expert evaluations 
into crisp values using the score function, the 
normalization process is carried out using Equation 
(15), followed by the construction of the normalized 
weighted decision matrix using Equation (16). As 
part of the normalization step, benefit-type 
criteria—such as Energy Efficiency (C1), 
Adaptability & Scalability (C4), Environmental 
Sustainability (C5), Technological Integration (C6), 
and Regulatory Compliance (C7)—are normalized 
by assigning higher scores to better-performing 
alternatives. Conversely, for cost-type criteria—
namely Economic Feasibility (C2) and Time 
Efficiency & Performance (C3)—lower values are 
preferred and scored accordingly. This approach 
ensures that all criteria, regardless of their nature, 

are brought onto a unified scale between 0 and 1, 
where 1 represents the most favorable performance 
and 0 the least. As a result, the normalized decision 
matrix presented in Table 4 enables a fair and 
consistent comparison among the alternative 
strategies prior to applying the MULTIMOORA 
method. To enhance the robustness and accuracy of 
the multi-criteria decision-making process, the three 
distinct components of the MULTIMOORA 
method—Ratio System (RS), Reference Point (RP), 
and Full Multiplicative Form (FMF)—are applied 
independently. This comprehensive approach 
ensures a more reliable and consistent evaluation of 
the alternatives. 

 

 

Table 4. Normalized decision matrix (Normalize karar matrisi)  

Alternative/Crit
eria 

Energy 
Efficiency 
(C1) 

Economic 
Feasibility 
(C2) 

Time 
Efficiency 
& 
Performanc
e (C3) 

Adaptabili
ty & 
Scalabilit
y (C4) 

Environm
ental 
Sustainabi
lity (C5) 

Technolo
gical 
Integratio
n (C6) 

Regulatory 
Complianc
e (C7) 

Predictive 
Energy 
Optimization 
(A1) 

1.00 0.63 0.57 0.69 0.50 0.69 1.00 

Smart Battery 
Management 
Systems (A2) 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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AI-Optimized 
Route and 
Driving 
Assistance (A3) 

0.69 0.63 0.25 0.39 0.00 0.69 0.75 

AI-Powered 
Regenerative 
Braking 
Optimization 
(A4) 

0.39 0.00 0.57 0.00 0.00 0.39 0.43 

AI-Enabled 
Smart Charging 
and Grid 
Integration (A5) 

0.69 0.63 1.00 0.75 1.00 0.69 0.75 

AI-Driven 
Thermal 
Management 
(A6) 

0.00 0.63 0.00 0.00 0.00 0.00 0.00 

The RS model is first applied to determine the 
relative priority of each alternative using Equation 
(17). Subsequently, the Tchebycheff Min-Max 
metric is calculated to evaluate the alternatives 
through the RP approach, as defined by Equation 
(18). Finally, the overall utility score for each 
alternative is computed by applying the FMF 
technique using Equation (19) to establish their final 
rankings. The results obtained from the Ratio 
System (RS), Reference Point (RP), and Full 
Multiplicative Form (FMF) approaches are 

presented in Table 5.  In the RS model, the 𝑦𝑦𝑖𝑖 values 
are ranked in descending order, where a higher 
value indicates a more preferable alternative. For 
the RP approach, the maximum distance value 𝐷𝐷𝑖𝑖 is 
calculated for each alternative, and the alternatives 
are ranked in ascending order, with lower values 
indicating better performance. In the FMF 
technique, the utility scores 𝑈𝑈𝑖𝑖 are also ranked in 
descending order, where the highest score reflects 
the most ideal alternative. 

 

Table 5. The results obtained from the RS, RP, and FMF approaches (RS, RP ve FMF yaklaşımlarından elde 
edilen sonuçlar) 

Alternative yi Di Ui 

Predictive Energy Optimization (A1) 0.51 0.10 4.68 

Smart Battery Management Systems (A2) 0.55 0.12 6.37 

AI-Optimized Route and Driving Assistance (A3) 0.36 0.12 4.08 

AI-Powered Regenerative Braking Optimization (A4) 0.21 0.23 3.40 

AI-Enabled Smart Charging and Grid Integration (A5) 0.39 0.12 3.28 

AI-Driven Thermal Management (A6) -0.10 0.38 0.00 

Figure 4 indicates the ranking results of three 
approaches. Smart Battery Management Systems 
(A2) consistently rank as the top-performing 
strategy across all three methods, highlighting its 
critical role in optimizing energy use and 
prolonging battery life. Similarly, AI-Driven 
Thermal Management (A6) ranks lowest in all 
methods, suggesting it may currently offer less 
impact or maturity compared to other strategies. AI-
Optimized Route and Driving Assistance (A3) and 
AI-Powered Regenerative Braking Optimization 

(A4) occupy middle-tier rankings, indicating 
moderate yet stable performance. Minor variances 
across methods, such as the relative positions of 
Predictive Energy Optimization (A1) and AI-
Enabled Smart Charging and Grid Integration (A5), 
suggest that while the overall hierarchy remains 
stable, method-specific criteria can influence the 
finer details of strategy prioritization. 
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Figure 4. Ranking results of three approaches (Üç yaklaşıma ait sıralama sonuçları) 

 

3.2. Sensitivity Analysis (Duyarlılık Analizi) 

Sensitivity analysis is a valuable tool employed to 
evaluate the reliability of a decision-making 
framework by observing how fluctuations in input 
parameters—particularly criteria weights—affect 
the final rankings of alternatives. In this study, 
sensitivity analysis is conducted to investigate the 
impact of changes in the importance levels assigned 
to evaluation criteria on the prioritization of AI-
based energy management strategies for electric 
vehicles. By systematically interchanging the 
weights of each criterion, the analysis reveals 
whether the ranking of strategies remains consistent 
or is significantly altered. A change in the ranking 
order following the modification of a criterion's 
weight indicates that the model is sensitive to that 
specific parameter, highlighting its influence on the 
decision outcome. On the other hand, if the rankings 
remain stable despite weight adjustments, it 
suggests a robust decision-making model. This 
process ensures the consistency and credibility of 
the applied methodology under varying 
assumptions, reinforcing the dependability of the 
results in diverse decision environments.  

In this research, sensitivity analysis is carried out by 
modifying the criterion weights obtained through 
the SWARA method and recalculating the Ratio 
System (RS) scores using the Pythagorean Fuzzy 

MULTIMOORA approach. A total of 21 distinct 
scenarios are analyzed, each involving a pairwise 
swap of weight values between two criteria. For 
instance, the notation 𝑦𝑦𝑖𝑖1-2 indicates a scenario 
where the weight of Criterion 1 is exchanged with 
that of Criterion 2. Figure 5 shows the heatmap of 
RS model scores (𝑦𝑦𝑖𝑖 values) for six alternatives 
(A1–A6) across 21 different sensitivity scenarios, 
each representing a weight swap between a pair of 
evaluation criteria. The heatmap highlights how 
each alternative’s performance fluctuates under 
different weighting conditions. Alternative A2 
(Smart Battery Management Systems) consistently 
scores high across all scenarios, indicating strong 
robustness and insensitivity to weight variations. In 
contrast, “AI-Driven Thermal Management (A6)” 
remains consistently low or negative in all cases, 
suggesting weak overall performance and possibly 
unfavorable evaluation under all weighting 
schemes. Alternatives A1, A3, and A5 show 
moderate variability, with A1 and A5 reaching 
relatively high scores in several scenarios, 
indicating they are sensitive but potentially 
competitive depending on the criteria emphasis. A4 
tends to stay on the lower end but shows some 
resilience in select scenarios.   
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Figure 5. RS Model results across 21 scenarios (RS Modeli sonuçlarının 21 senaryo karşısındaki dağılımı)

Figure 6 shows the ranking results of the 
alternatives across all 21 sensitivity analysis 
scenarios, clearly visualizing the dynamic shifts in 
ranking positions and highlighting the stability of 
top-performing strategies under different evaluation 
perspectives. As observed in the data, Alternatives 
A1 and A2 consistently outperform others, 
frequently securing the 1st and 2nd ranks in most 
scenarios, indicating their robustness and reliability 
under changing priority conditions. In contrast,  

Alternative A6 remains fixed at the 6th position 
across all scenarios, suggesting its relatively poor 
performance regardless of weight variation. 
Alternatives A3, A4, and A5 exhibit more 
variability, occasionally reaching middle-tier 
rankings, but never achieving top ranks 
consistently. This variability indicates that their 
effectiveness is more sensitive to the weight 
distribution of the criteria.  

 

Figure 6. Ranking results of the alternatives across all 21 scenarios (Alternatiflerin 21 senaryo boyunca sıralama 
sonuçları) 
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3.3. Comparative Analysis (Karşılaştırma Analizi) 

To validate the robustness and reliability of the 
proposed SWARA–Pythagorean Fuzzy 
MULTIMOORA framework, a comparative 
analysis was performed using the Pythagorean 
Fuzzy TOPSIS (PF-TOPSIS) method. Such 
comparative evaluations are essential in multi-
criteria decision-making (MCDM) studies, as they 
provide a benchmark for assessing the consistency 
of results and the practical applicability of 
alternative approaches under different decision 
environments. 

The Technique for Order Preference by Similarity 
to Ideal Solution (TOPSIS), originally proposed by 
Hwang and Yoon [19], is a widely adopted MCDM 
method that selects the optimal alternative based on 
its geometric proximity to a positive ideal solution 
(PIS) and its distance from a negative ideal solution 
(NIS). To effectively manage uncertainty in 
decision-making, this method has been extended 
into the Pythagorean fuzzy domain, resulting in the 
Pythagorean Fuzzy TOPSIS (PF-TOPSIS) 
approach. 

This method was selected for comparison due to its 
popularity in the literature, ease of interpretation, 
and ability to offer a reliable ranking mechanism in 
fuzzy environments. On the basis of definition 
above, the procedural steps of the PF-TOPSIS 
method are outlined below:  

Step 10: Calculate Pythagorean fuzzy positive ideal 
solution (PIS) and negative ideal solution (NIS) 
using Equations (20) and (21): 
 
𝑥𝑥+ = �max

𝑖𝑖
〈𝑠𝑠�(𝑥𝑥𝑖𝑖)�〉�𝑗𝑗 = 1,2,⋯ ,𝑛𝑛� =

{〈𝑃𝑃(𝑢𝑢1+,𝑣𝑣1+)〉, 〈𝑃𝑃(𝑢𝑢2+,𝑣𝑣2+)〉,⋯ , 〈𝑃𝑃(𝑢𝑢𝑛𝑛+, 𝑣𝑣𝑛𝑛+)〉},    (20)           

𝑥𝑥− = �min
𝑖𝑖
〈𝑠𝑠�(𝑥𝑥𝑖𝑖)�〉�𝑗𝑗 = 1,2,⋯ ,𝑛𝑛� =

{〈𝑃𝑃(𝑢𝑢1−,𝑣𝑣1−)〉, 〈𝑃𝑃(𝑢𝑢2−,𝑣𝑣2−)〉,⋯ , 〈𝑃𝑃(𝑢𝑢𝑛𝑛−, 𝑣𝑣𝑛𝑛−)〉}.     (21)           

Step 11: Compute distances from Pythagorean 
fuzzy PIS and NIS using Equations (22) and (23): 

𝐷𝐷(𝑥𝑥𝑖𝑖 , 𝑥𝑥+) = ∑ 𝑤𝑤𝑗𝑗𝑑𝑑 �𝐶𝐶𝑗𝑗(𝑥𝑥𝑖𝑖),𝐶𝐶𝑗𝑗(𝑥𝑥+)�𝑛𝑛
𝑗𝑗=1 =

1
2
∑ 𝑤𝑤𝑗𝑗 ���𝜇𝜇𝑖𝑖𝑖𝑖�

2 − �𝜇𝜇𝑗𝑗+�
2� + ��𝑣𝑣𝑖𝑖𝑖𝑖�

2 − �𝑣𝑣𝑗𝑗+�
2� +𝑛𝑛

𝑗𝑗=1

��𝜋𝜋𝑖𝑖𝑖𝑖�
2 − �𝜋𝜋𝑗𝑗+�

2��, 𝑖𝑖 = 1,2,⋯ ,𝑚𝑚,                   (22)    

𝐷𝐷(𝑥𝑥𝑖𝑖 , 𝑥𝑥−) = ∑ 𝑤𝑤𝑗𝑗𝑑𝑑 �𝐶𝐶𝑗𝑗(𝑥𝑥𝑖𝑖),𝐶𝐶𝑗𝑗(𝑥𝑥−)�𝑛𝑛
𝑗𝑗=1 =

1
2
∑ 𝑤𝑤𝑗𝑗 ���𝜇𝜇𝑖𝑖𝑖𝑖�

2 − �𝜇𝜇𝑗𝑗−�
2� + ��𝑣𝑣𝑖𝑖𝑖𝑖�

2 − �𝑣𝑣𝑗𝑗−�
2� +𝑛𝑛

𝑗𝑗=1

��𝜋𝜋𝑖𝑖𝑖𝑖�
2 − �𝜋𝜋𝑗𝑗−�

2��, 𝑖𝑖 = 1,2,⋯ ,𝑚𝑚.                      (23)   

Step 12: Determine the revised closeness ξ(𝑥𝑥𝑖𝑖)  of 
the alternative 𝑥𝑥𝑖𝑖 using Eq. (24): 

ξ(𝑥𝑥𝑖𝑖) = 𝐷𝐷(𝑥𝑥𝑖𝑖,𝑥𝑥−)
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖,𝑥𝑥−) −

𝐷𝐷(𝑥𝑥𝑖𝑖,𝑥𝑥+)
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖,𝑥𝑥+)                        (24)                                                                                    

 
Step 13: Determine the best ranking order of 
alternatives in which the best alternative is the one 
that has the largest revised closeness ξ(𝑥𝑥𝑖𝑖).   

The implementation of the PF-TOPSIS method 
begins with the calculation of the Pythagorean 
Fuzzy Positive Ideal Solution (PIS) and Negative 
Ideal Solution (NIS) using Equations (20) and (21). 
These reference points represent the best and worst 
possible performance across all criteria, 
respectively. The results of these calculations are 
presented as follows: 

𝑥𝑥+ = {P(0.85, 0.15), P(0.50, 0.45), P(0.75, 0.25), 
P(0.85, 0.15), P(0.85, 0.15), P(0.85, 0.15), P(0.75, 
0.25)} 

𝑥𝑥− = {P(0.50, 0.45), P(0.25, 0.75), P(0.35, 0.65), 
P(0.50, 0.45), P(0.65, 0.35), P(0.50, 0.45), P(0.35, 
0.65)}.  

Next, the distances of each alternative from the 
Pythagorean Fuzzy PIS and NIS are determined 
using Equations (22) and (23). Based on these 
distances, the revised closeness coefficient ξ(xᵢ) for 
each alternative is computed using Equation (24). 
This coefficient indicates how close each alternative 
is to the ideal solution, with higher values signifying 
better performance. Table 6 provides a comparison 
between the PF-TOPSIS method and the proposed 
SWARA–Pythagorean Fuzzy MULTIMOORA 
framework. It includes the calculated distances from 
the PIS and NIS, as well as the resulting closeness 
coefficients and rankings for each alternative. 
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Table 6. Comparative results between the PF-TOPSIS method and the proposed approach (PF-TOPSIS 
yöntemi ile önerilen yaklaşım arasındaki karşılaştırmalı sonuçlar) 

Alternative 

PF-TOPSIS Proposed method 

Distances 
from fuzzy 

PIS 

Distances 
from 

fuzzy NIS 

Revised 
closeness Ranking yi Ranking 

Predictive Energy 
Optimization (A1) 0.047 0.086 -0.205 3 0.514 2 

Smart Battery Management 
Systems (A2) 0.041 0.080 -0.133 1 0.546 1 

AI-Optimized Route and 
Driving Assistance (A3) 0.067 0.092 -0.643 4 0.362 4 

AI-Powered Regenerative 
Braking Optimization (A4) 0.072 0.069 -1.019 5 0.209 5 

AI-Enabled Smart Charging 
and Grid Integration (A5) 0.044 0.082 -0.179 2 0.387 3 

AI-Driven Thermal 
Management (A6) 0.083 0.071 -1.253 6 -0.100 6 

The comparative results presented in Table 6 
demonstrate a high degree of consistency between 
the PF-TOPSIS method and the proposed SWARA–
Pythagorean Fuzzy MULTIMOORA framework. In 
both approaches, Smart Battery Management 
Systems (A2) is ranked as the most critical AI-based 
energy management strategy for electric vehicles, 
highlighting its universal importance across 
different evaluation techniques. 

Additionally, AI-Driven Thermal Management 
(A6) consistently appears in the last position, 
indicating its relatively lower priority among the 
evaluated strategies in both methods. The positions 
of other alternatives, such as Predictive Energy 
Optimization (A1) and AI-Enabled Smart Charging 
and Grid Integration (A5), show slight variations 
(e.g., A1 is ranked second in the proposed method 
but third in PF-TOPSIS), yet the overall trend and 
grouping of alternatives remain largely aligned. 

This alignment validates the robustness and 
reliability of the proposed methodology. The 
similarity in rankings across two distinct 
Pythagorean fuzzy MCDM techniques strengthens 
the credibility of the decision-making framework 
and validates the reliability of the weighting and 
ranking procedures employed in this study. 

 

 

4. DISCUSSION  (TARTIŞMA) 

This study addresses a critical challenge in the 
transition toward sustainable transportation by 
evaluating AI-based energy management strategies 
for electric vehicles. As electric vehicles continue to 
gain prominence in global markets, optimizing their 
energy use through intelligent systems becomes 
increasingly essential for improving efficiency, 
performance, and environmental impact. The 
methodological strength of this study lies in the 
integration of the SWARA method and the 
Pythagorean Fuzzy MULTIMOORA approach. 
SWARA effectively captures expert judgment to 
assign meaningful weights to evaluation criteria, 
while the Pythagorean Fuzzy MULTIMOORA 
method offers a robust framework for handling 
uncertainty and imprecision in multi-criteria 
decision-making [20]. By combining these 
approaches, the study ensures both the reliability of 
the input data and the robustness of the final 
rankings, providing valuable insights for 
stakeholders aiming to adopt the most effective AI-
based solutions in EV energy management.  

As a result of the comprehensive evaluation, “Smart 
Battery Management Systems” emerged as the 
highest-ranked strategy among AI-based energy 
management solutions for electric vehicles. This 
outcome is largely due to the vital role these systems 
play in enhancing energy efficiency, prolonging 
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battery life, increasing safety, and optimizing the 
overall operational performance of electric vehicles. 
Predictive maintenance, intelligent charging and 
discharging cycle control, and real-time monitoring 
are all made possible by smart battery management 
systems, and these features immediately reduce 
energy waste and long-term operating expenses. 
According to Ali et al. [21], a smart battery 
management system is one of the main parts of 
electric vehicles (EVs). It not only accurately 
assesses the battery's status but also ensures safe 
operation and prolongs its lifespan. For policy 
makers, these findings emphasize the importance of 
supporting initiatives and investments that facilitate 
the development and deployment of advanced 
battery technologies. Meanwhile, professionals in 
computer engineering and electrical and electronics 
fields can use this insight to guide innovation in AI 
algorithms, embedded systems, and battery health 
analytics. Focusing on this strategy can significantly 
accelerate the transition toward smarter, more 
sustainable, and user-friendly electric mobility 
solutions.  

Following the computational analysis, “Predictive 
Energy Optimization” and “AI-Enabled Smart 
Charging and Grid Integration” rank as the second 
and third most critical AI-based energy 
management strategies for electric vehicles. 
Predictive energy optimization stands out for its 
ability to anticipate energy consumption based on 
dynamic factors such as driving behavior, road 
characteristics, and environmental conditions, 
allowing for proactive and efficient energy use. This 
strategy has been shown to significantly improve 
route planning and reduce energy consumption 
through data-driven models that combine machine 
learning and statistical approaches for real-world 
application [22]. Meanwhile, AI-enabled smart 
charging and grid integration play a vital role in 
aligning EV charging patterns with grid demands, 
enabling efficient load distribution and supporting 
the integration of renewable energy sources. These 
capabilities contribute to both operational cost 
reduction and enhanced grid stability, making this 
strategy indispensable in scaling EV infrastructure 
[23]. For policy makers, these findings offer a 
roadmap for prioritizing investments in predictive 
and intelligent charging technologies to enhance EV 
performance and sustainability. Professionals in 
engineering can strengthen these insights to drive 
innovation in AI models, smart infrastructure 
systems, and intelligent energy forecasting tools. 

In the process of weighting the criteria for 
evaluating AI-based energy management strategies 
for electric vehicles, “Energy Efficiency” emerged 
as the most important criterion, followed by 

“Technological Integration” and “Economic 
Feasibility”. “Energy efficiency” ranks first because 
it directly impacts the core goal of energy 
management—reducing consumption and 
maximizing the driving range of electric vehicles. 
As electric mobility continues to expand, ensuring 
optimal energy use is essential for both 
sustainability and performance. The importance of 
AI technologies in efficiently integrating with 
infrastructure, sensors, and vehicle systems is the 
reason "technological integration" is rated second. 
Without effective integration, even the most 
advanced AI models cannot be fully utilized. 
“Economic feasibility” takes the third spot, 
reflecting the practical necessity for cost-effective 
solutions that can be scaled and adopted by 
manufacturers and consumers alike. These insights 
are particularly valuable for policy-makers, as they 
highlight the need to support strategies that balance 
performance with technological innovation and 
cost. By prioritizing investments and incentives in 
areas that maximize energy savings and enable 
advanced technology deployment at a reasonable 
cost, policy-makers can drive the widespread 
adoption of efficient and intelligent energy 
solutions in the electric vehicle sector.  

These findings offer valuable insights for both 
policy-makers and stakeholders in the electric 
vehicle industry by highlighting which AI-based 
energy management strategies and evaluation 
criteria are most critical for advancing sustainable 
and intelligent mobility. The prioritization of 
strategies such as smart battery management, 
predictive energy optimization, and intelligent 
charging systems underscores the need for 
supportive policies that encourage innovation in AI 
technologies and infrastructure development. 
Additionally, the emphasis on energy efficiency, 
technological integration, and economic feasibility 
as top evaluation criteria provides a clear 
framework for aligning regulatory actions, 
investment decisions, and research initiatives. For 
the electric vehicle industry, these insights help 
guide the development of next-generation energy 
management solutions that are not only technically 
effective but also economically viable and scalable.     

5. CONCLUSION (SONUÇ) 

This study holds significant importance as it 
addresses a critical and underexplored area in the 
field of electric vehicle development—the 
systematic evaluation and prioritization of AI-based 
energy management strategies. While existing 
literature has focused on individual components 
such as battery management, charging 
infrastructure, or general energy optimization, there 
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remains a lack of comprehensive frameworks that 
assess these strategies in an integrated, comparative 
manner. 

This study addresses that gap by integrating the 
SWARA method for determining the importance of 
evaluation criteria with the Pythagorean Fuzzy 
MULTIMOORA method for ranking alternative 
strategies. This hybrid approach enables a robust, 
flexible, and uncertainty-aware evaluation 
framework. The findings offer actionable insights 
for policy-makers, helping them prioritize 
investments and regulatory efforts that support 
sustainable and intelligent mobility solutions. 
Additionally, professionals in computer engineering 
and electrical and electronic engineering can use the 
results to guide the development of AI-driven 
technologies, including smart battery systems, 
predictive control algorithms, and intelligent 
charging infrastructure, all aimed at enhancing the 
performance and sustainability of electric vehicles. 

The findings of this study reveal that among the 
evaluated strategies, “Smart Battery Management 
Systems” emerged as the most critical AI-based 
energy management solution for electric vehicles. 
This highlights the fundamental importance of 
intelligent battery control in enhancing energy 
efficiency, extending battery life, and ensuring 
overall system reliability. “Predictive Energy 
Optimization” ranked second, underscoring the 
value of AI-driven forecasting in managing energy 
consumption based on real-time driving conditions 
and user behavior. “AI-Enabled Smart Charging 
and Grid Integration” ranked third, reflecting the 
growing relevance of intelligent charging solutions 
that optimize load distribution and support the 
stability of the power grid. These results provide 
decision-makers with a data-driven framework for 
identifying the most impactful areas for policy 
development, research investment, and 
technological deployment. By prioritizing strategies 
with the highest potential for improving energy 
efficiency and system integration, stakeholders can 
make informed decisions that accelerate the 
transition toward intelligent and sustainable electric 
vehicle ecosystems. 

Sensitivity analysis was also conducted to examine 
the robustness of the proposed decision-making 
framework. This involved modifying the criterion 
weights initially determined by the SWARA 
method and recalculating the Ratio System (RS) 
scores within the Pythagorean Fuzzy 
MULTIMOORA approach. A total of 21 distinct 
scenarios were created, each involving a pairwise 
exchange of weight values between two criteria to 

observe the resulting changes in strategy rankings. 
The findings of the sensitivity analysis demonstrate 
that, despite the weight alterations, the overall 
ranking of AI-based energy management strategies 
remained largely consistent. This stability confirms 
the reliability and robustness of the evaluation 
model, reinforcing confidence in the prioritization 
outcomes and supporting its application in real-
world decision-making contexts related to electric 
vehicle energy strategy development. 

This study provides a solid foundation for 
evaluating AI-based energy management strategies 
for electric vehicles; however, there are several 
promising directions for future research. Upcoming 
studies can be expanded by incorporating additional 
evaluation criteria to capture broader technical, 
economic, and social dimensions. Moreover, 
increasing the number and diversity of expert 
participants would enhance the reliability and 
generalizability of the results. The proposed 
methodology can also be applied to other decision-
making problems within the transportation and 
energy sectors, such as evaluating smart grid 
technologies, sustainable mobility solutions, or 
alternative fuel systems. Methodologically, the 
framework can be enhanced by integrating 
alternative fuzzy set theories, such as Fermatean 
fuzzy sets or Spherical fuzzy sets, to better represent 
uncertainty in complex environments. Additionally, 
other multi-criteria decision-making (MCDM) 
methods, including CRITIC (CRiteria Importance 
Through Intercriteria Correlation) for objective 
weighting and MARCOS (Measurement of 
Alternatives and Ranking according to the 
Compromise Solution) for ranking alternatives, can 
be explored to further strengthen the decision-
making process. Expanding the application of the 
proposed methodology across different regional or 
country-specific EV ecosystems could also offer 
valuable comparative insights for policymakers and 
practitioners. Moreover, scenario-based or dynamic 
decision-making frameworks can be incorporated to 
reflect real-world fluctuations in energy demand, 
battery performance, and grid interactions. These 
extensions would provide greater flexibility and 
depth in evaluating technological solutions in the 
evolving landscape of electric vehicle innovation. 
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