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Abstract
In this article, we introduce a new stochastic process called the sub-fractional G -Brownian
motion, which serves as an intermediate between the G -Brownian motion and the frac-
tional G -Brownian motion. Although the sub-fractional G-Brownian motion shares some
properties with the fractional G-Brownian motion, it features nonstationary increments.
We then examine key characteristics of the process, such as self-similarity, Hölder continu-
ity, and long-range dependence. Additionally, we propose a method for simulating sample
paths of sub-fractional G-Brownian motion and conclude by simulating linear stochastic
differential equations driven by sub-fractional G-Brownian motion.
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1. Introduction
Modelling the evolution of stochastic systems has become extremely important in many

fields, such as telecommunication networks, finance, turbulence, etc. In recent decades, it
has been frequently assumed that stochastic processes used in modeling are Markovian.
However, this assumption is not always valid, as many studies have shown that real data
exhibit long-range dependence, that is, the state of the process at a given time t depends
not only on the situation at time t, but also on the entire history up to time t. This property
cannot be neglected, as it significantly affects the expected behavior of the system. The
most widely used process that exhibits long-range dependence is the fractional Brownian
motion (fBm), see [3, 14].
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Peng [11] developed the G-framework for risk measures and pricing under uncertainty.
Therefore, the fractional G-Brownian motion (fGBm) was defined by Chen [17] as a cen-
tered G-Gaussian process with stationary increments, self-similarity, and long-range de-
pendence properties. Since then many stochastic systems driven by fGBm have been
introduced [7]. However, the environments we deal with are not always stable and change
at all times, making stationary increments property in real data seldom. Obviously, the
use of inappropriate models leads to inaccuracies in solutions and, subsequently, in optimal
control tasks. Therefore, a stochastic process with non-stationary increments is needed
that preserves the other key properties to enhance the fineness of the stochastic model.

Motivated by the above discussion, we aim to define a new stochastic process that retains
the main properties of the fGBm but features non-stationary increments. This process is
a centered G-Gaussian process with self-similarity and long-range dependence properties,
which we refer to as a "sub-fractional G-Brownian motion" (sfGBm). One example that
motivates our work is climate modeling, where mathematical models are used to simulate
and predict the behavior of the Earth’s climate system. These models help to understand
past and present climate conditions and predict future climate change under different
scenarios. This field is characterized by inherent uncertainties due to the complexity of
the climate system, limited observational data, and imperfect representations of physical
processes. One of the challenges in climate modeling is accurately representing long-term
dependencies and self-similar behaviors observed in climate variables such as temperature,
precipitation, and atmospheric pressure [4, 10]. These characteristics are essential for
capturing the persistence of anomalies (e.g. heat waves or cold spells) and the memory
effect of past climatic events on future conditions. Traditional stochastic models such as
fractional Gaussian processes have been used to address these features but are limited by
their assumption of stationary increments, which does not always align with real-world
climate data. In addition, climate systems are influenced by uncertainties that arise from
multiple sources, including variability in external forcings (e.g., greenhouse gas emissions),
incomplete knowledge of internal dynamics, and measurement errors.

Classical stochastic frameworks struggle to incorporate such uncertainties comprehen-
sively, often leading to oversimplified models. To address these challenges, we propose
the sub-fractional G-Brownian motion (sfGBm) as a novel tool in modeling. For example,
climate data sets are often non-stationary due to natural variability such as El Niño and
La Niña events. Non-stationary stochastic processes can be used to model these variations
[6, 8]. In addition, they can simulate and predict the impacts of future climate change,
taking into account factors such as greenhouse gas emissions and changes in land use. This
can assist in planning adaptation and mitigation strategies. Moreover, climate changes
typically exhibit long-term memory, as current climate states can have long-term influ-
ences on states in the far future. The non-stationarity, the long-memory, and the high
uncertainty of these dynamics can be modeled using stochastic differential equation driven
by a sub-fractional G-Brownian motion.

The remainder of this paper is organized as follows. In Section 2, we provide the essential
concepts of the G-framework. In Section 3, we define sfGBm by means of fGBm. In
addition, we present the moving average representation of the sfGBm. We also investigate
the main theoretical properties such as self-similarity, Hölder’s continuity, and long-range
dependence. Section 4 is dedicated to the simulation of sample paths of the sfGBm.

2. Basic settings
In this section, we review some facts and basic notions about G-expectation theory,

more details may be found in [11–13].
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Let Ω be a given set and let H be a linear space of real-valued functions defined on
Ω. We suppose that H contains all constants and |X| ∈ H if X ∈ H. The space H is
considered the space of random variables.

Definition 2.1. A sub-linear expectation E is a functional E : H −→ R such that

(i) monotonicity:

if X ≥ Y , then E
[
X
]

≥ E
[
Y
]
;

(ii) constant preserving:

E
[
c
]

= c for c ∈ R;

(iii) sub-additivity: For each X,Y ∈ H,

E
[
X + Y

]
≤ E

[
X
]

+ E
[
Y
]
;

(iv) positive homogeneity:

E
[
λX

]
= λE

[
X
]

for λ ≥ 0.

The triple (Ω,H,E) is called a sublinear expectation space. Assume that ϕ(X) ∈ H

if X ∈ H for each ϕ ∈ Cl,lip(Rn), where Cl,lip(Rn) is the space of R-valued functions ϕ
satisfying

|ϕ(x) − ϕ(y)| ≤ C(1 + |x|m + |y|m) |x − y| for all x, y ∈ Rn

for some C > 0 and m ∈ N depending on ϕ.

Definition 2.2. Let X and Y be two real-valued random variables defined on sublin-
ear expectation spaces (Ω,H,E) and (Ω̃, H̃, Ẽ), respectively. They are called identically
distributed, denoted by X

d= Y if

E
[
ϕ(X)

]
= Ẽ

[
ϕ(Y )

]
for any ϕ ∈ Cl,lip(Rn).

Definition 2.3. In a sub-linear expectation space (Ω,H,E), a random vector Y ∈ Hm

is said to be independent of another random vector X ∈ Hn, if for each function test
ϕ ∈ Cl,lip(Rn+m), we have

E
[
ϕ(X, Y )

]
= E

[
E
[
ϕ(x, Y )

]
x=X

]
.

Definition 2.4. A real valued random variable X ∈ H is G-normal distributed, if for
each ϕ ∈ Cl,lip(Rn), the function u(t, x) = E[ϕx +

√
tX] is the unique viscosity solution to

the following parabolic G-heat equation:{
∂tu − G(∂2

xxu) = 0, for (t, x) ∈]0, T ] × R
u(0, x) = ϕ(x), x ∈ R

where G is a generator defined by G (α) = 1
2
(
σ2α+ − σ2α−), α+ := max (α, 0) , and

α− := max (−α, 0) .

Definition 2.5. A process {B(t)}t>0 on a sub-linear expectation space (Ω,H,E) is called
G-Brownian motion if the following properties are fulfilled
(i) B(0) = 0 a.s.;
(ii) For each t, s ≥ 0, the increment B(t + s) − B(t) is N

(
{0} ;

[
σ2s, σ2s

])
-distributed and

independent of (B(t1), B(t2), . . . , B(tn)) for each n ∈ N and t1, t2, . . . , tn ∈ [0, t], where

σ2 = −E
[

− B2(1)
]

and σ2 = E
[
B2(1)

]
.
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Definition 2.6. A process {B1,2(t) : t ∈ R} on a sub-linear expectation space (Ω,H,E)
is called a two-sided G-Brownian motion if for {B(2)(t)}t≥0 independent of {B(1)(t)}t≥0
we have

B1,2(t) =
{

B(1)(t) t ≥ 0
B(2)(−t) t ≤ 0

where {B(1)(t)}t≥0 and {B(2)(t)}t≥0 are G-Brownian motions.

Definition 2.7. A process {X(t)}t∈R in the space (Ω,H,E) is called a centred G-Gaussian
process if for each fixed t ∈ R, X(t) is G-normal distributed by N({0}; [σ2

t , σ2
t ]), where

0 ≤ σt ≤ σt.

Definition 2.8. A centered G-Gaussian process {BH(t), t ∈ R} defined on a sub-linear
expectation space (Ω,H,E), is called a fractional G-Brownian motion with Hurst index
H ∈ (0, 1), if for each s, t ∈ R, we have
(i) BH (0) = 0, a.s.
(ii) 

E
[
BH(t)BH(s)

]
= 1

2σ2
(
|t|2H + |s|2H − |t − s|2H

)
−E
[

− BH(t)BH(s)
]

= 1
2σ2

(
|t|2H + |s|2H − |t − s|2H

)
We denote the fractional G-Brownian motion by fGBm. The moving average represen-

tation of fGBm is defined as follows:

Definition 2.9. The fractional G-Brownian motion with Hurst index H is represented as

BH(t) = cH

∫
R

NH(t, u)dB(u),

where NH(t, u) = (t − u)H−1/2
+ + (u)H−1/2

+ , cH = (2H sin(πH)Γ(2H))1/2

Γ(H+1/2) , and {B(t)}t∈R is a
two-sided G-Brownian motion.

Definition 2.10. If there exists a weakly compact collection P of probability measures
P , defined on (Ω,F(Ω)) then, the capacity Ĉ(·) in relation to P is given by

Ĉ(A) = sup
P ∈P

P (A), A ∈ F(Ω),

where F(Ω) is the Borel σ-algebra of Ω, see [9].

Definition 2.11. A set A is said to be polar if Ĉ(A) = 0. A property holds quasi-surely
(q.s.) if it holds outside a polar.

3. Existence of sub-fractional G-Brownian motion
Similarly to [2], we define the following continuous process under uncertainty as the

sub-fractional G -Brownian motion by means of the fractional G -Brownian motion.

Definition 3.1. Let H ∈ (0, 1) and the process

SH(t) = 1√
2

(BH(t) + BH(−t)), t ≥ 0 (3.1)

where {BH(t) : t ∈ R} is fGBm. Let t, s ≥ 0, the G-Gaussian process (SH(t))t≥0 with
zero mean and “lower, upper" covariances:

E
[
SH(t)SH(s)

]
= σ2(t2H + s2H) − 1

2σ2[(t + s)2H + |t − s|2H
]

−E
[

− SH(t)SH(s)
]

= σ2(t2H + s2H) − 1
2σ2[(t + s)2H + |t − s|2H

] (3.2)
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is called sfGBm.

Remark 3.2. We can compare the worst-case scenario (high-risk) of the covariance in
sfGBm (supremum over σ within the uncertainty set) with the standard covariance of
classical sfBm as follows:

E [SH(t)SH(s)] = sup
σ∈[σ,σ]

Eσ [SH(t)SH(s)] = σ2ζ (t, s) ,

where each Eσ is a classical expectation, because in this case SH behaves like a classical
sfBm since the volatility is determined by σ, then it induces only one specific probability
measure, and ζ (t, s) is the standard covariance function of the sfBm. If σ > 1, the
covariance of sfGBm under the worst-case scenario exceeds that of the standard sfBm.
Similarly, we compare the best-case scenario (low-risk) of the covariance in sfGBm with
the standard covariance of sfBm,

−E [−SH(t)SH(s)] = inf
σ∈[σ,σ]

Eσ [SH(t)SH(s)] = σ2ζ (t, s) .

If σ < 1, the covariance of sfGBm is smaller than that of standard sfBm, reflecting a lower
level of volatility.

Remark 3.3. The case H = 1
2 corresponds to G-Brownian motion. In addition, from the

above definition it is easy to check that

E
[
S2

H(t)
]

= σ2
(
2 − 22H−1

)
t2H ; − E

[
− S2

H(t)
]

= σ2
(
2 − 22H−1

)
t2H .

The following remark is very important, in the next calculus.

Remark 3.4. We have for all functions f, g ∈ L2 (R),∫
R

f(s)dB(s) ; N

(
0,
[
σ2
∫
R

f2(s)ds, σ2
∫
R

f2(s)ds
])

,

consequently,

E
[ (∫

R
f(s)dB(s)

)2 ]
= σ2

∫
R

f2(s)ds,

−E
[

−
(∫

R
f(s)dB(s)

)2 ]
= σ2

∫
R

f2(s)ds,

and

E
[ (∫

R
f(s)dB(s)

)(∫
R

g(s)dB(s)
) ]

= σ2
∫
R

f(s)g(s)ds,

−E
[

−
(∫

R
f(s)dB(s)

)(∫
R

g(s)dB(s)
) ]

= σ2
∫
R

f(s)g(s)ds.

3.1. Moving average representation of sfGBm
Theorem 3.5. Let H ∈ (0, 1), for t > 0, the integral representation of sfGBm {SH(t)}t≥0,
with respect to G-Brownian motion is given by

SH(t) = c′
H

∫
R

KH(t, u)dB(u),

where KH(t, u) = (t−u)H−1/2
+ +(−t−u)H−1/2

+ −2(−u)H−1/2
+ , and c′

H = (sin(πH)Γ(2H+1))1/2

Γ(H+1/2)
√

2 .
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Proof. First, observe that SH(0) = E
[
SH(t)

]
= E

[
− SH(t)

]
= 0. Let s, t ≥ 0, according

to Remark 3.4, we have

E
[
SH(t)SH(s)

]
= (c′

H)2E
[ (∫

R
KH(t, u)dB(u)

)(∫
R

KH(s, u)dB(u)
) ]

= σ2(c′
H)2

∫
R

KH(t, u)KH(s, u)du

= σ2E
[
XH(t)XH(s)

]
,

where (XH(t))t≥0, is the classical sub-fractional Brownian motion [15]. It is well-known
that

E
[
XH(t)XH(s)

]
= t2H + s2H − 1

2
[
(t + s)2H + |t − s|2H],

thus, we obtain the first equation of (3.2). The second equation can be proved similarly
by replacing the E[·] by −E[−·] in the above equation. �

3.2. Properties of the sub-fractional G-Brownian motion
Definition 3.6. A process {X(t)}t∈R in the sub-linear expectation space (Ω,H,E) is
called H-self-similar if

X(at) d= aHX(t) for a > 0.

Theorem 3.7. Let H ∈ (0, 1) and SH(·), be a sfGBm. The following properties are ful-
filled:

(i) Self-similarity:

{SH(at) : t ≥ 0} d=
{

aHSH(t) : t ≥ 0
}

for a > 0.

(ii) Hölder’s continuity: For H ∈ (1
2 , 1), there exists a modification of the process

{SH(t)}t≥0, which is a quasi-surly continuous process, whose paths are γ-Hölder for every
γ ∈ [0, H − 1

2).

(iii) Second moment of increments: For s ≤ t

E
[
(SH(t) − SH(s))2] = −σ222H−1(t2H + s2H) (3.3)

+σ2[(s + t)2H + |t − s|2H ]
−E
[
−(SH(t) − SH(s))2] = −σ222H−1(t2H + s2H) (3.4)

+σ2[(s + t)2H + |t − s|2H]
(iv) Moving average representation: Let H ∈ (0, 1), for t > 0, the sfGBm process

{SH(t)}t≥0 admits the following representation with respect to G-Brownian motion

SH(t) = c′
H

∫
R

KH(t, u)dB(u),

where KH(t, u) = (t−u)H−1/2
+ +(−t−u)H−1/2

+ −2(−u)H−1/2
+ and c′

H = (sin(πH)Γ(2H+1))1/2

Γ(H+1/2)
√

2 .

Remark 3.8. If we set σ2 = σ2 = 1 in (3.3), then,

E[(SH(t) − SH(s)]2] = −22H−1(t2H + s2H) + (t + s)2H + |t − s|2H .

Thus, {SH(t)}t≥0 is nothing but the classical sub-fractional Brownian motion.
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Proof. (i): From Definition 3.1, the sfGBm (SH(t))t≥0 is centred and we have
E
[
S2

H(at)
]

= σ2(2 − 22H−1)(at)2H

= a2HE
[
S2

H(t)
]
,

and
−E
[

− S2
H(at)

]
= σ2(2 − 22H−1)(at)2H

= −a2HE
[
S2

H(t)
]
.

Note that
SH(at) ; N

(
0;
[

− E
[

− S2
H(at)

]
,E
[
S2

H(at)
]])

.

It follows that
SH(at) ; N

(
0;
[

− a2HE
[

− S2
H(t)

]
, a2HE

[
S2

H(t)
]])

.

Since
aHSH(t) ; N

(
0;
[

− a2HE
[

− S2
H(t)

]
, a2HE

[
S2

H(t)
]])

,

then
SH(at) d= aHSH(t),

thus the H-self-similarity.
(ii): By the representation (3.1), we have

E
[
|SH(t) − SH(s)|2

]
≤ 1

2E
[
(|BH(t) − BH(s)| + |BH(−t) − BH(−s)|)2 ]

≤ 2E
[
|BH(t) − BH(s)|2 + |BH(−t) − BH(−s)|2

]
≤ 2

(
E
[
|BH(t) − BH(s)|2

]
+ E

[
|BH(−t) − BH(−s)|2

])
,

by stationary of increments and self-similarity properties of the fGBm (BH(t))t∈R, yields

E
[
|SH(t) − SH(s)|2

]
≤ 2

(
E
[
|BH(t − s)|2

]
+ E

[
|BH(s − t)|2

])
≤ 4E

[
|BH(1)|2

]
|t − s|2H ,

hence by Theorem 36 in [9], we conclude.
(iii): Follows from the facts that

E
[
(SH(t) − SH(s))2] = σ2(c′

H)2
∫
R

(KH(t, u) − KH(s, u))2 du

= σ2E
[
(XH(t) − XH(s))2 ]

and

−E
[

− (SH(t) − SH(s))2] = σ2(c′
H)2

∫
R

(KH(t, u) − KH(s, u))2 du

= σ2E
[
(XH(t) − XH(s))2 ].

(iv): Already proved in the Theorem 3.5 �

Proposition 3.9. For 0 ≤ s < t define C(s, t) and C(s, t) as follows
C(s, t) = E

[
(SH(t) − SH(s))2],

and
C(s, t) = −E

[
− (SH(t) − SH(s))2].

Then, for |t − s| → 0, we have
C(s, t) ∼ σ2|t − s|2H (3.5)



606 Kebiri, O., Boumezbeur, Z., Eddahbi, M., Boutabia, H.

and
C(s, t) ∼ σ2|t − s|2H (3.6)

Proof. We put h = t − s. Then by substitution in (3.3), we obtain

C(s, t) = −σ222H−1
(
(s + h)2H + s2H

)
+ σ2[(2s + h)2H + h2H]

= −σ222H−1s2H

((
1 + h

s

)2H

+ 1
)

+σ222Hs2H
(

1 + h

2s

)2H

+ σ2h2H .

By Taylor’s expansion to second order when h → 0, we derive that(
1 + h

s

)2H

= 1 + 2H
h

s
+ 2H (2H − 1)

2
h2

s2 + o
(

h2

s2

)
,

(
1 + h

2s

)2H

= 1 + 2H
h

2s
+ 2H (2H − 1)

2
h2

4s2 + o
(

h2

s2

)
,

thus

E
[
(SH(t) − SH(s))2] = σ2h2H + o

(
h

s

)
.

Similarly, we prove (3.6). �

Remark 3.10. From Proposition 3.9, it turns out that the increments of SH(·) are not
stationary, but roughly stationary when the increments are very small. This is one of the
main features of sfGBm.

Definition 3.11. A process {Y (t)}t≥0, in the space (Ω,H,E) is called long-memory of
order n ∈ N, if ∑

k

|r(n, k)| =
∑

k

|r(n, k)| = ∞,

and short memory of order n ∈ N, if∑
k

|r(n, k)| < ∞,
∑

k

|r(n, k)| < ∞,

where

r(n, k) = E[Y (n)Y (n + k)], and r(n, k) = −E[−Y (n)Y (n + k)].

Remark 3.12. If the process (Y (t))t≥0 has a stationary increments, then the long-memory
(resp. short memory) of order n, is nothing but the long-memory (resp. short memory).

Theorem 3.13 (Long-range dependence). The process {SH(t)}t≥0 has a long-memory for
H ∈ (0, 1

2) and a short memory for H ∈ (1
2 , 1) for every order n ∈ N.

Proof. We have,

r(n, k) = σ2
(
n2H + (n + k)2H

)
− 1

2σ2
(
(2n + k)2H + |k|2H

)
= k2Hσ2

((
n

k

)2H

+
(

1 + n

k

)2H
)

− 1
2k2Hσ2

((
1 + 2n

k

)2H

+ 1
)

.

By Taylor’s expansion when k large enough, we obtain

r(n, k) ∼ σ2H (1 − 2H) n2k2H−2,
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thus, ∑
k

|r(n, k)| =
{

is finite, H ∈ (0, 1
2)

infinite, H ∈ (1
2 , 1)

Similarly, we can derive the second expression of r(n, k). Then, we conclude. �

4. Simulation of the sfGBm
To simulate the sfGBm process, we basically had to go through three main steps:

• Based on [18], and using the explicit Euler scheme, we have numerically solved the
G-heat equation, which enables us to simulate the G-normal distribution and then
the corresponding density as the following:

The G-heat equation can be written as
∂u

∂t
− G

(
∂2u

∂x2

)
= 0,

where G (a) = 1
2 sup

σ∈[σ,σ]
σ2a. For simplicity, this is often reformulated as

∂u

∂t
= sup

σ∈[σ,σ]

σ2

2
∂2u

∂x2 .

The discrete form of the equation is given by

un
i+1 = un

i + ∆tG

(
un

i+1 − 2un
i + un

i−1

(∆x)2

)
where, un

i is the value of u at spatial point i and time step n; ∆t is the time step
size; ∆x is the spatial grid spacing.The operator G accounts for uncertainty in
volatility. Numerically, this can be handled by evaluating the supremum at each
spatial grid point i during every time step n,

G

(
∂2u

∂x2

)
=
{

1
2σ2 ∂2u

∂x2 , if ∂2u
∂x2 > 0,

1
2σ2 ∂2u

∂x2 , if ∂2u
∂x2 < 0.

The solution u(x, t) is interpreted as the density of the G-normal distribution.
Figure 1 shows the G-normal distribution with σ2 = 0.3 and σ2=0.6.

Figure 1. G-normal distribution, σ2 = 0.3 and σ2=0.6
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• After solving the G-heat equation and deriving the G-normal distribution, we
were able to simulate both the G-Brownian motion and the fractional G-Brownian
motion. This is because the increments of both processes follow a G-normal dis-
tribution.

• In the last step, we simulated the sfGBm through the moving average representa-
tion.

The simulation method of sfGBm through the moving average representation used here
is similar to the technique of [1], in the simulation of the classical sub-fractional Brownian
motion, namely, since the increments of the sfGBm are non-stationary, then we use its
integral representation with respect to the G-Brownian motion as given in Theorem 3.5.
We have

SH(t) = c′
H

∫
R

[
(t − u)H−1/2

+ + (−t − u)H−1/2
+ − 2(−u)H−1/2

+
]
dB(u),

where c′
H = (sin(πH)Γ(2H+1))1/2

Γ(H+1/2)
√

2 .
The idea is to approximate the path of the process SH by a sequence (SH(n))1≤n≤N ,
N ∈ N. To this end, we express SH(n) by its increments as follows:

SH(n) =
n∑

k=1
(SH(k) − SH(k − 1)) =

n∑
k=1

ZH(k),

where

ZH(k) = c′
H

∫
R

([
(k − u)H−1/2

+ − (k − 1 − u)H−1/2
+

]
+
[
(−k − u)H−1/2

+ − (−k − u + 1)H−1/2
+

])
dB(u).

We make the change of variables in the above integral, z = k − u and we obtain for all
1 ≤ k ≤ n,

ZH(k) = −c′
H

∫
R

([
(z)H−1/2

+ − (z − 1)H−1/2
+

]
+
[
(z − 2k)H−1/2

+ − (z − 2k + 1)H−1/2
+

])
dB(k − z)

= −c′
H

∫
R

h(z)dB(k − z),

where

h(z) = [(z)H−1/2
+ − (z − 1)H−1/2

+ ] + [(z − 2k)H−1/2
+ − (z − 2k + 1)H−1/2

+ ].

Then, we approximate the increments of the G-Brownian motion as follows:
Let m, M ∈ N:

∆B(mk − j) = −
∫ j

m

j−1
m

dB(k − z),

therefore, the approximation Zm,M,H(k) of ZH(k), for 1 ≤ k ≤ n, can be written as the
following,

Zm,M,H(k) = c′
H

mM∑
j=1

h

(
j

m

)
∆B (mk − j) .

In the end, we compute the sample path SH(n), 1 ≤ n ≤ N , by means of Zm,M,H(k),
1 ≤ k ≤ n. Hereafter, we give a simple example of the simulation of sfGBm produced by
Python. We set σ2 = 0.3, σ2 = 0.6, H = 0.85, and n = 5. The increments of the sfGBm
can be generated as shown in Figure 2.
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Figure 2. sfGBm increments, n = 5, σ2 = 0.3 and σ2=0.6

Remark 4.1. From Figure 2, it is clear that the increments of the sfGBm are non-
stationary, which is one of the key features of this process.

Next, we represent the simulation of the sfGBm, see Figure 3:

Figure 3. sfGBm, n = 5, σ2 = 0.3 and σ2 = 0.6

Now, we use this simulation to calculate an estimated value of

E
[
(SH(t) − SH(s))2].

We set t = 1, s = t
2 , σ2 = 0.3, σ2 = 0.6, n = 100, thus

E
[
(SH(t) − SH(s))2] ≈ 0.1140,

and the estimated value derived from Theorem 3.7 is 0.1053. Therefore, the difference
between the two values is 0.0087, which exhibits good estimation.

5. Stochastic integral with respect to sfGBm
Since the sfGBm is neither a Markov processes nor a semi-martingale, and all we have

is the Hölder’s continuity of the paths. Then, it is possible to define the Riemann-Stieltjes
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integral w.r.t. sfGBm by using p-variation. Let ΠN : 0 = t0 < t1 < . . . < tN = T be a
partition of [0, T ], p > 0. The p-variation of a function f : [0, T ] → R, is defined by

V p(f, ΠN ) =
N−1∑
i=0

|f(ti+1) − f(ti)|p.

Let V p(f) := supΠN
V p(f, ΠN ) and V p

0 (f) := lim|ΠN |→0 V p(f, ΠN ), where |ΠN | stands for
the mesh of the subdivision ΠN > Then, f has a bounded p-variation if V p(f) is finite and
a finite p-variation if V p

0 (f) is finite. Consequently, we define the p-variation of the sfGBm
by

V p(SH , Π) =
N−1∑
i=0

|SH(ti+1) − SH(ti)|p.

Proposition 5.1. For p > 0, we have
(i)

V p
0 (SH) = 0, V p(SH) < ∞, if p >

1
H

.

(ii)

V p
0 (SH) = V p(SH) = E

[
|N
(
0,
[
σ, σ

])
|p), if p = 1

H
.

(iii)

V p
0 (SH) = V p(SH) = ∞, if p <

1
H

,

where N
(
0,
[
σ, σ

])
is G-Gaussian distribution.

The above proposition can be proved similarly to the proof of Proposition 2.3 in [15].
See also [16] for more further properties.

Remark 5.2. From the above proposition, it is it is straightforward to see that SH has a
p-bounded variation and a p-finite variation for p ≥ 1

H .

According to [19], if u(·) and w(·) be continuous paths such that u(·) has p-bounded
variation and w(·) has q-bounded variation, where 1

p+1
q > 1, then the integral

∫ t
0 u(s)dw(s),

can be defined as Riemann-Stieltjes sum. More precisely, Feyel and Pradelle in [5] proved
that if u(·)) (resp. w(·))), is α-Hölder (resp. β-Hölder) with α + β > 1, then the integral∫ t

0 u(s)dw(s) is well defined and is β-Hölder. In addition, we have for 0 < ε < α + β − 1∣∣∣∣∣
∫ T

0
u(s)dw(s)

∣∣∣∣∣ ≤ Cα,β ‖u‖[0,T ],α ‖w‖[0,T ],β T ε+1,

where

‖v‖[0,T ],α = sup
t6=s,0≤s<t≤T

|v(t) − v(s)|
|t − s|α

.

Consequently, we define the stochastic integral w.r.t. sfGBm as follows:

Definition 5.3. Let {u(t)}t∈[0,T ] be a process with p-bounded variation and p < 1
1−H .

The Riemann-Stieltjes integral
∫ t

0 u (r) dSH (r) is well-defined. Moreover, if u is α-Hölder
for some α > 1 − H, then the integral

∫ t
0 u (r) dSH (r) has β-Hölder paths for β < H.
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5.1. Wiener integral and sfGBm
We also characterize the Wiener integral with respect to SH in time interval [0, T ]. Let

Γ be the family of elementary deterministic functions, i.e.,

Γ =
{

f : [0, T ] → R, f =
N−1∑
i=0

ai11[ti,ti+1)

}
,

where ai is the value of f on the interval [ti, ti+1). For f ∈ Γ, we define the Wiener integral
in the natural way by∫ T

0
f(s)dSH(s) : =

N−1∑
i=0

ai(SH(ti+1) − SH(ti)).

The stochastic integral can be extended to bigger spaces of functions. Let V([0, T ]) be the
space of continuous functions f : [0, T ] → R, endowed with the norm:

‖f‖2
V([0,T ]) : =

∫ T

0
|f(s)|2 ds < ∞,

and L2
G(Ω) be the space of square-integrable random variables X : Ω → R such that

‖X‖2
L2

G(Ω) : = E |X|2 < ∞.

Now, we come up to define the stochastic integral for f ∈ V([0, T ]). Let the mapping
I : V([0, T ]) → L2

G(Ω) defined by

I(f) : =
∫ T

0
f(s)dSH(s),

and we have the following remark.

Remark 5.4. For f, g ∈ V (R), we have∫
R

f(s)dSH(s) ; N
(
0,
[
σ1, σ2

])
,

where

σ1 = σ2
(
2 − 22H−1

) ∫
R

f2(s)ds and σ2 = σ2
(
2 − 22H−1

) ∫
R

f2(s)ds.

In addition,

E
[ (∫

R
f(s)dSH(s)

)(∫
R

g(s)dSH(s)
) ]

= σ2
(
2 − 22H−1

) ∫
R

f(s)g(s)ds,

and

−E
[

−
(∫

R
f(s)dSH(s)

)(∫
R

g(s)dSH(s)
) ]

= σ2
(
2 − 22H−1

) ∫
R

f(s)g(s)ds.

Let f ∈ V([0, T ]), then there exists a sequence of elementary functions (fn) ⊂ Γ such
that ‖fn − f‖V([0,T ]) → 0, as n → ∞. For n, k ∈ N, n ≥ k, we have

‖I (fn) − I (fk)‖2
L2

G(Ω) = E
[∣∣∣ ∫ T

0
(fn(s) − fk(s))dSH(s)

∣∣∣2].
According to the above Remark, we can write

‖I (fn) − I (fk)‖2
L2

G(Ω) ≤ C

∫ T

0
|fn(s) − fk(s)|2 ds

= C ‖fn − fk‖2
V([0,T ])

≤ 2C
(
‖fn − f‖2

V([0,T ]) + ‖f − fk‖2
V([0,T ])

)
,
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where C = σ2(2−22H−1). It is clear that the right-hand side of the above inequality tends
to zero when n, k → ∞. This implies that (

∫ T
0 fn(s)dSH(s))n≥0, is a Cauchy sequence in

L2
G(Ω), which is a complete space, then we conclude that (

∫ T
0 fn(s)dSH(s))n≥0 converges

to a limit in L2
G(Ω). Therefor, we put

I(f) =
∫ T

0
f(s)dSH(s) = lim

n→∞

∫ T

0
fn(s)dSH(s).

5.2. Quadratic variation process of sfGBm:
Let ΠN

t , N ≥ 1, be a sequence of partitions of [0, t]. It is clear that

S2
H(t) =

N−1∑
i=0

(
S2

H(tN
i+1) − S2

H(tN
i )
)

=
N−1∑
i=0

2SH(tN
i )
(
SH(tN

i+1) − SH(tN
i )
)

+
N−1∑
i=0

(SH(tN
i+1) − SH(tN

i ))2.

When the Mesh(ΠN
t ) → 0, the term

N−1∑
i=0

2SH(tN
i )
(
SH(tN

i+1) − SH(tN
i )
)

converges to

2
∫ t

0
SH(s)dSH(s), in L2

G(Ω),

and the second term
N−1∑
i=0

(SH(tN
i+1) − SH(tN

i ))2.

converges to the limit denoted by 〈SH〉t,

〈SH〉t : = S2
H(t) − 2

∫ t

0
SH(s)dSH(s).

Note that from the above construction, the quadratic variation process of the sfGBm
(〈SH〉t)t≥0 is an increasing process with 〈SH〉0 = 0. Now, we define the stochastic integral
of a process with respect to 〈SH〉.

Definition 5.5. For each ϕ ∈ M1,0
G (0, T ) of the form

ϕt =
N−1∑
i=0

ξi11[ti,ti+1),

we define

Q(ϕ) =
∫ T

0
ϕtd 〈SH〉t : =

N−1∑
i=0

ξi

(
〈SH〉ti+1

− 〈SH〉ti

)
.

The mapping Q : M1,0
G (0, T ) → L1

G(Ω) can be extended continuously to M1
G(0, T ).

Lemma 5.6. For each ϕ ∈ M1
G(0, T ), we have

E
[
|Q (ϕ)|

]
≤ σ2E

[ ∫ T

0
|ϕt|2H dt

]
.

The proof of the above Lemma is omitted because it can be performed similarly to the
proof of Lemma 3.4.3 in [13].
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5.3. Stochastic differential equations driven by sfGBm:
Consider the following G-SDE driven by a sfGBm for t ∈ [0, T ]

Xt = X0 +
∫ t

0
f(s, Xs)ds +

∫ t

0
g(s, Xs)dSH(s) +

∫ t

0
h(s, Xs)d〈SH〉s, (5.1)

where the initial condition X0 ∈ R, f, g, h are given functions such that f(·, x), g(·, x),
h(·, x) ∈ M2

G(0, T ;R) and satisfying the following hypotheses: for each t ∈ [0, T ], x, y ∈ R
and J = f, g, h.

(H1) There exists a positive constant L such that

|J(t, x) − J(t, y)| ≤ L |x − y|

(H2) There exists a positive constant K such that

|J(t, x)| ≤ K |x| .

In order to prove the existence and uniqueness of the solution, we first introduce the
following mapping on [0, T ] :

θ : M2
G (0, T ;R) → M2

G (0, T ;R)

such that

θ(X)t = X0 +
∫ t

0
f(s, Xs)ds +

∫ t

0
g(s, Xs)dSH(s) +

∫ t

0
h(s, Xs)d〈SH〉s.

The following Lemma proves that the mapping θ is well-defined.

Lemma 5.7. Under the hypothesis (H2), we have

E
[

sup
0≤t≤T

|Xt|2
]

< ∞.

Proof. We have

E
[

sup
0≤t≤T

|Xt|2
]

≤ 4 |X0|2 + 4E
[∣∣∣ ∫ T

0
f(s, Xs)ds

∣∣∣2]
+4E

[∣∣∣ ∫ T

0
g
(
s, Xs

)
dSH(s)

∣∣∣2]+ 4E
[∣∣∣ ∫ T

0
h(s, Xs)d 〈SH〉s

∣∣∣2],
we use the hypothesis (H2), we obtain

E
[

sup
0≤t≤T

|Xt|2
]

≤ 4 |X0|2 + C

∫ T

0
E
[

sup
0≤t≤s

|Xt|2
]
ds,

where C is a positive constant. By the Grönwall’s inequality

E
[

sup
0≤t≤T

|Xt|2
]

≤ 4 |X0|2 eCT < ∞.

The proof is complete. �

Now, we can state the existence-uniqueness theorem.

Theorem 5.8. The G-SDE (5.1) admits a unique solution (Xt)0≤t≤T ∈ M2
G (0, T ;R).
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Proof. It suffices to show that θ is a contraction mapping: Let X, Y ∈ M2
G(0, T ;R) with

X0 = Y0, then we have

E
[
|θ(X)t − θ(Y )t|2

]
≤ 3E

[∣∣∣ ∫ t

0
(f(s, Xs) − f(s, Ys)) ds

∣∣∣2]
+3E

[∣∣∣ ∫ T

0
(g(s, Xs) − g(s, Ys)) dSH(s)

∣∣∣2]
+3E

[∣∣∣ ∫ T

0
(h(s, Xs) − h(s, Ys)) d 〈SH〉s

∣∣∣2]
We use the hypothesis (H1), we can write

E
[
|θ(X)t − θ(Y )t|2

]
≤ C

∫ T

0
E
[
|Xs − Ys|2

]
ds

where C is a positive constant. We multiply the both sides of the above inequality by
e−2Ct, and integrate them on [0, T ], we obtain∫ T

0
E
[
|θ(X)t − θ(Y )t|2

]
e−2Ctdt ≤ C

∫ T

0
e−2Ct

∫ t

0
E
[
|Xs − Ys|2

]
dsdt

≤ C

∫ T

0

∫ T

s
e−2CtdtE

[
|Xs − Ys|2

]
ds

= 1
2

∫ T

0

(
e−2Cs − e−2CT

)
E
[
|Xs − Ys|2

]
ds

thus ∫ T

0
E
[
|θ(X)t − θ(Y )t|2

]
e−2Ctdt ≤ 1

2

∫ T

0
e−2CtE

[
|Xt − Yt|2

]
dt.

Note that, the norms(∫ T

0
E
[
|Xt|2

]
e−2Ctdt

) 1
2

and
(∫ T

0
E
[
|Xt|2

]
dt

) 1
2

are equivalent in M2
G (0, T ;R). Consequently, θ is a contraction mapping and its fixed

point is the unique solution of the G-SDE (5.1). �

5.4. Numerical simulation of SDEs driven by sfGBm
In this part, we simulate the solution of linear SDE driven by sfGBm by using the

Euler-Maruyama scheme. Given the following linear G-SDE{
dXt = Xtdt + XtdSH(t) + Xtd 〈SH〉t t ∈ [0, 1]
X0 = 1 , (5.2)

In the following simulations, we assume the parameters values are H = 0.6, σ2 = 0.2 and
σ2 = 0.5. We compute the approximate solution as follows: Let N ∈ N, and 0 = t0 <
t1 < t2 < . . . < tN = 1 be a grid points of the interval [0, 1] such that tn = n

N . For
n = {0, 1, 2, . . . , N − 1}, we have

Xt0 = X0

Xtn+1 = Xtn + Xtn(tn+1 − tn) + Xtn(SH(tn+1) − SH(tn))
+Xtn

(
〈SH〉tn+1

− 〈SH〉tn

)
.

We implement the above algorithm; then we obtain Figure 4.
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Figure 4. Approximate solutions of equation (5.2).

The expected value of Xt at t = 1, is approximately equal to 2.710. Now, let us take
the above G-SDE and omit the quadratic variation term, namely{

dXt = Xtdt + XtdSH(t), t ∈]0, 1]
X0 = 1 (5.3)

Our goal is to simulate this G-SDE, then we compare it with the exact solution, which we
will inspire by the classical fractional SDE. Figure 5, represents the approximate solutions
of G-SDE (5.3)

Figure 5. Approximate solutions of equation (5.3).

The expected value of Xt at the final time t = 1, is approximately equal to 2.621. We
claim that the exact solution of the equation (5.3) is given by

Xt = et+SH(t), t ∈ [0, 1].

Indeed, this is inspired by the exact solutions of linear SDEs driven by a fractional Brow-
nian motion. Next, using the exact solution, we calculate the expected value of Xt at the
final time t = 1, obtaining 2.675. This results in an error of less than 0.06, which supports
the credibility of our claim.
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6. Conclusion
In this article, we introduced a new stochastic process under volatility uncertainty,

termed sub-fractional G-Brownian motion (sfGBm). The process is defined through a
fractional G-Brownian motion, and we explored its key properties such as self-similarity,
Hölder continuity, and long-memory. A notable feature of sfGBm is that its increments
are non-stationary, which, together with volatility uncertainty, makes simulation more
complex. To address this, the simulation is based on the moving average representation
of sfGBm. We also defined the stochastic integral with respect to this process and its
quadratic variation, enabling the simulation of solutions to linear stochastic differential
equations (SDEs) driven by sfGBm. This process holds promise for modeling situations
that require capturing both variability and uncertainty in systems.
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