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Abstract

Let G be a permutation group on a set Ω. Then for each g ∈ G, we define the movement of
g, denoted by move(g), the maximal cardinality |∆g\∆| of ∆g\∆ over all subsets ∆ of Ω.
And the movement of G is defined as the maximum of move(g) over all g ∈ G, denoted by
move(G). A permutation group G is said to have bounded movement if it has movement
bounded by some positive integer m, that is move(G) ≤ m. In this paper, we consider the
finite transitive permutation groups G with movement move(G) = m for some positive
integer m > 4, where G is not a 2-group but in which every non-identity element has
the movement m or m − 4, and there is at least one non-identity element that has the
movement m − 4. We give a characterization for elements of G in Theorem 1.1. Further,
we apply Theorem 1.1 to characterize transitive permutation group G in Theorem 1.2.
These results give a partial answer to the open problem posed by the authors in 2024.
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1. Introduction

Let G be a permutation group on a set Ω. Then for each g ∈ G, we define the movement
of g, denoted by move(g), the maximal cardinality |∆g\∆| of ∆g\∆ over all subsets ∆
of Ω. And the movement of G is defined as the maximum of move(g) over all g ∈ G,
denoted by move(G). A permutation group G is said to have bounded movement if it has
movement bounded by some positive integer m, that is move(G) ≤ m.

The permutation groups with bounded movement have been studied extensively in the
past a few decades, see [1–6, 8–10]. It was shown in [9] that if permutation group G has
bounded movement m, and if G has no fixed points in Ω, then Ω is finite, and |Ω| is
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bounded by a function of m. In particular, if G is transitive, then |Ω| ≤ 3m. In [8],
the authors completed the proof of a conjecture of Gardiner and Praeger that the only
transitive groups on a set of size 3m which have movement m are transitive permutation
groups of exponent 3 when m is a power of 3, the symmetric group S3 in its natural
representation on a set of three points, and the alternating groups A4 and A5, in their
transitive representation on six points. The transitive permutation groups with bounded
movement having maximal degree were classified by A.Hassni et al in [6]. In 2005, Alaeiyan
and Yoshiara considered the permutation groups G of minimal movement, and showed that
if G is not a 2-group and p is the least odd prime diving the order of G, then |Ω| ≤ 4m − p
or n = 4m − p + 2. Moreover, the groups G attaining the maximum bound were classified,
see [4]. Recently, the transitive permutation groups G with bounded movement m, such
that G is not a 2-group but in which every non-identity element has movement m, m or
m − 1, and m or m − 2 are classified in [1–3], respectively.

In 2024, we characterized all transitive permutation groups G with movement move(G) =
m for some positive integer m, where G is not a 2-group but in which every non-identity
element has the movement m or m − 3, and there is at least one non-identity element that
has the movement m − 3 in [7]. In the same paper, we posed an open problem.

Open problem. Characterize the finite transitive permutation groups G with move-
ment move(G) = m, where G is not a 2-group but in which there is at least one non-identity
element that the movement is less than m.

In this paper, we give a characterization of transitive permutation groups G with move-
ment move(G) = m, where G is not a 2-group but in which every non-identity element
has the movement m or m − 4, and there is at least one non-identity element that has the
movement m − 4. This gives a partial answer to the open problem above. First, we give
a characterization for elements in G.

Theorem 1.1. Let G be a transitive permutation group on a set Ω with no fixed point in
Ω, and let move(G) = m for some positive integer m > 4. Suppose that every non-identity
element in G has the movement m or m−4. Let 1 ̸= g ∈ G and g = c1c2 · · · ct as a product
of disjoint cycles of lengths l1, l2, · · · , lt. Then one of the following holds:

(1) g := g∗
2a = c1c2 · · · ct with l1 = l2 = · · · = lt = 2a for a ≥ 1, and move(g) = t2a−1;

g := g∗
p = c1c2 · · · ct with l1 = l2 = · · · = lt = p an odd prime, and move(g) = tp−1

2 ;
(2) t = 1, g := g8p = c1 with p an odd prime, l1 = 8p, and move(g) = 4p;
(3) t = 2, g := g5,25 = c1c2 with l1 = 5 and l2 = 25, and move(g) = 14;
(4) t = 2, g := g25,25 = c1c2 with l1 = l2 = 25, and move(g) = 24;
(5) t = 2, g := g4,4p = c1c2 with p an odd prime, l1 = 4 and l2 = 4p, and move(g) =

2 + 2p;
(6) t = 2, g := g4p,4p = c1c2 with p an odd prime, l1 = l2 = 4p, and move(g) = 4p;
(7) t = 3, g := g5,5,40 = c1c2c3 with l1 = l2 = 5 and l3 = 40, and move(g) = 24;
(8) t = 3, g := g5,5,8 = c1c2c3 with l1 = l2 = 5 and l3 = 8, and move(g) = 8;
(9) t = 4, g := g4,4,5,5 = c1c2c3c4 with l1 = l2 = 4 and l3 = l4 = 5, and move(g) = 8;

(10) t = 4, g := g3,3,3,9 = c1c2c3c4 with l1 = l2 = l3 = 3 and l4 = 9, and move(g) = 7;
(11) t = 4, g := g3,3,9,9 = c1c2c3c4 with l1 = l2 = 3 and l3 = l4 = 9, and move(g) = 10;
(12) t = 4, g := g3,9,9,9 = c1c2c3c4 with l1 = 3 and l2 = l3 = l4 = 9, and move(g) = 13;
(13) t = 4, g := g9,9,9,9 = c1c2c3c4 with l1 = l2 = l3 = l4 = 9, and move(g) = 16;
(14) t = 4, g := g2,2,2,2p = c1c2c3c4 with p an odd prime, l1 = l2 = l3 = 2 and l4 = 2p,

and move(g) = 3 + p;
(15) t = 4, g := g2,2,2p,2p = c1c2c3c4 with p an odd prime, l1 = l2 = 2 and l3 = l4 = 2p,

and move(g) = 2p + 2;
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(16) t = 4, g := g2,2p,2p,2p = c1c2c3c4 with p an odd prime, l1 = 2 and l2 = l3 = l4 = 2p,
and move(g) = 3p + 1;

(17) t = 4, g := g2p,2p,2p,2p = c1c2c3c4 with p an odd prime, l1 = l2 = l3 = l4 = 2p, and
move(g) = 4p;

(18) t = 4, g := g3,3,15,15 = c1c2c3c4 with l1 = l2 = 3 and l3 = l4 = 15, and move(g) =
16;

(19) t = 4, g := g4,5,5,20 = c1c2c3c4 with l1 = 4, l2 = l3 = 5 and l4 = 20, and
move(g) = 16;

(20) t = 4, g := g5,5,20,20 = c1c2c3c4 with l1 = l2 = 5 and l3 = l4 = 20, and move(g) =
24;

(21) t = 5, g := g3,3,3,3,8 = c1c2c3c4c5 with l1 = l2 = l3 = l4 = 3 and l5 = 8, and
move(g) = 8;

(22) t = 5, g := g3,3,3,5,15 = c1c2c3c4c5 with l1 = l2 = l3 = 3, l4 = 5 and l5 = 15, and
move(g) = 12;

(23) t = 5, g := g3,3,3,3,24 = c1c2c3c4c5 with l1 = l2 = l3 = l4 = 3 and l5 = 24, and
move(g) = 16;

(24) t = 6, g := g3,3,3,3,5,5 = c1c2c3c4c5c6 with l1 = l2 = l3 = l4 = 3 and l5 = l6 = 5,and
move(g) = 8;

(25) t = 6, g := g3,3,3,3,4,4 = c1c2c3c4c5c6 with l1 = l2 = l3 = l4 = 3 and l5 = l6 = 4,and
move(g) = 8;

(26) t = 6, g := g2,2,2,2,5,5 = c1c2c3c4c5c6 with l1 = l2 = l3 = l4 = 2 and l5 = l6 = 5,and
move (g) = 8;

(27) t = 6, g := g2,2,2,5,5,10 = c1c2c3c4c5c6 with l1 = l2 = l3 = 2, l4 = l5 = 5 and l6 = 10,
and move(g) = 12;

(28) t = 6, g := g2,2,5,5,10,10 = c1c2c3c4c5c6 with l1 = l2 = 2, l3 = l4 = 5 and l5 = l6 =
10, and move(g) = 16;

(29) t = 6, g := g2,5,5,10,10,10 = c1c2c3c4c5c6 with l1 = 2, l2 = l3 = 5, l4 = l5 = l6 = 10,
and move(g) = 20;

(30) t = 6, g := g5,5,10,10,10,10 = c1c2c3c4c5c6 with l1 = l2 = 5 and l3 = l4 = l5 = l6 = 10,
and move(g) = 24;

(31) t = 6, g := g3,3,3,3,4,12 = c1c2c3c4c5c6 with l1 = l2 = l3 = l4 = 3, l5 = 4 and l6 = 12,
and move(g) = 12;

(32) t = 6, g := g3,3,3,3,12,12 = c1c2c3c4c5c6 with l1 = l2 = l3 = l4 = 3 and l5 = l6 = 12,
and move(g) = 16;

(33) t = 8, g := g2,2,2,2,3,3,3,3 = c1c2c3c4c5c6c7c8 with l1 = l2 = l3 = l4 = 2 and
l5 = l6 = l7 = l8 = 3, and move(g) = 8;

(34) t = 8, g := g2,2,2,3,3,3,3,6 = c1c2c3c4c5c6c7c8 with l1 = l2 = l3 = 2, l4 = l5 = l6 =
l7 = 3 and l8 = 6, and move(g) = 10;

(35) t = 8, g := g2,2,3,3,3,3,6,6 = c1c2c3c4c5c6c7c8 with l1 = l2 = 2, l3 = l4 = l5 = l6 = 3
and l7 = l8 = 6, and move(g) = 12;

(36) t = 8, g := g2,3,3,3,3,6,6,6 = c1c2c3c4c5c6c7c8 with l1 = 2, l2 = l3 = l4 = l5 = 3 and
l6 = l7 = l8 = 6, and move(g) = 14;

(37) t = 8, g := g3,3,3,3,6,6,6,6 = c1c2c3c4c5c6c7c8 with l1 = l2 = l3 = l4 = 3 and
l5 = l6 = l7 = l8 = 6, and move(g) = 16;

(38) t ≥ 2, g := g8,2b = c1c2 · · · ct with l1 = l2 = l3 · · · = lt−1 = 2b for b > 3 and lt = 8,
and move(g) = (t − 1)2b−1 + 4;

(39) t ≥ 3, g := g4,4,2b = c1c2 · · · ct with l1 = l2 = l3 · · · = lt−2 = 2b for b > 2 and
lt−1 = lt = 4, and move(g) = (t − 2)2b−1 + 4;

(40) t ≥ 5, g := g2,2,2,2,2b = c1c2 · · · ct with l1 = l2 = l3 · · · = lt−4 = 2b for b > 1 and
lt−3 = lt−2 = lt−1 = lt = 2, and move(g) = (t − 4)2b−1 + 4.
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Remark 1.1. For distinct positive integer a an a′, both g∗
2a(t = t1) and g∗

2a′ (t = t′
1)

represent elements with the form in (1). Similarly, we have the following symbols: g∗
p1(t =

t2) and g∗
p′

1
(t = t′

2) in (1), g8p2(p = p2) and g8p′
2
(p = p′

2) in (2), g4,4p3(p = p3) and
g4,4p′

3
(p = p′

3) in (5), g4p4,4p4(p = p4) and g4p′
4,4p′

4
(p = p′

4) in (6), g2,2,2,2p5(p = p5) and
g2,2,2,2p′

5
(p = p′

5) in (14), g2,2,2p6,2p6(p = p6) and g2,2,2p′
6,2p′

6
(p = p′

6) in (15), g2,2p7,2p7,2p7(p =
p7) and g2,2p′

7,2p′
7,2p′

7
(p′ = p7) in (16), g2p8,2p8,2p8,2p8(p = p8) and g2p′

8,2p′
8,2p′

8,2p′
8
(p = p′

8) in
(17), g8,2b1 (t = t3) and g

8,2b
′
1
(t = t

′
3) in (38), g4,4,2b2 (t = t4) and g

4,4,2b
′
2
(t = t

′
4) in (39),

g2,2,2,2,2b3 (t = t5) and g
2,2,2,2,2b

′
3
(t = t

′
5) in (40), respectively.

For two groups K and P , we use K:P to denote a semidirect product of K by P . For a
prime p, Zp denotes a cyclic group of order p. Given a real number r, ⌊r⌋ is the greatest
integer less than or equal to r.

Next, we apply Theorem 1.1 to characterize transitive permutation group G with
move(G) = m and |G| ̸= 2e for any positive integer e, but in which every non-identity
element which has the movement m or m−4, and there is at least one non-identity element
which has the movement m − 4. The main result is the following.

Theorem 1.2. Let G be a transitive permutaion group on a set Ω of size n, with no fixed
point in Ω, and let move(G) = m for some positive integer m > 4 and |G| ̸= 2e for any
positive integer e. Suppose that every non-identity element g in G has the movement m
or m − 4, and there is at least one non-identity element which has the movement m − 4.
Let p be the least odd prime dividing |G|. Then one of the following holds:

(1) m = 7, p ∈ {3, 7}, 14 ≤ n ≤ 20 and g ∈ {g∗
2(t1 = 3), g∗

3(t2 = 3), g∗
7(t2 =

1), g3,3,3,9, g∗
2(t1 = 7)};

(2) m = 8, p ∈ {3, 5, 17}, 16 ≤ n ≤ 23 and g ∈ {g∗
2(t1 = 4), g∗

22(t1=2), g∗
23(t1 =

1), g∗
3(t2 = 4), g∗

5(t2=2), g5,5,8, g4,4,5,5, g3,3,3,3,8, g3,3,3,3,5,5, g3,3,3,3,4,4, g2,2,2,2,3,3,3,3,
g2,2,2,2,5,5, g∗

2(t1 = 8), g∗
22(t1=4), g∗

23(t1=2), g∗
24(t1=1), g∗

5(t2=4), g∗
17(t2=1), g2,2,2,10,

g4,12, g2,2,6,6, g4,4,23(t4=3), g2,2,2,2,22(t5 = 6), g2,2,2,2,23(t5 = 5)};
(3) m = 10, p ∈ {3, 5, 7, 11, 13}, 20 ≤ n ≤ 29 and g ∈ {g∗

2(t1 = 6), g∗
22(t1 = 3), g∗

3(t2 =
6), g∗

5(t2 = 3), g∗
7(t2 = 2), g∗

13(t2 = 1), g2,2,2,6, g2,2,2,2,22(t5 = 5), g3,3,9,9, g2,2,2,3,3,3,3,6,
g∗

2(t1 = 10), g∗
22(t1 = 5), g∗

5(t2 = 5), g∗
11(t2 = 2), g2,2,2,14, g2,6,6,6, g2,2,2,2,22(t5 = 7)};

(4) m = 11, p ∈ {3, 23}, 22 ≤ n ≤ 32 and g ∈ {g3,3,3,9, g∗
2(t1 = 7), g∗

3(t2 = 7), g∗
2(t1 =

11), g∗
23(t2 = 1)};

(5) m = 12, p ∈ {3, 5, 7, 13, 17}, 24 ≤ n ≤ 35 and g ∈ {g5,5,8, g4,4,5,5, g3,3,3,3,8, g3,3,3,3,5,5,
g3,3,3,3,4,4, g2,2,2,2,5,5, g2,2,2,2,3,3,3,3, g∗

2(t1 = 8), g∗
22(t1=4), g∗

23(t1=2), g∗
24(t1 = 1), g∗

3(t2
= 8), g∗

5(t2 = 4), g∗
17(t2 = 1), g4,12, g2,2,2,10, g2,2,6,6, g4,4,23(t4 = 3), g2,2,2,2,22(t5=6),

g2,2,2,2,23(t5 = 5), g3,3,3,5,15, g2,2,2,5,5,10, g3,3,3,3,4,12, g2,2,3,3,3,3,6,6, g∗
2(t1 = 12), g∗

22(t1 =
6), g∗

23(t1 = 3), g∗
5(t2 = 6), g∗

7(t2 = 4), g∗
13(t2 = 2), g24, g4,20, g12,12, g2,2,10,10, g6,6,6,6,

g8,24(t3=2), g4,4,23(t4 = 4), g4,4,24(t4 = 3), g2,2,2,2,22(t5=8), g2,2,2,2,23(t5=6), g2,2,2,2,24

(t5 = 5)};
(6) m = 13, p ∈ {3, 7, 19}, 26 ≤ n ≤ 38 and g ∈ {g∗

2(t1 = 9), g∗
3(t2 = 9), g∗

7(t2 =
3), g∗

19(t2 = 1), g3,9,9,9, g∗
2(t1 = 13)};

(7) m = 14, p ∈ {3, 5, 7, 11, 29}, 28 ≤ n ≤ 41 and g ∈ {g3,3,9,9, g2,2,2,3,3,3,3,6, g∗
2(t1 =

10), g∗
22(t1 = 5), g∗

3(t2 = 10), g∗
5(t2 = 5), g∗

11(t2 = 2), g2,2,2,14, g2,6,6,6, g2,2,2,2,22(t5 =
7), g5,25, g2,3,3,3,3,6,6,6, g∗

2(t1 = 14), g∗
22(t1 = 7), g∗

5(t2=7), g∗
29(t2=1), g2,2,2,22, g2,2,2,2,22

(t5 = 9)};
(8) m = 16, p ∈ {3, 5, 7, 13, 17}, 32 ≤ n ≤ 47 and g ∈ {g3,3,3,5,15, g2,2,2,5,5,10, g3,3,3,3,4,12,

g2,2,3,3,3,3,6,6, g∗
2(t1 = 12), g∗

22(t1 = 6), g∗
23(t1 = 3), g∗

3(t2 = 12), g∗
5(t2 = 6), g∗

7(t2=4),
g∗

13(t2 = 2), g24, g4,20, g2,2,10,10, g8,24(t3=2), g4,4,23(t4 = 4), g4,4,24(t4 = 3), g2,2,2,2,22

(t5 = 8), g2,2,2,2,23(t5 = 6), g2,2,2,2,24(t5 = 5), g9,9,9,9, g3,3,15,15, g4,5,5,20, g2,2,5,5,10,10,
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g3,3,3,3,24, g3,3,3,3,12,12, g3,3,3,3,6,6,6,6, g∗
2(t1 = 16), g∗

22(t1 = 8), g∗
23(t1 = 4), g∗

24(t1=2),
g∗

25(t1 = 1), g∗
5(t2 = 8), g∗

17(t2=2), g4,28, g2,2,2,26, g2,2,14,14, g2,10,10,10, g4,4,23(t4=5),
g2,2,2,2,22(t5 = 10), g2,2,2,2,23(t5 = 7)};

(9) m = 17, p = 3, 34 ≤ n ≤ 50 and g ∈ {g3,9,9,9, g∗
2(t1 = 13), g∗

3(t2 = 13), g∗
2(t1 = 17)};

(10) m = 18, p ∈ {3, 5, 7, 11, 13, 19, 29, 37}, 36 ≤ n ≤ 53 and g∈{g5,25, g2,3,3,3,3,6,6,6, g∗
2(t1

= 14), g∗
22(t1 = 7), g∗

3(t2 = 14), g∗
5(t2 = 7), g∗

29(t2 = 1), g2,2,2,22, g2,2,2,2,22(t5 =
9), g∗

2(t1 = 18), g∗
22(t1 = 9), g∗

5(t2 = 9), g∗
7(t2 = 6), g∗

13(t2 = 3), g∗
19(t2 = 2), g∗

37(t2 =
1), g2,2,2,2,22(t5 = 11)};

(11) m = 20, p ∈ {3, 5, 7, 11, 13, 17, 41}, 40 ≤ n ≤ 59 and g ∈ {g9,9,9,9, g3,3,15,15, g4,5,5,20,
g3,3,3,3,24, g2,2,5,5,10,10, g3,3,3,3,12,12, g3,3,3,3,6,6,6,6, g∗

2(t1 = 16), g∗
22(t1 = 8), g∗

23(t1 =
4), g∗

24(t1 = 2), g∗
25(t1 = 1), g∗

3(t2 = 16), g∗
5(t2=8), g∗

17(t2 = 2), g4,28, g2,2,2,26, g2,2,14,14,
g2,10,10,10, g4,4,23(t4 = 5), g2,2,2,2,22(t5 = 10), g2,2,2,2,23(t5 = 7), g2,5,5,10,10,10, g∗

2(t1 =
20), g∗

22(t1 = 10), g∗
23(t1 = 5), g∗

5(t2 = 10), g∗
11(t2 = 4), g∗

41(t2 = 1), g40, g20,20, g2,2,2,34,
g10,10,10,10, g8,24(t3 = 3), g8,25(t3 = 2), g4,4,23(t4 = 6), g4,4,24(t4 = 4), g4,4,25(t4 =
3), g2,2,2,2,22(t5 = 12), g2,2,2,2,23(t5 = 8), g2,2,2,2,24(t5 = 6), g2,2,2,2,25(t5 = 5)};

(12) m = 24, p∈{3, 5, 7, 11, 13, 17, 41}, 48≤n≤71 and g ∈ {g2,5,5,10,10,10, g∗
2(t1=20), g∗

22(t1
=10), g∗

23(t1 = 5), g∗
3(t2 = 20), g∗

5(t2 = 10), g∗
11(t2=4), g∗

41(t2=1), g40, g20,20, g2,2,2,34,
g10,10,10,10, g8,24(t3 = 3), g8,25(t3 = 2), g4,4,23(t4 = 6), g4,4,24(t4 = 4), g4,4,25(t4 =
3), g2,2,2,2,22(t5=12), g2,2,2,2,23(t5=8), g2,2,2,2,24(t5=6), g2,2,2,2,25(t5 = 5), g25,25, g5,5,40,
g5,5,20,20, g5,5,10,10,10,10, g∗

2(t1 = 24), g∗
22(t1 = 12), g∗

23(t1 = 6), g∗
24(t1 = 3), g∗

5(t2 =
12), g∗

7(t2 = 8), g∗
13(t2 = 4), g∗

17(t2 = 3), g4,44, g2,2,22,22, g4,4,23(t4 = 7), g2,2,2,2,22(t5 =
14), g2,2,2,2,23(t5 = 9)};

(13) m = 28, p ∈ {3, 5, 7, 11, 13, 17, 29}, 56 ≤ n ≤ 83 and g ∈ {g25,25, g5,5,40, g5,5,20,20,
g5,5,10,10,10,10, g∗

2(t1 = 24), g∗
22(t1 = 12), g∗

23(t1 = 6), g∗
24(t1 = 3), g∗

3(t2 = 24), g∗
5(t2 =

12), g∗
7(t2 = 8), g∗

13(t2 = 4), g∗
17(t2 = 3), g4,44, g2,2,22,22, g4,4,23(t4=7), g2,2,2,2,22(t5=14),

g2,2,2,2,23(t5 = 9), g∗
2(t1=28), g∗

22(t1=14), g∗
23(t1=7), g∗

5(t2 = 14), g∗
29(t2 = 2), g56, g4,52,

g28,28, g2,2,26,26, g14,14,14,14, g8,24(t3 = 4), g4,4,23(t4 = 8), g4,4,24(t4 = 5), g2,2,2,2,22(t5 =
16), g2,2,2,2,23(t5 = 10), g2,2,2,2,24(t5 = 7)};

(14) m = t12a−1, p ∈ {p1, p2, p3, p4, p5, p6, p7, p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}, 2at1 ≤ n ≤
⌊2at1

p
p−1⌋−1 and g ∈ {g∗

2a′ (t′
12a′−1+4 = t12a−1), g∗

p′
1
(t′

2
p′

1−1
2 +4 = t12a−1), g8p′

2
(4p′

2+
4 = t12a−1), g4,4p′

3
(6 + 2p′

3 = t12a−1), g4p′
4,4p′

4
(4p′

4 + 4 = t12a−1), g2,2,2,2p′
5
(7 + p′

5 =
t12a−1), g2,2,2p′

6,2p′
6
(2p′

6 + 6 = t12a−1), g2,2p′
7,2p′

7,2p′
7
(3p′

7 + 5 = t12a−1), g2p′
8,2p′

8,2p′
8,2p′

8

(4p′
8 + 4 = t12a−1), g

8,2b′
1
((t′

3 − 1)2b′
1−1 + 8 = t12a−1), g

4,4,2b′
2
((t′

4 − 2)2b′
2−1 +

8=t12a−1), g
2,2,2,2,2b′

3
((t′

5−4)2b′
3−1+8=t12a−1), g∗

2a , g∗
p1(t2

p1−1
2 = t12a−1), g8p2(4p2 =

t12a−1), g4,4p3(2 + 2p3 = t12a−1), g4p4,4p4(4p4 = t12a−1), g2,2,2,2p5(3 + p5 = t12a−1),
g2,2,2p6,2p6(2p6 + 2 = t12a−1), g2,2p7,2p7,2p7(3p7 + 1 = t12a−1), g2p8,2p8,2p8,2p8(4p8 =
t12a−1), g8,2b1 ((t3−1)2b1−1+4 = t12a−1), g4,4,2b2 ((t4−2)2b2−1+4 = t12a−1), g2,2,2,2,2b3

((t5 − 4)2b3−1 + 4 = t12a−1)};
(15) m = t2

p1−1
2 , p∈{p1, p2, p3, p4, p5, p6, p7, p8, p′

1, p′
2, p′

3, p′
4, p′

5, p′
6, p′

7, p′
8}, t2(p1 − 1) ≤

n ≤ ⌊t2(p1−1) p
p−1⌋−1 and g∈{g∗

2a′ (t′
12a′−1+4=t2

p1−1
2 ), g∗

p′
1
(t′

2
p′

1−1
2 +4=t2

p1−1
2 ), g8p′

2

(4p′
2 + 4 = t2

p1−1
2 ), g4,4p′

3
(6 + 2p′

3=t2
p1−1

2 ), g4p′
4,4p′

4
(4p′

4 + 4=t2
p1−1

2 ), g2,2,2,2p′
5
(7 + p′

5
=t2

p1−1
2 ), g2,2,2p′

6,2p′
6
(2p′

6 + 6=t2
p1−1

2 ), g2,2p′
7,2p′

7,2p′
7
(3p′

7 + 5=t2
p1−1

2 ), g2p′
8,2p′

8,2p′
8,2p′

8

(4p′
8 + 4 = t2

p1−1
2 ), g

8,2b′
1
((t′

3 − 1)2b′
1−1 + 8 = t2

p1−1
2 ), g

4,4,2b′
2
((t′

4 − 2)2b′
2−1 + 8 =

t2
p1−1

2 ),g
2,2,2,2,2b′

3
((t′

5 − 4)2b′
3−1 + 8 = t2

p1−1
2 ), g∗

p1 , g8p2(4p2 = t2
p1−1

2 ), g4,4p3(2 +
2p3 = t2

p1−1
2 ), g4p4,4p4(4p4 = t2

p1−1
2 ), g2,2,2,2p5(3 + p5 = t2

p1−1
2 ), g2,2,2p6,2p6(2p6 +

2 = t2
p1−1

2 ), g2,2p7,2p7,2p7(3p7+1 = t2
p1−1

2 ), g2p8,2p8,2p8,2p8(4p8 = t2
p1−1

2 ), g8,2b1 ((t3−
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1)2b1−1 + 4 = t2
p1−1

2 ), g4,4,2b2 ((t4 − 2)2b2−1 + 4 = t2
p1−1

2 ), g2,2,2,2,2b3 ((t5 − 4)2b3−1 +
4 = t2

p1−1
2 )};

(16) m = 4p2, p ∈ {p2, p3, p4, p5, p6, p7, p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}, 8p2≤n≤⌊8p2
p

p−1⌋
−1 and g ∈ {g∗

2a′ (t′
12a′−1+4 = 4p2), g∗

p′
1
(t′

2
p′

1−1
2 +4 = 4p2), g8p′

2
(4p′

2+4 = 4p2), g4,4p′
3

(6+2p′
3 = 4p2), g4p′

4,4p′
4
(4p′

4 +4 = 4p2), g2,2,2,2p′
5
(7+p′

5 = 4p2), g2,2,2p′
6,2p′

6
(2p′

6 +6 =
4p2), g2,2p′

7,2p′
7,2p′

7
(3p′

7 +5 = 4p2), g2p′
8,2p′

8,2p′
8,2p′

8
(4p′

8 +4 = 4p2), g
8,2b′

1
((t′

3 −1)2b′
1−1 +

8 = 4p2), g
4,4,2b′

2
((t′

4 − 2)2b′
2−1 + 8 = 4p2), g

2,2,2,2,2b′
3
((t′

5 − 4)2b′
3−1 + 8 = 4p2), g8p2 ,

g4,4p3(2 + 2p3=4p2), g4p4,4p4(p4 = p2), g2,2,2,2p5(3 + p5 = 4p2), g2,2,2p6,2p6(2p6 + 2 =
4p2), g2,2p7,2p7,2p7(3p7 + 1 = 4p2), g2p8,2p8,2p8,2p8(p8 = p2), g8,2b1 ((t3 − 1)2b1−1 + 4 =
4p2), g4,4,2b2 ((t4 − 2)2b2−1 + 4 = 4p2), g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 = 4p2)};

(17) m = 2 + 2p3, p ∈ {p3, p4, p5, p6, p7, p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}, 4 + 4p3 ≤ n ≤
⌊(4 + 4p3) p

p−1⌋ − 1 and g ∈ {g∗
2a′ (t′

12a′−1 + 4 = 2 + 2p3), g∗
p′

1
(t′

2
p′

1−1
2 + 4 = 2 +

2p3), g8p′
2
(4p′

2 + 4 = 2 + 2p3), g4,4p′
3
(6 + 2p′

3 = 2 + 2p3), g4p′
4,4p′

4
(4p′

4 + 4 = 2 +
2p3), g2,2,2,2p′

5
(7 + p′

5 = 2 + 2p3), g2,2,2p′
6,2p′

6
(2p′

6 + 6 = 2 + 2p3), g2,2p′
7,2p′

7,2p′
7
(3p′

7 +
5 = 2 + 2p3), g2p′

8,2p′
8,2p′

8,2p′
8
(4p′

8 + 4 = 2 + 2p3), g
8,2b′

1
((t′

3 − 1)2b′
1−1 + 8 = 2 +

2p3), g
4,4,2b′

2
((t′

4−2)2b′
2−1+8 = 2+2p3), g

2,2,2,2,2b′
3
((t′

5−4)2b′
3−1+8 = 2+2p3), g4,4p3 ,

g4p4,4p4(4p4 = 2 + 2p3), g2,2,2,2p5(3 + p5 = 2 + 2p3), g2,2,2p6,2p6(2p6 + 2 = 2 +
2p3), g2,2p7,2p7,2p7(3p7 + 1 = 2 + 2p3), g2p8,2p8,2p8,2p8(4p8 = 2 + 2p3), g8,2b1 ((t3 −
1)2b1−1 +4 = 2+2p3), g4,4,2b2 ((t4 −2)2b2−1 +4 = 2+2p3), g2,2,2,2,2b3 ((t5 −4)2b3−1 +
4 = 2 + 2p3)};

(18) m = 4p4, p ∈ {p4, p5, p6, p7, p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}, 8p4 ≤ n ≤ ⌊8p4
p

p−1⌋ − 1
and g ∈ {g∗

2a′ (t′
12a′−1+4 = 4p4), g∗

p′
1
(t′

2
p′

1−1
2 +4 = 4p4), g8p′

2
(4p′

2+4 = 4p4), g4,4p′
3
(6+

2p′
3 = 4p4), g4p′

4,4p′
4
(4p′

4 + 4 = 4p4), g2,2,2,2p′
5
(7 + p′

5 = 4p4), g2,2,2p′
6,2p′

6
(2p′

6 + 6 =
4p4), g2,2p′

7,2p′
7,2p′

7
(3p′

7 +5 = 4p4), g2p′
8,2p′

8,2p′
8,2p′

8
(4p′

8 +4 = 4p4), g
8,2b′

1
((t′

3 −1)2b′
1−1 +

8 = 4p4), g
4,4,2b′

2
((t′

4−2)2b′
2−1+8 = 4p4), g

2,2,2,2,2b′
3
((t′

5−4)2b′
3−1+8 = 4p4), g4p4,4p4 ,

g2,2,2,2p5(3 + p5 = 4p4), g2,2,2p6,2p6(2p6 + 2 = 4p4), g2,2p7,2p7,2p7(3p7 + 1 = 4p4),
g2p8,2p8,2p8,2p8(p8 = p4), g8,2b1 ((t3 − 1)2b1−1 + 4 = 4p4), g4,4,2b2 ((t4 − 2)2b2−1 + 4 =
4p4), g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 = 4p4)};

(19) m = 3 + p5, p ∈ {p5, p6, p7, p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}, 6 + 2p5 ≤ n ≤ ⌊(6 +
2p5) p

p−1⌋−1 and g ∈ {g∗
2a′ (t′

12a′−1 +4 = 3+p5), g∗
p′

1
(t′

2
p′

1−1
2 +4 = 3+p5), g8p′

2
(4p′

2 +
4 = 3+p5), g4,4p′

3
(6+2p′

3 = 3+p5), g4p′
4,4p′

4
(4p′

4 +4 = 3+p5), g2,2,2,2p′
5
(7+p′

5 = 3+
p5), g2,2,2p′

6,2p′
6
(2p′

6 +6 = 3+p5), g2,2p′
7,2p′

7,2p′
7
(3p′

7 +5 = 3+p5), g2p′
8,2p′

8,2p′
8,2p′

8
(4p′

8 +
4 = 3 + p5), g

8,2b′
1
((t′

3 − 1)2b′
1−1 + 8 = 3 + p5), g

4,4,2b′
2
((t′

4 − 2)2b′
2−1 + 8 = 3 +

p5), g
2,2,2,2,2b′

3
((t′

5 − 4)2b′
3−1 + 8 = 3 + p5), g2,2,2,2p5 , g2,2,2p6,2p6(2p6 + 2 = 3 + p5),

g2,2p7,2p7,2p7(3p7 +1 = 3+p5), g2p8,2p8,2p8,2p8(4p8 = 3+p5), g8,2b1 ((t3 −1)2b1−1 +4 =
3 + p5), g4,4,2b2 ((t4 − 2)2b2−1 + 4 = 3 + p5), g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 = 3 + p5)};

(20) m = 2p6 + 2, p ∈ {p6, p7, p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}, 4p6 + 4 ≤ n ≤ ⌊(4p6 +
4) p

p−1⌋−1 and g ∈ {g∗
2a′ (t′

12a′−1 +4 = 2p6 +2), g∗
p′

1
(t′

2
p′

1−1
2 +4 = 2p6 +2), g8p′

2
(4p′

2 +
4 = 2p6 + 2), g4,4p′

3
(6 + 2p′

3 = 2p6 + 2), g4p′
4,4p′

4
(4p′

4 + 4 = 2p6 + 2), g2,2,2,2p′
5
(7 + p′

5 =
2p6 +2), g2,2,2p′

6,2p′
6
(2p′

6 +6 = 2p6 +2), g2,2p′
7,2p′

7,2p′
7
(3p′

7 +5 = 2p6 +2), g2p′
8,2p′

8,2p′
8,2p′

8

(4p′
8 + 4 = 2p6 + 2), g

8,2b′
1
((t′

3 − 1)2b′
1−1 + 8 = 2p6 + 2), g

4,4,2b′
2
((t′

4 − 2)2b′
2−1 + 8 =

2p6 + 2), g
2,2,2,2,2b′

3
((t′

5 − 4)2b′
3−1 + 8 = 2p6 + 2), g2,2,2p6,2p6 , g2,2p7,2p7,2p7(3p7 + 1 =
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2p6+2), g2p8,2p8,2p8,2p8(4p8 = 2p6+2), g8,2b1 ((t3−1)2b1−1+4 = 2p6+2), g4,4,2b2 ((t4−
2)2b2−1 + 4 = 2p6 + 2), g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 = 2p6 + 2)};

(21) m = 3p7+1, p ∈ {p7, p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}, 6p7+2 ≤ n ≤ ⌊(6p7+2) p
p−1⌋−1

and p ∈ {g∗
2a′ (t′

12a′−1 + 4 = 3p7 + 1), g∗
p′

1
(t′

2
p′

1−1
2 + 4 = 3p7 + 1), g8p′

2
(4p′

2 + 4 =
3p7 +1), g4,4p′

3
(6+2p′

3 = 3p7 +1), g4p′
4,4p′

4
(4p′

4 +4 = 3p7 +1), g2,2,2,2p′
5
(7+p′

5 = 3p7 +
1), g2,2,2p′

6,2p′
6
(2p′

6+6 = 3p7+1), g2,2p′
7,2p′

7,2p′
7
(3p′

7+5 = 3p7+1), g2p′
8,2p′

8,2p′
8,2p′

8
(4p′

8+
4 = 3p7 + 1), g

8,2b′
1
((t′

3 − 1)2b′
1−1 + 8 = 3p7 + 1), g

4,4,2b′
2
((t′

4 − 2)2b′
2−1 + 8 =

3p7 + 1), g
2,2,2,2,2b′

3
((t′

5 − 4)2b′
3−1 + 8 = 3p7 + 1), g2,2p7,2p7,2p7 , g2p8,2p8,2p8,2p8(4p8 =

3p7 + 1), g8,2b1 ((t3 − 1)2b1−1 + 4 = 3p7 + 1), g4,4,2b2 ((t4 − 2)2b2−1 + 4 = 3p7 +
1), g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 = 3p7 + 1)};

(22) m = 4p8, p ∈ {p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}, 8p8 ≤ n ≤ ⌊8p8
p

p−1⌋ − 1 and p ∈
{g∗

2a′ (t′
12a′−1 + 4 = 4p8), g∗

p′
1
(t′

2
p′

1−1
2 + 4 = 4p8), g8p′

2
(4p′

2 + 4 = 4p8),g4,4p′
3
(6 + 2p′

3 =
4p8), g4p′

4,4p′
4
(4p′

4+4=4p8), g2,2,2,2p′
5
(7+p′

5=4p8), g2,2,2p′
6,2p′

6
(2p′

6+6 = 4p8), g2,2p′
7,2p′

7,2p′
7

(3p′
7 +5 = 4p8), g2p′

8,2p′
8,2p′

8,2p′
8
(4p′

8 +4 = 4p8), g
8,2b′

1
((t′

3 −1)2b′
1−1 +8 = 4p8), g

4,4,2b′
2

((t′
4−2)2b′

2−1+8 = 4p8), g
2,2,2,2,2b′

3
((t′

5−4)2b′
3−1+8 = 4p8), g2p8,2p8,2p8,2p8 , g8,2b1 ((t3−

1)2b1−1 + 4 = 4p8), g4,4,2b2 ((t4 − 2)2b2−1 + 4 = 4p8), g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 =
4p8)};

(23) m = (t3 − 1)2b1−1 + 4, p ∈ {p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}, (t3 − 1)2b1 + 8 ≤ n ≤
⌊((t3 −1)2b1 +8) p

p−1⌋−1 and p ∈ {g∗
2a′ (t′

12a′−1 +4 = (t3 −1)2b1−1 +4), g∗
p′

1
(t′

2
p′

1−1
2 +

4 = (t3 − 1)2b1−1 + 4), g8p′
2
(4p′

2 + 4 = (t3 − 1)2b1−1 + 4), g4,4p′
3
(6 + 2p′

3 = (t3 −
1)2b1−1 + 4), g4p′

4,4p′
4
(4p′

4 + 4 = (t3 − 1)2b1−1 + 4), g2,2,2,2p′
5
(7 + p′

5 = (t3 − 1)2b1−1 +
4), g2,2,2p′

6,2p′
6
(2p′

6 + 6 = (t3 − 1)2b1−1 + 4), g2,2p′
7,2p′

7,2p′
7
(3p′

7 + 5 = (t3 − 1)2b1−1 +
4), g2p′

8,2p′
8,2p′

8,2p′
8
(4p′

8 + 4 = (t3 − 1)2b1−1 + 4), g
8,2b′

1
((t′

3 − 1)2b′
1−1 + 8 = (t3 −

1)2b1−1+4), g
4,4,2b′

2
((t′

4−2)2b′
2−1+8 = (t3−1)2b1−1+4), g

2,2,2,2,2b′
3
((t′

5−4)2b′
3−1+8 =

(t3−1)2b1−1+4), g8,2b1 , g4,4,2b2 ((t4−2)2b2−1+4 = (t3−1)2b1−1+4)), g2,2,2,2,2b3 ((t5−
4)2b3−1 + 4 = (t3 − 1)2b1−1 + 4))};

(24) m = (t4 − 2)2b2−1 + 4, p ∈ {p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}, (t4 − 2)2b2 + 8 ≤ n ≤
⌊((t4 −2)2b2 +8) p

p−1⌋−1 and p ∈ {g∗
2a′ (t′

12a′−1 +4 = (t4 −2)2b2−1 +4), g∗
p′

1
(t′

2
p′

1−1
2 +

4 = (t4 − 2)2b2−1 + 4), g8p′
2
(4p′

2 + 4 = (t4 − 2)2b2−1 + 4), g4,4p′
3
(6 + 2p′

3 = (t4 −
2)2b2−1 + 4), g4p′

4,4p′
4
(4p′

4 + 4 = (t4 − 2)2b2−1 + 4), g2,2,2,2p′
5
(7 + p′

5 = (t4 − 2)2b2−1 +
4), g2,2,2p′

6,2p′
6
(2p′

6 + 6 = (t4 − 2)2b2−1 + 4), g2,2p′
7,2p′

7,2p′
7
(3p′

7 + 5 = (t4 − 2)2b2−1 +
4), g2p′

8,2p′
8,2p′

8,2p′
8
(4p′

8+4 = (t4−2)2b2−1+4), g
8,2b′

1
((t′

3−1)2b′
1−1+8 = (t4−2)2b2−1+

4), g
4,4,2b′

2
((t′

4 − 2)2b′
2−1 + 8 = (t4 − 2)2b2−1 + 4), g

2,2,2,2,2b′
3
((t′

5 − 4)2b′
3−1 + 8 =

(t4 − 2)2b2−1 + 4), g4,4,2b2 , g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 = (t3 − 1)2b1−1 + 4))};
(25) m = (t5 − 4)2b3−1 + 4, p ∈ {p′

1, p′
2, p′

3, p′
4, p′

5, p′
6, p′

7, p′
8}, (t5 − 4)2b3 + 8 ≤ n ≤

⌊((t5 −4)2b3 +8) p
p−1⌋−1 and p ∈ {g∗

2a′ (t′
12a′−1 +4 = (t5 −4)2b3−1 +4), g∗

p′
1
(t′

2
p′

1−1
2 +

4 = (t5 − 4)2b3−1 + 4), g8p′
2
(4p′

2 + 4 = (t5 − 4)2b3−1 + 4), g4,4p′
3
(6 + 2p′

3 = (t5 −
4)2b3−1 + 4), g4p′

4,4p′
4
(4p′

4 + 4 = (t5 − 4)2b3−1 + 4), g2,2,2,2p′
5
(7 + p′

5 = (t5 − 4)2b3−1 +
4), g2,2,2p′

6,2p′
6
(2p′

6 + 6 = (t5 − 4)2b3−1 + 4), g2,2p′
7,2p′

7,2p′
7
(3p′

7 + 5 = (t5 − 4)2b3−1 +
4), g2p′

8,2p′
8,2p′

8,2p′
8
(4p′

8+4 = (t5−4)2b3−1+4), g
8,2b′

1
((t′

3−1)2b′
1−1+8 = (t5−4)2b3−1+
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4), g
4,4,2b′

2
((t′

4 − 2)2b′
2−1 + 8 = (t5 − 4)2b3−1 + 4), g

2,2,2,2,2b′
3
((t′

5 − 4)2b′
3−1 + 8 =

(t5 − 4)2b3−1 + 4), g2,2,2,2,2b3 };
(26) m = 2s−1(p − 1), n = 2sp with 1 < 2s < p and p ≥ 5, and G = K : P with K a

2-group and P = Zp is fixed point free on Ω; K has p-orbit of length 2s, and each
element of K moves at most 2s(p − 1) point of Ω;

(27) G is a 3-group of exponent 3.

2. Proof of Theorem 1.1

Let G be a permutation group on a set Ω, and let 1 ̸= g ∈ G and g = c1c2 · · · ct as a
product of disjoint cycles of lengths l1, l2, · · · , lt, where ci = (ai1 ai2 . . . aili) for 1 ≤ i ≤ t.
Let

∆(g) = {a12, a14, · · · , a1k1 , a22, a24, · · · , a2k2 , · · · , at2, at4, · · · , atkt},

where ki = li if li is even, and ki = li − 1 if li is odd. Then |∆(g)g \ ∆(g)| = |∆(g)| =∑t
i=1⌊ li

2 ⌋.
The next lemma gives an upper bound for |∆g \ ∆| for an arbitrary subest ∆ of Ω, see

([6, Lemma 2.1]).

Lemma 2.1. Let G be a permutation group on a set Ω and suppose that ∆ ⊆ Ω. Then
for each g ∈ G, |∆g \ ∆| ≤

∑t
i=1⌊ li

2 ⌋, with equality if ∆ = ∆ (g), where li is the length
of the ith cycle of g, and t is the number of nontrivial cycles of g in its disjoint cycle
representation.

The following result is crucial to the proof of Theorem 1.1.

Lemma 2.2. Let G be a permutation group on a set Ω. Let g be a cycle of length pk for
some odd prime p and positive integer k > 1. Then move(g) − move(gk) = ⌊k

2 ⌋.

Proof. Since p is an odd prime, we see that gk is k cycles of length p. If k is odd, then
k = 2t + 1 for some positve integer t. It follows that

move(g) = ⌊kp

2
⌋ = ⌊(2t + 1)p

2
⌋ = tp + p − 1

2
,

and
move(gk) = k⌊p

2
⌋ = (2t + 1)p − 1

2
= move(g) − t.

Thus move(g) − move(gk) = k−1
2 .

If k is even, then k = 2t for some positive integer t, and so

move(g) = ⌊kp

2
⌋ = ⌊(2t)p

2
⌋ = tp,

and
move(gk) = k⌊p

2
⌋ = (2t)p − 1

2
= move(g) − t.

Therefore move(g) − move(gk) = k
2 .

Let G be a permutation group on a set Ω and move(G) = m, in which every non-
identity element has the movement m or m − 4. Then we can characterize the structures
of elements in G.

Proof of Theorem 1.1. Let 1 ̸= g ∈ G, and g = c1c2 · · · ct as a product of disjoint
cycles of lengths l1, l2, · · · , lt. Let h = gli for 1 ≤ i ≤ t. Then by Lemma 2.1, move(g) =∑t

i=1⌊li/2⌋ and move(h) ≤
∑

j ̸=i⌊lj/2⌋ <
∑t

i=1⌊li/2⌋ = move(g).
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Case 1. move(g) = m − 4.
In this case, h = gli = 1 for 1 ≤ i ≤ t as move(h) < move(g). It follows that

l := l1 = l2 = · · · = lt. Assume that l ̸= 2n for any positive integer n. Then l = pk
for some odd prime p and positive integer k. Note that move(g) = move(gk). Then by
Lemma 2.2 we have

t⌊ l

2
⌋ = tk⌊p

2
⌋.

It follows that k = 1 and thus l = p. Therefore (1) holds.
Case 2. move(g) = m.
In this case, move(h) = move(gli) = m − 4 or h = gli = 1, for some 1 ≤ i ≤ t, since

move(h) < move(g).
Subcase 2.1. move(h) = move(gli) = m − 4.

Let h = c
′
1c

′
2 · · · c

′
t. Then o(c′

1) = o(c′
2) = · · · = o(c′

t) = l1
(l1,li) = l2

(l2,li) = · · · =
li−1

(li−1,li) = li+1
(li+1,li) = · · · = lt

(lt,li) by Case 1. It follows that either {cj} ⊆ {c
′
1, c

′
2, · · · , c

′
t} or

{cj} ∩ {c
′
1, c

′
2, · · · , c

′
t} = ϕ for each 1 ≤ j ≤ t. Without loss of generality, we assume that

{c
′
1, c

′
2, · · · , c

′
t} = {c1, c2, · · · , cn}, where n < t and n + 1 ≤ i ≤ t. Then

move(g) − move(h) =
t∑

j=n+1
⌊ lj

2
⌋.

It follows that 1 ≤ t − n ≤ 4.
If t = n + 1, then lt = li = 8 or 9. It follows that g is either a product of four cycles

of length 3 and one cycle of length 8, or two cycles of length 5 and one cycle of length 8.
Thus (8) and (21) hold.

If t = n+2, then either li = 6 or 7, and lj = 2 or 3, where n+1 ≤ i ̸= j ≤ n+2, or li = 4
or 5, and lj = 4 or 5 where n + 1 ≤ i ̸= j ≤ n + 2. For the former, it is straightforward
to verify that no such g exists. For the letter, then g is either a product of four cycles of
length 3 and two cycles of length 4, four cycles of length 3 and two cycles of length 5, four
cycles of length 2 and two cycles of length 5, or two cycles of length 4 and two cycles of
length 5. Thus (9), (24), (25) and (26) hold.

If t = n+3, then li = 4 or 5, lj = 2 or 3, and lk = 2 or 3 where n+1 ≤ i ̸= j ̸= k ≤ n+3.
It is straightforward to verify that no such g exists.

If t = n + 4, then li = 2 or 3, lj = 2 or 3, lk = 2 or 3, and lz = 2 or 3 where
n + 1 ≤ i ̸= j ̸= k ̸= z ≤ n + 4. It follows that g is a product of four cycles of length 2
and four cycles of length 3. Thus (33) holds.

Subcase 2.2. h = gli = 1 for some 1 ≤ i ≤ t. We may assume that i = 1.
In this case, lj |l1 for all 1 ≤ j ≤ t. First we suppose that l1 is not a power of 2. Then

l1 = pk with an odd prime p and positive integer k ≥ 1. If k = 1, then g is a product of t
cycles of length p. Thus we may assume that k > 1. Suppose taht p|k. Then 1 ̸= gk and
move(g) − move(gk) = 0 or 4. Hence move(c1) − move(ck

1) = ⌊k
2 ⌋ ≤ 4.

If ⌊k
2 ⌋ = 4, then k = 8 or 9. It follows that p = 3. By simple calculation, there is no g

satisfying the assumption.
If ⌊k

2 ⌋ = 3, then k = 6 or 7. It follows that p = 3 or 7. By simple calculation, there is
no g satisfying the assumption.

If ⌊k
2 ⌋ = 2, then k = 4 or 5. It follows that p = 5. So g is a product of one cycle of

length 5 and one cycle of length 25, or g is two cycles of 25. Thus (3) and (4) hold.
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If ⌊k
2 ⌋ = 1, then k = 2 or 3. It follows that p = 3. So g is a product of three cycles of

length 3 and one cycle of length 9, two cycles of length 3 and two cycles of length 9, one
cycle of length 3 and three cycles of length 9, or four cycles of length 9. Thus (10), (11),
(12) and (13) hold.

Next we suppose that p ∤ k, and g has a cycles of length k, b cycles of length p,
and d cycles of length dividing k. Then g has t − a − b − d cycles of length pk. Since
move(c1) − move(ck

1) = ⌊k
2 ⌋, we have ⌊k

2 ⌋ = 1, 2, 3 or 4.

If ⌊k
2 ⌋ = 1, then k = 2 or 3 and d = 0. It follows that t − a − b = 1, 2, 3 or 4. Let

k = 2. If t − a − b = 1, then move(g) − move(gk) = a + 1 = 4, and so we have a = 3. If
move(g) − move(gp) = 4, then p = 3 and b = 4, or p = 5 and b = 2. Thus g is either a
product of three cycles of length 2, four cycles of length 3 and one cycle of length 6, or a
product of three cycles of length 2, two cycles of length 5 and one cycle of length 10. If
move(g) − move(gp) = 0, then b = 0, and so g is a product of three cycles of length 2 and
one cycle of length 2p. Thus (14), (27) and (34) hold.

If t − a − b = 2, then move(g) − move(gk) = a + 2 = 4, and so we have a = 2. If
move(g) − move(gp) = 4, then p = 3 and b = 4, or p = 5 and b = 2. Thus g is either a
product of two cycles of length 2, four cycles of length 3 and two cycles of length 6, or a
product of two cycles of length 2, two cycles of length 5 and two cycles of length 10. If
move(g) − move(gp) = 0, then b = 0, and so g is a product of two cycles of length 2 and
two cycles of length 2p. Thus (15), (28) and (35) hold.

If t − a − b = 3, then move(g) − move(gk) = a + 3 = 4, and so we have a = 1. If
move(g) − move(gp) = 4, then p = 3 and b = 4, or p = 5 and b = 2. Thus g is either a
product of one cycle of length 2, four cycles of length 3 and three cycles of length 6, or a
product of one cycle of length 2, two cycles of length 5 and three cycles of length 10. If
move(g) − move(gp) = 0, then b = 0, and so g is a product of one cycle of length 2 and
three cycles of length 2p. Thus (16), (29) and (36) hold.

If t − a − b = 4, then move(g) − move(gk) = a + 4 = 4, and so we have a = 0. If
move(g) − move(gp) = 4, then we see that p = 3 and b = 4, or p = 5 and b = 2. Thus g is
either a product of four cycles of length 3 and four cycles of length 6, or a product of two
cycles of length 5 and four cycles of length 10. If move(g) − move(gp) = 0, then b = 0,
and so g is a product of four cycles of length 2p. Thus (17), (30) and (37) hold.

Let k = 3. If t − a − b = 1, then move(g) − move(gk) = a + 1 = 4, and so we have a = 3.
Since move(g) − move(gp) = 4, we see that p = 5 and b = 1. Thus g is a product of three
cycles of length 3, one cycle of length 5 and one cycle of length 15. Thus (22) holds.

If t − a − b = 2, then move(g) − move(gk) = a + 2 = 4, and so we have a = 2. Since
move(g) − move(gp) = 4, we see that p = 5 and b = 0. Thus g is a product of two cycles
of length 3 and two cycles of length 15. Thus (18) holds.

If t − a − b = 3, then move(g) − move(gk) = a + 3 = 4, and so we have a = 1. Since
move(g) − move(gp) = 4, we see that p = 3 and b = 1, a contradiction.

If t − a − b = 4, then move(g) − move(gk) = a + 4 = 4, and so we have a = 0. Since
move(g) − move(gp) = 4, we see that p = 3 and b = 1, a contradiction.

If ⌊k
2 ⌋ = 2, then k = 4 or 5, and t − a − b − d ≤ 2. Let k = 4. If t − a − b − d = 1,

then move(g) − move(gk) = 2a + d + 2 = 4, and so a = 1 and d = 0, or a = 0 and d = 2.
Assume that a = 1 and d = 0. If move(g) − move(gp) = 4, then p = 3 and b = 4, or p = 5
and b = 2. Thus g is a product of one cycle of 4, four cycles of length of 3 and one cycle
of length of 12, or a product of one cycle of length 4, two cycles of length 5 and one cycle
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of length 20. If move(g) − move(gp) = 0, then b = 0, and so g is a product of one cycle of
length 4 and one cycle of length 4p. Thus (5), (19) and (31) hold.

Assume that a = 0 and d = 2. If move(g)−move(gp) = 4, then p = 3 and b = 4, or p = 5
and b = 2. Thus g is a product of four cycles of length 3, two cycles of length 2 and one
cycle of length 12, or a product of two cycles of length 5, two cycles of length 2 and one cycle
of length 20. But move(g) − move(g2) = 2, a contradiction. If move(g) − move(gp) = 0,
then b = 0, and so g is a product of two cycles of length 2 and one cycle of length 4p. But
move(g) − move(g2) = 2, a contradiction.

If t − a − b − d = 2, then move(g) − move(gk) = 2a + d + 4 = 4, and so a = d = 0. If
move(g) − move(gp) = 4, then p = 3 and b = 4, or p = 5 and b = 2. Thus g is either a
product of four cycles of length 3 and two cycles of length 12, or a product of two cycles
of length 5 and two cycles of length 20. If move(g) − move(gp) = 0, then b = 0, and so g
is a product of two cycles of length 4p. Thus(6), (20) and (32) hold.

Let k = 5, then d = 0. If t − a − b = 1, then move(g) − move(gk) = 2a + 2 = 4, and so
we have a = 1. Since move(g) − move(gp) = 4, we see that p = 3 and b = 3, and so g is a
product of one cycle of length 5, three cycles of length 3 and one cycle of length 15. Thus
(22) holds.

If t − a − b = 2, then move(g) − move(gk) = 2a + 4 = 4, and so we have a = 0. Since
move(g) − move(gp) = 4, we conclude that p = 3 and b = 2, and so g is a product of two
cycles of length 3 and two cycles of length 15. Thus (18) holds.

If ⌊k
2 ⌋ = 3, then k = 6 or 7, and t−a−b−d = 1. Let k = 6. Then move(g)−move(gk) =

4 ≥ 3a + 3, and so a = 0 and d = 1. If move(g) − move(gp) = 4, then p = 5 and b = 2. It
follows that g is either a product of two cycles of length 5, one cycle of length 2 and one
cycle of length 30, or a product of two cycles of length 5, one cycle of length 3 and one cycle
of length 30. But move(g)−move(g2) = 1 or 2, a contradiction. If move(g)−move(gp) = 0,
then b = 0. It follows that g is either a product of one cycle of length 2 and one cycle
of length 6p, or a product of one cycle of length 3 and one cycle of length 6p. But
move(g) − move(g2) = 1 or 2, a contradiction. Let k = 7. Then d = 0. It follows that
move(g) − move(gk) = 3a + 3 = 4, and so a = 1

3 , a contradiction.

If ⌊k
2 ⌋ = 4, then k = 8 or 9, and t−a−b−d = 1. Let k = 8. Then move(g)−move(gk) =

4 ≥ 4a + 3, and so a = d = 0. If move(g) − move(gp) = 4, then p = 3 and b = 4 or p = 5
and b = 2. Thus g is either a product of four cycles of length 3 and one cycle of 24, or a
product of two cycles of length 5 and one cycle of length 40. If move(g) − move(gp) = 0,
then b = 0, and so g is a cycle of length 8p. Thus (2), (7) and (23) hold.

Let k = 9. Then a = d = 0. Since move(g) − move(gp) = 4, we have p = 5 and
b = 1. Thus g is a product of one cycle of length 5 and one cycle of length 45. But
move(g) − move(g15) = 9, a contradiction.

Now we suppose that l1 = 2b for some positive integer b. Then li = 2bi with bi ≤ b for
2 ≤ i ≤ t. If bi = b for 2 ≤ i ≤ t, then g is a product of t cycles of length 2b. Thus (1)
hold. If bi < b for some i, then g2bi ̸= 1 and 1 ≤ bi ≤ 3. It follows that g is a product of
(t − 4)-cycles of length a power of 2b and four cycles of length 2 for t ≥ 5, (t − 2)-cycles
of length a power of 2b and two cycles of length 4 for t ≥ 3, or (t − 1)-cycles of length a
power of 2b and one cycle of length 8 for t ≥ 2. Thus (38), (39) and (40) hold.

3. Proof of Theorem 1.2

Let G be a transitive permutation group on a set Ω with bounded movement m. Suppose
that G is not a 2-group. Then the upper bound of |Ω| is given in [9, Lemma 2.2].
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Lemma 3.1. Let G be a permutation group on Ω which has no fixed points on Ω. Suppose
that G is not a 2-group and move(G) = m with a positive integer m. Aussme that p is
the least odd prime dividing |G|. Then |Ω| ≤ ⌊2mp

p−1 ⌋.

Now we can give a characterization for all transitive permutation groups G satisfying
the hypotheses of Theorem 1.2.
Proof of Theorem 1.2. Suppose that p is the least odd prime dividing |G|. Then by
Lemma 3.1, n := |Ω| ≤ ⌊2mp

p−1 ⌋. Suppose that n = ⌊2mp
p−1 ⌋. If p = 3, then n = 3m. By

[8, Theorem], G is a 3-group of exponenet 3, or G is one of S3, A4 or A5 of degree 3, 6
and 6, respectively. Note that move(S3) = 1 and move(A4) = move(A5) = 2. Thus G is a
3-group of exponent 3. If p ≥ 5, then by [3, Theorem 1.1] and [6, Theorem 1.2], n = 2sp,
m = 2s−1(p − 1), 1 < 2s < p, and G = K : P with K a 2-group and P = Zp is fixed point
free on Ω; K has p-orbit of length 2s, and each element of K moves at most 2s(p − 1)
points of Ω.

Next we suppose that n < ⌊2mp
p−1 ⌋. Let 1 ̸= g ∈ G. Then by Theorem 1.1, g ∈

{g∗
2a , g∗

p1 , g8p2 , g5,25, g25,25, g4,4p3 , g4p4,4p4 , g5,5,40, g5,5,8, g4,4,5,5, g3,3,3,9, g3,3,9,9, g3,9,9,9, g9,9,9,9,
g2,2,2,2p5 , g2,2,2p6,2p6 , g2,2p7,2p7,2p7 , g2p8,2p8,2p8,2p8 , g3,3,15,15, g4,5,5,20, g5,5,20,20, g3,3,3,3,8, g3,3,3,5,15,
g3,3,3,3,24, g3,3,3,3,5,5, g3,3,3,3,4,4, g2,2,2,2,5,5, g2,2,2,5,5,10, g2,2,5,5,10,10, g2,5,5,10,10,10, g5,5,10,10,10,10,
g3,3,3,3,4,12, g3,3,3,3,12,12, g2,2,2,2,3,3,3,3, g2,2,2,3,3,3,3,6, g2,2,3,3,3,3,6,6, g2,3,3,3,3,6,6,6, g3,3,3,3,6,6,6,6, g8,2b1 ,

g4,4,2b2 , g2,2,2,2,2b3 }. It follows that m ∈ {7, 8, 10, 12, 13, 14, 16, 20, 24, t12a−1, t2
p1−1

2 , 4p2, 2+
2p3, 4p4, 3 + p5, 2p6 + 2, 3p7 + 1, 4p8, (t3 − 1)2b1−1 + 4, (t4 − 2)2b2−1 + 4, (t5 − 4)2b3−1 + 4}.

If m = 7, then at least one of g∗
2(t1 = 3), g∗

3(t2 = 3) and g∗
7(t2 = 1) belongs to G, and

at least one of g3,3,3,9, g∗
2(t1 = 7) and g∗

3(t2 = 7) belongs to G. By Lemma 3.1, we have
14 ≤ n ≤ 20. Thus we can exclude g∗

3(t2 = 7).
If m = 8, then at least one of g∗

2(t1 = 4), g∗
22(t1 = 2), g∗

23(t1 = 1), g∗
3(t2 = 4) and

g∗
5(t2 = 2) belongs to G, and at least one of g5,5,8, g4,4,5,5, g3,3,3,3,8, g3,3,3,3,5,5, g3,3,3,3,4,4,

g2,2,2,2,5,5, g2,2,2,2,3,3,3,3, g∗
2(t1 = 8), g∗

22(t1 = 4), g∗
23(t1 = 2), g∗

24(t1 = 1), g∗
3(t2 = 8),

g∗
5(t2 = 4), g∗

17(t2 = 1), g4,12, g2,2,2,10, g2,2,6,6, g4,4,23(t4 = 3), g2,2,2,2,22(t5 = 6) and
g2,2,2,2,23(t5 = 5) belongs to G. By Lemma 3.1, we have 16 ≤ n ≤ 23. Thus we can
exclude g∗

3(t2 = 8).
If m = 10, then at least one of g∗

2(t1 = 6), g∗
22(t1 = 3), g∗

3(t2 = 6), g∗
5(t2 = 3),

g∗
7(t2 = 2), g∗

13(t2 = 1), g2,2,2,6 and g2,2,2,2,22(t5 = 5) belongs to G, and at least one of
g3,3,9,9, g2,2,2,3,3,3,3,6, g∗

2(t1 = 10), g∗
22(t1 = 5), g∗

3(t2 = 10), g∗
5(t2 = 5), g∗

11(t2 = 2), g2,2,2,14,
g2,6,6,6, and g2,2,2,2,22(t5 = 7) belongs to G. By Lemma 3.1, we have 20 ≤ n ≤ 29. Thus
we can exclude g∗

3(t2 = 10).
If m = 12, then at least one of g5,5,8, g4,4,5,5, g3,3,3,3,8, g3,3,3,3,5,5, g3,3,3,3,4,4, g2,2,2,2,5,5,

g2,2,2,2,3,3,3,3, g∗
2(t1 = 8), g∗

22(t1 = 4), g∗
23(t1 = 2), g∗

24(t1 = 1), g∗
3(t2 = 8), g∗

5(t2 = 4),
g∗

17(t2 = 1), g4,12, g2,2,2,10, g2,2,6,6, g4,4,23(t4 = 3), g2,2,2,2,22(t5 = 6) and g2,2,2,2,23(t5 = 5)
belongs to G, and at least one of g3,3,3,5,15, g2,2,2,5,5,10, g3,3,3,3,4,12, g2,2,3,3,3,3,6,6, g∗

2(t1 = 12),
g∗

22(t1 = 6), g∗
23(t1 = 3), g∗

3(t2 = 12), g∗
5(t2 = 6), g∗

7(t2 = 4), g∗
13(t2 = 2), g24, g4,20,

g12,12, g2,2,10,10, g6,6,6,6, g8,24(t3 = 2), g4,4,23(t4 = 4), g4,4,24(t4 = 3), g2,2,2,2,22(t5 = 8),
g2,2,2,2,23(t5 = 6) and g2,2,2,2,24(t5 = 5) belongs to G. By Lemma 3.1, we have 24 ≤ n ≤ 35.
Thus we can exclude g∗

3(t2 = 12).
If m = 13, then at least one of g∗

2(t1 = 9), g∗
3(t2 = 9), g∗

7(t2 = 3) and g∗
19(t2 = 1) belongs

to G, and at least one of g3,9,9,9, g∗
2(t1 = 13) and g∗

3(t2 = 13) belongs to G. By Lemma
3.1, we have 26 ≤ n ≤ 38. Thus we can exclude g∗

3(t2 = 13).
If m = 14, then at least one of g3,3,9,9, g2,2,2,3,3,3,3,6, g∗

2(t1 = 10), g∗
22(t1 = 5), g∗

3(t2 = 10),
g∗

5(t2 = 5), g∗
11(t2 = 2), g2,2,2,14, g2,6,6,6, and g2,2,2,2,22(t5 = 7) belongs to G, and at least
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one of g5,25, g2,3,3,3,3,6,6,6, g∗
2(t1 = 14), g∗

22(t1 = 7), g∗
3(t2 = 14), g∗

5(t2 = 7), g∗
29(t2 = 1),

g2,2,2,22 and g2,2,2,2,22(t5 = 9) belongs to G. By Lemma 3.1, we have 28 ≤ n ≤ 41. Thus
we can exclude g∗

3(t2 = 14).
If m = 16, then at least one of g3,3,3,5,15, g2,2,2,5,5,10, g3,3,3,3,4,12, g2,2,3,3,3,3,6,6, g∗

2(t1 = 12),
g∗

22(t1 = 6), g∗
23(t1 = 3), g∗

3(t2 = 12), g∗
5(t2 = 6), g∗

7(t2 = 4), g∗
13(t2 = 2), g24, g4,20,

g12,12, g2,2,10,10, g6,6,6,6, g8,24(t3 = 2), g4,4,23(t4 = 4), g4,4,24(t4 = 3), g2,2,2,2,22(t5 = 8),
g2,2,2,2,23(t5 = 6) and g2,2,2,2,24(t5 = 5) belongs to G, and at least one of g9,9,9,9, g3,3,15,15,
g4,5,5,20, g3,3,3,3,24, g2,2,5,5,10,10, g3,3,3,3,12,12, g3,3,3,3,6,6,6,6, g∗

2(t1 = 16), g∗
22(t1 = 8), g∗

23(t1 =
4), g∗

24(t1 = 2), g∗
25(t1 = 1), g∗

3(t2 = 16), g∗
5(t2 = 8), g∗

17(t2 = 2), g4,28, g2,2,2,26, g2,2,14,14,
g2,10,10,10, g4,4,23(t4 = 5), g2,2,2,2,22(t5 = 10) and g2,2,2,2,23(t5 = 7) belongs to G. By Lemma
3.1, we have 32 ≤ n ≤ 47. Thus we can exclude g∗

3(t2 = 16).
If m = 20, then at least one of g9,9,9,9, g3,3,15,15, g4,5,5,20, g3,3,3,3,24, g2,2,5,5,10,10, g3,3,3,3,12,12,

g3,3,3,3,6,6,6,6, g∗
2(t1 = 16), g∗

22(t1 = 8), g∗
23(t1 = 4), g∗

24(t1 = 2), g∗
25(t1 = 1), g∗

3(t2 = 16),
g∗

5(t2 = 8), g∗
17(t2 = 2), g4,28, g2,2,2,26, g2,2,14,14, g2,10,10,10, g4,4,23(t4 = 5), g2,2,2,2,22(t5 = 10)

and g2,2,2,2,23(t5 = 7) belongs to G, and at least one of g2,5,5,10,10,10, g∗
2(t1 = 20), g∗

22(t1 =
10), g∗

23(t1 = 5), g∗
3(t2 = 20), g∗

5(t2 = 10), g∗
11(t2 = 4), g∗

41(t2 = 1), g40, g20,20, g2,2,2,34,
g10,10,10,10, g8,24(t3 = 3), g8,25(t3 = 2), g4,4,23(t4 = 6), g4,4,24(t4 = 4), g4,4,25(t4 = 3),
g2,2,2,2,22(t5 = 12), g2,2,2,2,23(t5 = 8), g2,2,2,2,24(t5 = 6) and g2,2,2,2,25(t5 = 5) belongs to G.
By Lemma 3.1, we have 40 ≤ n ≤ 59. Thus we can exclude g∗

3(t2 = 20).
If m = 24, then at least one of g2,5,5,10,10,10, g∗

2(t1 = 20), g∗
22(t1 = 10), g∗

23(t1 =
5), g∗

3(t2 = 20), g∗
5(t2 = 10), g∗

11(t2 = 4), g∗
41(t2 = 1), g40, g20,20, g2,2,2,34, g10,10,10,10,

g8,24(t3 = 3), g8,25(t3 = 2), g4,4,23(t4 = 6), g4,4,24(t4 = 4), g4,4,25(t4 = 3), g2,2,2,2,22(t5 = 12),
g2,2,2,2,23(t5 = 8), g2,2,2,2,24(t5 = 6) and g2,2,2,2,25(t5 = 5) belongs to G, and at least one of
g25,25, g5,5,40, g5,5,20,20, g5,5,10,10,10,10, g∗

2(t1 = 24), g∗
22(t1 = 12), g∗

23(t1 = 6), g∗
24(t1 = 3),

g∗
3(t2 = 24), g∗

5(t2 = 12), g∗
7(t2 = 8), g∗

13(t2 = 4), g∗
17(t2 = 3), g4,44, g2,2,22,22, g4,4,23(t4 = 7),

g2,2,2,2,22(t5 = 14) and g2,2,2,2,23(t5 = 9) belongs to G. By Lemma 3.1, we have 48 ≤ n ≤ 71.
Thus we can exclude g∗

3(t2 = 24).
Assume that m = t12a−1 and m ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24}. If m − 4 = 7, then

m = 11. It follows that at least one of g3,3,3,9, g∗
2(t1 = 7) and g∗

3(t2 = 7) belongs to G, and
at least one of g∗

2(t1 = 11), g∗
3(t2 = 11) and g∗

23(t2 = 1) belongs to G. By Lemma 3.1, we
have 22 ≤ n ≤ 32. Thus we can exclude g∗

3(t2 = 11).
If m − 4 = 13, then m = 17. It follows that at least one of g3,9,9,9, g∗

2(t1 = 13) and
g∗

3(t2 = 13) belongs to G, and at least one of g∗
2(t1 = 17) and g∗

3(t2 = 17) belongs to G.
By Lemma 3.1, we have 34 ≤ n ≤ 50. Thus we can exclude g∗

3(t2 = 17).
If m−4 = 14, then m = 18. It follows that at least one of g5,25, g2,3,3,3,3,6,6,6, g∗

2(t1 = 14),
g∗

22(t1 = 7), g∗
3(t2 = 14), g∗

5(t2 = 7), g∗
29(t2 = 1), g2,2,2,22 and g2,2,2,2,22(t5 = 9) belongs

to G, and at least one of g∗
2(t1 = 18), g∗

22(t1 = 9), g∗
3(t2 = 18), g∗

5(t2 = 9), g∗
7(t2 = 6),

g∗
13(t2 = 3), g∗

19(t2 = 2), g∗
37(t2 = 1) and g2,2,2,2,22(t5 = 11) belongs to G. By Lemma 3.1,

we have 36 ≤ n ≤ 53. Thus we can exclude g∗
3(t2 = 18).

If m − 4 = 24, then m = 28. It follows that at least one of g25,25, g5,5,40, g5,5,20,20,
g5,5,10,10,10,10, g∗

2(t1 = 24), g∗
22(t1 = 12), g∗

23(t1 = 6), g∗
24(t1 = 3), g∗

3(t2 = 24), g∗
5(t2 = 12),

g∗
7(t2 = 8), g∗

13(t2 = 4), g∗
17(t2 = 3), g4,44, g2,2,22,22, g4,4,23(t4 = 7), g2,2,2,2,22(t5 = 14) and

g2,2,2,2,23(t5 = 9) belongs to G, and at least one of g∗
2(t1 = 28), g∗

22(t1 = 14), g∗
23(t1 = 7),

g∗
3(t2 = 28), g∗

5(t2 = 14), g∗
29(t2 = 2), g56, g4,52, g28,28, g2,2,26,26, g14,14,14,14, g8,24(t3 = 4),

g4,4,23(t4 = 8), g4,4,24(t4 = 5), g2,2,2,2,22(t5 = 16), g2,2,2,2,23(t5 = 10) and g2,2,2,2,24(t5 = 7)
belongs to G. By Lemma 3.1, we have 56 ≤ n ≤ 83. Thus we can exclude g∗

3(t2 = 28).
Now we assume that m − 4 ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24}. Then at least one of g∗

2a′

(t′
12a′−1 + 4 = t12a−1), g∗

p′
1
(t′

2
p′

1−1
2 + 4 = t12a−1), g8p′

2
(4p′

2 + 4 = t12a−1), g4,4p′
3
(6 + 2p′

3 =
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t12a−1), g4p′
4,4p′

4
(4p′

4 + 4 = t12a−1), g2,2,2,2p′
5
(7 + p′

5=t12a−1), g2,2,2p′
6,2p′

6
(2p′

6 + 6=t12a−1),
g2,2p′

7,2p′
7,2p′

7
(3p′

7 + 5 = t12a−1), g2p′
8,2p′

8,2p′
8,2p′

8
(4p′

8 + 4 = t12a−1), g
8,2b′

1
((t′

3 − 1)2b′
1−1 + 8 =

t12a−1), g
4,4,2b′

2
((t′

4 − 2)2b′
2−1 + 8 = t12a−1) and g

2,2,2,2,2b′
3
((t′

5 − 4)2b′
3−1 + 8 = t12a−1)

belongs to G, and at least one of g∗
2a , g∗

p1(t2
p1−1

2 = t12a−1), g8p2(4p2 = t12a−1), g4,4p3(2 +
2p3 = t12a−1), g4p4,4p4(4p4 = t12a−1), g2,2,2,2p5(3 + p5 = t12a−1), g2,2,2p6,2p6(2p6 + 2 =
t12a−1), g2,2p7,2p7,2p7(3p7 + 1 = t12a−1), g2p8,2p8,2p8,2p8(4p8 = t12a−1), g8,2b1 ((t3 − 1)2b1−1 +
4 = t12a−1), g4,4,2b2 ((t4 − 2)2b2−1 + 4 = t12a−1) and g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 =
t12a−1) belongs to G. By Lemma 3.1, we have 2at1 ≤ n ≤ ⌊2at1

p
p−1⌋ − 1, where

p ∈ {p1, p2, p3, p4, p5, p6, p7, p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}.

Assume that m = t2
p1−1

2 . We may let m ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24, t12a−1} and
m − 4 ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24}. Then at least one of g∗

2a′ (t′
12a′−1 + 4 = t2

p1−1
2 ),

g∗
p′

1
(t′

2
p′

1−1
2 +4 = t2

p1−1
2 ), g8p′

2
(4p′

2 +4 = t2
p1−1

2 ), g4,4p′
3
(6+2p′

3 = t2
p1−1

2 ), g4p′
4,4p′

4
(4p′

4 +4 =
t2

p1−1
2 ), g2,2,2,2p′

5
(7 + p′

5 = t2
p1−1

2 ), g2,2,2p′
6,2p′

6
(2p′

6 + 6 = t2
p1−1

2 ), g2,2p′
7,2p′

7,2p′
7
(3p′

7 + 5 =
t2

p1−1
2 ), g2p′

8,2p′
8,2p′

8,2p′
8
(4p′

8 + 4 = t2
p1−1

2 ), g
8,2b′

1
((t′

3 − 1)2b′
1−1 + 8 = t2

p1−1
2 ), g

4,4,2b′
2
((t′

4 −
2)2b′

2−1 + 8 = t2
p1−1

2 ) and g
2,2,2,2,2b′

3
((t′

5 − 4)2b′
3−1 + 8 = t2

p1−1
2 ) belongs to G, and at

least one of g∗
p1 , g8p2(4p2 = t2

p1−1
2 ), g4,4p3(2 + 2p3 = t2

p1−1
2 ), g4p4,4p4(4p4 = t2

p1−1
2 ),

g2,2,2,2p5(3 + p5 = t2
p1−1

2 ), g2,2,2p6,2p6(2p6 + 2 = t2
p1−1

2 ), g2,2p7,2p7,2p7(3p7 + 1 = t2
p1−1

2 ),
g2p8,2p8,2p8,2p8(4p8 = t2

p1−1
2 ), g8,2b1 ((t3 − 1)2b1−1 + 4 = t2

p1−1
2 ), g4,4,2b2 ((t4 − 2)2b2−1 + 4 =

t2
p1−1

2 ) and g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 = t2
p1−1

2 ) belongs to G. By Lemma 3.1, we have
t2(p1−1) ≤ n ≤ ⌊t2(p1−1) p

p−1⌋−1, where p ∈ {p1, p2, p3, p4, p5, p6, p7, p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6,

p′
7, p′

8}.

Assume that m = 4p2. We may let m ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24, t12a−1, t2
p1−1

2 },
and m − 4 ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24}. Then at least one of g∗

2a′ (t′
12a′−1 + 4 = 4p2),

g∗
p′

1
(t′

2
p′

1−1
2 + 4 = 4p2), g8p′

2
(4p′

2 + 4 = 4p2), g4,4p′
3
(6 + 2p′

3 = 4p2), g4p′
4,4p′

4
(4p′

4 + 4 =
4p2), g2,2,2,2p′

5
(7 + p′

5 = 4p2), g2,2,2p′
6,2p′

6
(2p′

6 + 6 = 4p2), g2,2p′
7,2p′

7,2p′
7
(3p′

7 + 5 = 4p2),
g2p′

8,2p′
8,2p′

8,2p′
8
(4p′

8 +4 = 4p2), g
8,2b′

1
((t′

3 −1)2b′
1−1 +8 = 4p2), g

4,4,2b′
2
((t′

4 −2)2b′
2−1 +8 = 4p2)

and g
2,2,2,2,2b′

3
((t′

5−4)2b′
3−1+8 = 4p2) belongs to G, and at least one of g8p2 , g4,4p3(2+2p3 =

4p2), g4p4,4p4(p4 = p2), g2,2,2,2p5(3 + p5=4p2), g2,2,2p6,2p6(2p6 + 2=4p2), g2,2p7,2p7,2p7(3p7 +
1=4p2), g2p8,2p8,2p8,2p8(p8 = p2), g8,2b1 ((t3 − 1)2b1−1 + 4 = 4p2), g4,4,2b2 ((t4 − 2)2b2−1 + 4 =
4p2) and g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 = 4p2) belongs to G. By Lemma 3.1, we have
8p2 ≤ n ≤ ⌊8p2

p
p−1⌋ − 1, where p ∈ {p2, p3, p4, p5, p6, p7, p8, p′

1, p′
2, p′

3, p′
4, p′

5, p′
6, p′

7, p′
8}.

Assume that m = 2 + 2p3. We may let m ̸∈{7, 8, 10, 12, 13, 14, 16, 20, 24, t12a−1, t2
p1−1

2 ,

4p2} and m − 4 ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24}. Then at least one of g∗
2a′ (t′

12a′−1 + 4 =
2 + 2p3), g∗

p′
1
(t′

2
p′

1−1
2 + 4 = 2 + 2p3), g8p′

2
(4p′

2 + 4 = 2 + 2p3), g4,4p′
3
(6 + 2p′

3 = 2 + 2p3),
g4p′

4,4p′
4
(4p′

4 + 4 = 2 + 2p3), g2,2,2,2p′
5
(7 + p′

5 = 2 + 2p3), g2,2,2p′
6,2p′

6
(2p′

6 + 6 = 2 + 2p3),
g2,2p′

7,2p′
7,2p′

7
(3p′

7 + 5 = 2 + 2p3), g2p′
8,2p′

8,2p′
8,2p′

8
(4p′

8 + 4 = 2 + 2p3), g
8,2b′

1
((t′

3 − 1)2b′
1−1 + 8 =

2 + 2p3), g
4,4,2b′

2
((t′

4 − 2)2b′
2−1 + 8 = 2 + 2p3) and g

2,2,2,2,2b′
3
((t′

5 − 4)2b′
3−1 + 8 = 2 + 2p3)

belongs to G, and at least one of g4,4p3 , g4p4,4p4(4p4 = 2 + 2p3), g2,2,2,2p5(3 + p5 = 2 + 2p3),
g2,2,2p6,2p6(2p6 +2 = 2+2p3), g2,2p7,2p7,2p7(3p7 +1 = 2+2p3), g2p8,2p8,2p8,2p8(4p8 = 2+2p3),
g8,2b1 ((t3 − 1)2b1−1 + 4 = 2 + 2p3), g4,4,2b2 ((t4 − 2)2b2−1 + 4 = 2 + 2p3) and g2,2,2,2,2b3 ((t5 −
4)2b3−1+4 = 2+2p3) belongs to G. By Lemma 3.1, we have 4+4p3 ≤ n ≤ ⌊(4+4p3) p

p−1⌋−1,
where p ∈ {p3, p4, p5, p6, p7, p8, p′

1, p′
2, p′

3, p′
4, p′

5, p′
6, p′

7, p′
8}.
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Assume that m = 4p4. We may let m ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24, t12a−1, t2
p1−1

2 , 4p2,

2 + 2p3} and m − 4 ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24}. Then at least one g∗
2a′ (t′

12a′−1 + 4 =
4p4), g∗

p′
1
(t′

2
p′

1−1
2 + 4 = 4p4), g8p′

2
(4p′

2 + 4 = 4p4), g4,4p′
3
(6 + 2p′

3 = 4p4), g4p′
4,4p′

4
(4p′

4 + 4 =
4p4), g2,2,2,2p′

5
(7 + p′

5 = 4p4), g2,2,2p′
6,2p′

6
(2p′

6 + 6 = 4p4), g2,2p′
7,2p′

7,2p′
7
(3p′

7 + 5 = 4p4),
g2p′

8,2p′
8,2p′

8,2p′
8
(4p′

8 +4 = 4p4), g
8,2b′

1
((t′

3 −1)2b′
1−1 +8 = 4p4), g

4,4,2b′
2
((t′

4 −2)2b′
2−1 +8 = 4p4)

and g
2,2,2,2,2b′

3
((t′

5−4)2b′
3−1+8 = 4p4) belongs to G, and at least one of g4p4,4p4 , g2,2,2,2p5(3+

p5 = 4p4), g2,2,2p6,2p6(2p6 + 2 = 4p4), g2,2p7,2p7,2p7(3p7 + 1 = 4p4), g2p8,2p8,2p8,2p8(p8 = p4),
g8,2b1 ((t3 −1)2b1−1 +4 = 4p4), g4,4,2b2 ((t4 −2)2b2−1 +4 = 4p4) and g2,2,2,2,2b3 ((t5 −4)2b3−1 +
4 = 4p4) belongs to G. By Lemma 3.1, we have 8p4 ≤ n ≤ ⌊8p4

p
p−1⌋ − 1, where p ∈

{p4, p5, p6, p7, p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}.

Assume that m = 3+p5. We may let m ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24, t12a−1, t2
p1−1

2 , 4p2,

2+2p3, 4p4} and m−4 ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24}. Then at least one g∗
2a′ (t′

12a′−1+4 =
3 + p5), g∗

p′
1
(t′

2
p′

1−1
2 + 4 = 3 + p5), g8p′

2
(4p′

2 + 4 = 3 + p5), g4,4p′
3
(6 + 2p′

3 = 3 + p5),
g4p′

4,4p′
4
(4p′

4 + 4 = 3 + p5), g2,2,2,2p′
5
(7 + p′

5 = 3 + p5), g2,2,2p′
6,2p′

6
(2p′

6 + 6 = 3 + p5),
g2,2p′

7,2p′
7,2p′

7
(3p′

7 + 5 = 3 + p5), g2p′
8,2p′

8,2p′
8,2p′

8
(4p′

8 + 4 = 3 + p5), g
8,2b′

1
((t′

3 − 1)2b′
1−1 + 8 =

3+p5), g
4,4,2b′

2
((t′

4−2)2b′
2−1+8 = 3+p5) and g

2,2,2,2,2b′
3
((t′

5−4)2b′
3−1+8 = 3+p5) belongs to

G, and at least one of g2,2,2,2p5 , g2,2,2p6,2p6(2p6 +2 = 3+p5), g2,2p7,2p7,2p7(3p7 +1 = 3+p5),
g2p8,2p8,2p8,2p8(4p8 = 3 + p5), g8,2b1 ((t3 − 1)2b1−1 + 4 = 3 + p5), g4,4,2b2 ((t4 − 2)2b2−1 + 4 =
3 + p5) and g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 = 3 + p5) belongs to G. By Lemma 3.1, we have
6 + 2p5 ≤ n ≤ ⌊(6 + 2p5) p

p−1⌋ − 1, where p ∈ {p5, p6, p7, p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}.

Assume that m = 2p6+2. We may let m ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24, t12a−1, t2
p1−1

2 , 4p2,

2+2p3, 4p4, 3+p5} and m−4 ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24}. Then at least one g∗
2a′ (t′

12a′−1+
4 = 2p6 + 2), g∗

p′
1
(t′

2
p′

1−1
2 + 4 = 2p6 + 2), g8p′

2
(4p′

2 + 4 = 2p6 + 2), g4,4p′
3
(6 + 2p′

3 = 2p6 + 2),
g4p′

4,4p′
4
(4p′

4 + 4 = 2p6 + 2), g2,2,2,2p′
5
(7 + p′

5 = 2p6 + 2), g2,2,2p′
6,2p′

6
(2p′

6 + 6 = 2p6 + 2),
g2,2p′

7,2p′
7,2p′

7
(3p′

7 + 5 = 2p6 + 2), g2p′
8,2p′

8,2p′
8,2p′

8
(4p′

8 + 4 = 2p6 + 2), g
8,2b′

1
((t′

3 − 1)2b′
1−1 + 8 =

2p6+2), g
4,4,2b′

2
((t′

4−2)2b′
2−1+8 = 2p6+2) and g

2,2,2,2,2b′
3
((t′

5−4)2b′
3−1+8 = 2p6+2) belongs

to G, and at least one of g2,2,2p6,2p6 , g2,2p7,2p7,2p7(3p7 + 1 = 2p6 + 2), g2p8,2p8,2p8,2p8(4p8 =
2p6 + 2), g8,2b1 ((t3 − 1)2b1−1 + 4 = 2p6 + 2), g4,4,2b2 ((t4 − 2)2b2−1 + 4 = 2p6 + 2) and
g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 = 2p6 + 2) belongs to G. By Lemma 3.1, we have 4p6 + 4 ≤
n ≤ ⌊(4p6 + 4) p

p−1⌋ − 1, where p ∈ {p6, p7, p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}.

Assume that m = 3p7 +1. We may let m ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24, t12a−1, t2
p1−1

2 ,
4p2, 2 + 2p3, 4p4, 3 + p5, 2p6 + 2} and m − 4 ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24}. Then at
least one g∗

2a′ (t′
12a′−1 + 4 = 3p7 + 1), g∗

p′
1
(t′

2
p′

1−1
2 + 4 = 3p7 + 1), g8p′

2
(4p′

2 + 4 = 3p7 +
1), g4,4p′

3
(6 + 2p′

3 = 3p7 + 1), g4p′
4,4p′

4
(4p′

4 + 4 = 3p7 + 1), g2,2,2,2p′
5
(7 + p′

5 = 3p7 + 1),
g2,2,2p′

6,2p′
6
(2p′

6 + 6 = 3p7 + 1), g2,2p′
7,2p′

7,2p′
7
(3p′

7 + 5 = 3p7 + 1), g2p′
8,2p′

8,2p′
8,2p′

8
(4p′

8 + 4 =
3p7 + 1), g

8,2b′
1
((t′

3 − 1)2b′
1−1 + 8 = 3p7 + 1), g

4,4,2b′
2
((t′

4 − 2)2b′
2−1 + 8 = 3p7 + 1) and

g
2,2,2,2,2b′

3
((t′

5 − 4)2b′
3−1 + 8 = 3p7 + 1) belongs to G, and at least one of g2,2p7,2p7,2p7 ,

g2p8,2p8,2p8,2p8(4p8 = 3p7 +1), g8,2b1 ((t3 −1)2b1−1 +4 = 3p7 +1), g4,4,2b2 ((t4 −2)2b2−1 +4 =
3p7 + 1) and g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 = 3p7 + 1) belongs to G. By Lemma 3.1, we have
6p7 + 2 ≤ n ≤ ⌊(6p7 + 2) p

p−1⌋ − 1, where p ∈ {p7, p8, p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}.
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Assume that m = 4p8. We may let m ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24, t12a−1, t2
p1−1

2 , 4p2,
2 + 2p3, 4p4, 3 + p5, 2p6 + 2, 3p7 + 1} and m − 4 ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24}. Then at
least one g∗

2a′ (t′
12a′−1 + 4 = 4p8), g∗

p′
1
(t′

2
p′

1−1
2 + 4 = 4p8), g8p′

2
(4p′

2 + 4 = 4p8), g4,4p′
3
(6 +

2p′
3 = 4p8), g4p′

4,4p′
4
(4p′

4 + 4 = 4p8), g2,2,2,2p′
5
(7 + p′

5 = 4p8), g2,2,2p′
6,2p′

6
(2p′

6 + 6 = 4p8),
g2,2p′

7,2p′
7,2p′

7
(3p′

7 + 5 = 4p8), g2p′
8,2p′

8,2p′
8,2p′

8
(4p′

8 + 4 = 4p8), g
8,2b′

1
((t′

3 − 1)2b′
1−1 + 8 = 4p8),

g
4,4,2b′

2
((t′

4 −2)2b′
2−1 +8 = 4p8) and g

2,2,2,2,2b′
3
((t′

5 −4)2b′
3−1 +8 = 4p8) belongs to G, and at

least one of g2p8,2p8,2p8,2p8 , g8,2b1 ((t3 − 1)2b1−1 + 4 = 4p8), g4,4,2b2 ((t4 − 2)2b2−1 + 4 = 4p8)
and g2,2,2,2,2b3 ((t5 − 4)2b3−1 + 4 = 4p8) belongs to G. By Lemma 3.1, we have 8p8 ≤ n ≤
⌊8p8

p
p−1⌋ − 1, where p ∈ {p8, p′

1, p′
2, p′

3, p′
4, p′

5, p′
6, p′

7, p′
8}.

Assume that m = (t3−1)2b1−1+4. We may let m ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24, t12a−1,

t2
p1−1

2 , 4p2, 2+2p3, 4p4, 3+p5, 2p6+2, 3p7+1, 4p8} and m−4 ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24}.
Then at least one g∗

2a′ (t′
12a′−1 + 4 = (t3 − 1)2b1−1 + 4), g∗

p′
1
(t′

2
p′

1−1
2 + 4 = (t3 − 1)2b1−1 + 4),

g8p′
2
(4p′

2 + 4 = (t3 − 1)2b1−1 + 4), g4,4p′
3
(6 + 2p′

3 = (t3 − 1)2b1−1 + 4), g4p′
4,4p′

4
(4p′

4 + 4 =
(t3−1)2b1−1+4), g2,2,2,2p′

5
(7+p′

5 = (t3−1)2b1−1+4), g2,2,2p′
6,2p′

6
(2p′

6+6 = (t3−1)2b1−1+4),
g2,2p′

7,2p′
7,2p′

7
(3p′

7 + 5 = (t3 − 1)2b1−1 + 4), g2p′
8,2p′

8,2p′
8,2p′

8
(4p′

8 + 4 = (t3 − 1)2b1−1 + 4),
g

8,2b′
1
((t′

3 − 1)2b′
1−1 + 8 = (t3 − 1)2b1−1 + 4), g

4,4,2b′
2
((t′

4 − 2)2b′
2−1 + 8 = (t3 − 1)2b1−1 + 4)

and g
2,2,2,2,2b′

3
((t′

5 −4)2b′
3−1 +8 = (t3 −1)2b1−1 +4) belongs to G, and at least one of g8,2b1 ,

g4,4,2b2 ((t4−2)2b2−1+4 = (t3−1)2b1−1+4)) and g2,2,2,2,2b3 ((t5−4)2b3−1+4 = (t3−1)2b1−1+
4)) belongs to G. By Lemma 3.1, we have (t3 − 1)2b1 + 8 ≤ n ≤ ⌊((t3 − 1)2b1 + 8) p

p−1⌋ − 1,
where p ∈ {p′

1, p′
2, p′

3, p′
4, p′

5, p′
6, p′

7, p′
8}.

Assume that m = (t4−2)2b2−1+4. We may let m ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24, t12a−1,

t2
p1−1

2 , 4p2, 2 + 2p3, 4p4, 3 + p5, 2p6 + 2, 3p7 + 1, 4p8, (t3 − 1)2b1−1 + 4} and m − 4 ̸∈
{7, 8, 10, 12, 13, 14, 16, 20, 24}. Then at least one g∗

2a′ (t′
12a′−1 + 4 = (t4 − 2)2b2−1 + 4),

g∗
p′

1
(t′

2
p′

1−1
2 + 4 = (t4 − 2)2b2−1 + 4), g8p′

2
(4p′

2 + 4 = (t4 − 2)2b2−1 + 4), g4,4p′
3
(6 + 2p′

3 =
(t4 − 2)2b2−1 + 4), g4p′

4,4p′
4
(4p′

4 + 4 = (t4 − 2)2b2−1 + 4), g2,2,2,2p′
5
(7 + p′

5 = (t4 − 2)2b2−1 +
4), g2,2,2p′

6,2p′
6
(2p′

6 + 6 = (t4 − 2)2b2−1 + 4), g2,2p′
7,2p′

7,2p′
7
(3p′

7 + 5 = (t4 − 2)2b2−1 + 4),
g2p′

8,2p′
8,2p′

8,2p′
8
(4p′

8 + 4 = (t4 − 2)2b2−1 + 4), g
8,2b′

1
((t′

3 − 1)2b′
1−1 + 8 = (t4 − 2)2b2−1 + 4),

g
4,4,2b′

2
((t′

4−2)2b′
2−1+8 = (t4−2)2b2−1+4), and g

2,2,2,2,2b′
3
((t′

5−4)2b′
3−1+8 = (t4−2)2b2−1+

4) belongs to G, and at least one of g4,4,2b2 and g2,2,2,2,2b3 ((t5 −4)2b3−1 +4 = (t3 −1)2b1−1 +
4)) belongs to G. By Lemma 3.1, we have (t4 − 2)2b2 + 8 ≤ n ≤ ⌊((t4 − 2)2b2 + 8) p

p−1⌋ − 1,
where p ∈ {p′

1, p′
2, p′

3, p′
4, p′

5, p′
6, p′

7, p′
8}.

Assume that m = (t5−4)2b3−1+4. We may let m ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24, t12a−1,

t2
p1−1

2 , 4p2, 2 + 2p3, 4p4, 3 + p5, 2p6 + 2, 3p7 + 1, 4p8, (t3 − 1)2b1−1 + 4, (t4 − 2)2b2−1 + 4} and
m−4 ̸∈ {7, 8, 10, 12, 13, 14, 16, 20, 24}. Then at least one g∗

2a′ (t′
12a′−1+4 = (t5−4)2b3−1+4),

g∗
p′

1
(t′

2
p′

1−1
2 + 4 = (t5 − 4)2b3−1 + 4), g8p′

2
(4p′

2 + 4 = (t5 − 4)2b3−1 + 4), g4,4p′
3
(6 + 2p′

3 =
(t5 − 4)2b3−1 + 4), g4p′

4,4p′
4
(4p′

4 + 4 = (t5 − 4)2b3−1 + 4), g2,2,2,2p′
5
(7 + p′

5 = (t5 − 4)2b3−1 +
4), g2,2,2p′

6,2p′
6
(2p′

6 + 6 = (t5 − 4)2b3−1 + 4), g2,2p′
7,2p′

7,2p′
7
(3p′

7 + 5 = (t5 − 4)2b3−1 + 4),
g2p′

8,2p′
8,2p′

8,2p′
8
(4p′

8 + 4 = (t5 − 4)2b3−1 + 4), g
8,2b′

1
((t′

3 − 1)2b′
1−1 + 8 = (t5 − 4)2b3−1 + 4),

g
4,4,2b′

2
((t′

4−2)2b′
2−1+8 = (t5−4)2b3−1+4) and g

2,2,2,2,2b′
3
((t′

5−4)2b′
3−1+8 = (t5−4)2b3−1+4)

belongs to G, and g2,2,2,2,2b3 belongs to G. By Lemma 3.1, we have (t5 − 4)2b3 + 8 ≤ n ≤
⌊((t5 − 4)2b3 + 8) p

p−1⌋ − 1, where p ∈ {p′
1, p′

2, p′
3, p′

4, p′
5, p′

6, p′
7, p′

8}.
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In the future, we want to explore the constructions of these groups in Theorem 1.2.
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