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ABSTRACT: This study analyzes two machine learning models, artificial neural network (ANN) and adaptive neuro-fuzzy inference 

system (ANFIS), to predict thermal insulation of cotton fabric woven with twill. The input parameters include fabric thickness, warps 

per inch, and wefts per inch. The ANN model has a 3-6-1 network structure, with output and hidden layers having sigmoid and linear 

activation functions. The ANFIS model employs sugeno-type fuzzy logic, while the network is trained using the feedforward 

backpropagation Levenberg-Marquardt technique. The weighted average approach was used in the defuzzification process. MATLAB 

was used to create both models. The ANN model performs well in predictions, as evidenced by its R2 value of 0.9942, which indicates 

a significant correlation between the target and prediction values. The ANN model's exceptional performance metrics, such as a mean 

absolute percentage error (MAPE) of 1.31401 and a root mean squared error (RMSE) of 0.00176, demonstrate its precision and 

reliability. However, the ANFIS model has considerably lower accuracy metrics, with an R2 value of 0.9570. The ANN offers more 

accuracy and precision than the ANFIS model, which has an RMSE of 0.00489 and a MAPE of 2.07495. This study will improve the 

textile engineering prediction model by revealing the intricate connection between fabric characteristics and the thermal insulation of 

clothing composed of cotton fabric's twill structure. 
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DİMİ DOKUMA PAMUKLU KUMAŞIN ISI YALITIM ÖZELLİKLERİNİN ANN VE ANFIS 

KULLANILARAK TAHMİN EDİLMESİ 
 

ÖZ: Bu çalışma, dimi ile dokunmuş pamuklu kumaşın ısı yalıtımını tahmin etmek için yapay sinir ağı (YSA) ve uyarlamalı ağ tabanlı 

bulanık mantık çıkarım sistemi (ANFIS) olmak üzere iki makine öğrenme modelini analiz etmektedir. Giriş parametreleri kumaş 

kalınlığını, inç başına uç sayısını (EPI) ve inç başına atkı sayısını (PPI) içerir. YSA modeli, sigmoid ve doğrusal aktivasyon 

fonksiyonlarına sahip çıkış ve gizli katmanlardan oluşan 3-8-1 ağ yapısına sahiptir. ANFIS modeli sugeno tipi bulanık mantık 

kullanırken, ağ ileri beslemeli geri yayılım Levenberg-Marquardt tekniği kullanılarak eğitilmektedir. Durulaştırma işleminde ağırlıklı 

ortalama yaklaşımı kullanılmıştır. Her iki modeli de oluşturmak için MATLAB kullanıldı. YSA modeli, hedef ve tahmin değerleri 

arasında anlamlı bir korelasyon olduğunu gösteren 0,9942 R2 değeriyle kanıtlandığı gibi tahminlerde iyi performans gösterir. YSA 

modelinin 1,31401 ortalama mutlak yüzde hatası (MAPE) ve 0,00176 kök ortalama kare hatası (RMSE) gibi olağanüstü performans 

ölçümleri, onun hassasiyetini ve güvenilirliğini göstermektedir. Ancak ANFIS modeli, 0,9570 R2 değeriyle önemli ölçüde daha düşük 

doğruluk ölçümlerine sahiptir. YSA, RMSE'si 0,00489 ve MAPE'si 2,07495 olan ANFIS modelinden daha fazla doğruluk ve hassasiyet 

sunar. Bu çalışma, kumaş özellikleri ile pamuklu kumaşın dimi yapısından oluşan giysinin ısı yalıtımı arasındaki karmaşık bağlantıyı 

ortaya çıkararak tekstil mühendisliği tahmin modelini geliştirecektir. 
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1. INTRODUCTION 

When a person wears clothing, it is important to be comfortable. It 

can significantly impact one’s general well-being and feelings 

during the day. Clothing comfort is subjective and may vary from 

person to person, but it typically relates to the impression of ease, 

physical and psychological comfort, and overall contentment while 

wearing a specific item [1, 2]. The first category is psychological 

comfort. Fashion connects it to the sentiments of self-confidence, 

happiness, and alignment with personal, cultural, or societal identity 

that clothes may evoke. The second is tactile comfort, which 

encompasses external contact of the fabric and skin is highly 

connected with the mechanical and surface characteristics of the 

fabric; and the third is thermal comfort, which is connected to the 

ability of the fabric to regulate skin temperature through heat and 

moisture transfer. The purpose of thermal clothing is to offer 

additional insulation and warmth during cold or chilly conditions. 

Comfort with thermal gear is vital to guaranteeing that you stay 

warm and comfy without feeling too hot or uncomfortable. Many 

factors influence it, including its ability to transmit heat and 

moisture from the human body to the external environment and 

adapt to changing climate conditions. Thermal comfortability can 

be achieved by maintaining a constant and comfortable body 

temperature. We need to accurately determine the thermal 

comfortability of clothing to ensure appropriate end uses and 

product development [3]. Conduction, convection, and radiation 

can transfer heat from clothing to the surrounding area to maintain 

thermal equilibrium. In the technological design of protective 

clothing, textile thermal insulation properties are crucial. In the 

event of extreme cold, the function of a fabric is to act as an insulator 

to stop heat loss from the body to the outside environment[4]. This 

requires that the fabric have either strong thermal resistance or low 

thermal conductivity. Maintaining the thermal equilibrium between 

body heat production and loss is crucial for ensuring a person's 

thermal stability and thermal comfort[5, 6]. When the rate of heat 

creation and loss is equal, the human body reaches thermal 

equilibrium with its environment. The heat balance equation[7, 8] 

provides a mathematical description of the relationship between 

heat production and reduction. 

Heat production= Heat reduction 

Or 

M – W = Cv + Ck + R + Esk + Eres + Cres                    (1) 

Here, M indicates metabolic rate (W/m²). W stands for external 

work (W/m²). Cv, Ck & R denotes heat loss through convection, 

conduction, and radiation (W/m²) accordingly. Esk measures heat 

loss through skin by evaporation (W/m²), while Eres represents the 

evaporative heat loss owing to respiration (W/m²). Finally, Cres is 

the sensible heat loss due to respiration (W/m²). The equation may 

be used by persons of different sizes and shapes since it represents 

all components per unit area of body surface. 

The twill weave is one of the three fundamental fabric weaves, 

along with plain weave and satin. The presence of a diagonal 

pattern, known as a twill line, inside the cloth distinguishes twill 

weaves. Twill weaves have a higher packing density compared to 

plain weaves, necessitating a closer fabric sett [9]. Thread density 

in the woven fabric is measured by warps per inch and wefts per 

inch. These influence the tightness of the woven fabric [10]. A 2/1 

twill weave requires at least three harnesses to weave since the 

pattern repeats on three warp and three weft strands. A warp-faced 

twill is produced when the weft crosses over one warp thread after 

passing under two [11]. Figure 1 illustrates the fabric structure and 

repeat of the twill (2/1) weave. 

 

Figure 1: Fabric structure and repeat of twill (2/1) weave. 

 

Clothing expresses its thermal insulation property in "clo" units. 

It plays a key role in how well clothing maintains a balanced and 

pleasant thermal environment for the end user. The clo value of 

clothing closely correlates with its ability to regulate heat flow, 

serving as a crucial barrier between the body and the outside 

world. A proper clo value assures that the wearer remains warm 

in cold weather by reducing heat loss and successfully maintaining 

the body's natural warmth. Conversely, in warmer areas, an 

optimal clo value avoids overheating by enabling excess heat to 

escape and permitting appropriate ventilation. A sedentary, resting 

man wearing a business suit at 21°C, 50% RH, and 0.1 m/s air 

ventilation in a typically ventilated room equals one clo. Under 

these circumstances, 1 clo of clothes equals 0.155 m2 K/W[12]. 

“clo” is a unit of clothing thermal insulation equal to 0.155 K.m2. 

W−1 for 1 clo. 

The thread density and fabric thickness are some of the variables 

that affect twill weave fabric's ability to insulate against heat. 

There are fewer interlacing points in twill weave than in plain 

weave because the diagonal pattern is produced by passing the 

weft over a certain number of warp threads before going under. 

Generally, a higher  thread density in twill weave fabric can result 

in a tighter weave, reducing the spaces between yarns and 

potentially improving thermal insulation by minimizing heat loss 

through the fabric. The thickness of twill weave fabric, often 

measured in millimeters, can also impact its thermal insulation 

properties [13, 14].  

Thicker fabrics typically contain more air spaces within the 

weave, which can provide extra insulation by retaining heat. 

However, excessively thick fabrics can hinder ventilation and 

comfort; therefore, individual use and the desired balance of 
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insulation and thermal comfort determine the ideal thickness. 

Thus, the optimum value of thread density and fabric thickness 

must be carefully considered in order to provide the required level 

of thermal insulation in twill woven clothing, guaranteeing an 

ideal and proper balance between weave density, fabric thickness, 

and thermal comfort. Therefore, when designing clothing for 

extreme weather conditions or producing special clothing with 

thermoregulatory features, we can optimize the thermal comfort, 

particularly provided by cotton twill textiles, to the highest level 

by controlling these parameters [15-18]. 

In textile engineering, soft computing methods such as fuzzy 

logic, artificial neural networks (ANN), and adaptive neuro-fuzzy 

inference systems (ANFIS) are becoming increasingly popular. 

This is due to their ability to forecast a broad variety of textile 

materials' mechanical and physical characteristics, even when 

those correlations are intricate and nonlinear. [19].  Numerous 

scholars have developed mathematical and statistical models that 

are highly appealing since they are based on the fundamental ideas 

of the basic sciences and, as a result, provide a comprehensive 

understanding of the entire procedure [20-23]. However, the 

predicted results of the model is not very hopeful because of the 

assumptions that were considered when developing them. Further, 

statistical and mathematical modeling does not suffice to capture 

the non-linear interactions of the inputs and their outcomes.  

The Artificial Neural Network (ANN) model has been used in 

numerous studies to predict various textile material properties, 

including the color and trash of raw cotton, classification of 

animal fibers, evaluation of spinning performance, properties of 

melt spun fibers and air-jet spun yarns, shrinkage and hairiness of 

wool yarn, warp breakage rate in weaving, canopy and airbag 

fabric design, clothing sensory comfort, fit garment design, dyeing 

defects classification, seam strength prediction, interlining 

selection, knitted fabric classification, fabric inspection systems, 

initial load-extension behavior, spirality, fabric end-use, and 

bursting strength[24-39].  

Fuzzy logic decision-making systems and artificial neural 

networks (ANNs) may both teach adaptive neuro-fuzzy inference 

systems (ANFIS). Because of its ability to handle complex and 

nonlinear relations inherent in these parameters, it is widely used 

in many engineering fields, including the textile manufacturing 

industry, to predict and model various physical and mechanical 

properties of textile materials, including fiber, yarn, fabric, and 

garment[40].  For instance, using a set of six input parameters of 

cotton fiber, ANFIS has been utilized to effectively forecast the 

tenacity and unevenness of yarn. Five statistical measures were 

used to validate the model's prediction ability, demonstrating that 

ANFIS may be used to predict a variety of yarn quality 

attributes[41]. The application of ANFIS to predict the initial load-

extension behavior of plain-woven textiles was examined by 

Hadizadeh et al. The results showed that when it came to 

establishing and evaluating textile engineering limits, ANFIS was 

more adaptable than traditional mathematical models[42].  

Researchers have studied the accuracy and precision of ANN and 

ANFIS in modeling and predicting textile material properties. 

With fabric weight, thickness, and cover factor taken into account, 

Behera et al. used ANFIS and ANN to compare the bending 

rigidity of grey plain woven cotton fabric. They discovered that 

ANFIS performed better and had more generalization 

capacity[43]. Sarkar et al. used the ANFIS and ANN models to 

finish a study on the water absorption behavior of polyester cloth 

coated with polyurethane. Because of its capacity to include expert 

information, they discovered that the ANFIS model produced 

predictions that were more accurate and dependable[44]. The 

prediction accuracy of the crease recovery angle (for both the warp 

and the weft) of polyester/cotton woven fabric was assessed by 

Hussain et al. using ANN and ANFIS. ANN models outperformed 

ANFIS models in terms of prediction accuracy, according to the 

study, which employed a dataset of 115 fabric samples with 

various designs [45].  

The study employs the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) and Artificial Neural Networks (ANN) to forecast the 

thermal insulation qualities of 100% cotton twill woven textiles. 

Through data analysis and experimentation, the study seeks to 

comprehend the basic mechanisms controlling heat transfer and 

retention in cotton fabric woven using twill. The study intends to 

deconstruct the complex link between fabric properties and 

thermal insulation and ascertain which model offers more 

accuracy and precision. The goal of the study is to offer important 

new information on the thermal insulation qualities of cotton 

textiles woven with twill. 

2. MATERIALS AND METHODOLOGY 

2.1. Fabric 

The experiment was conducted using twill (2/1) woven cotton 

textiles with the same warp and weft count of 40, with warps per 

inch between 90 and 133 and wefts per inch between 70 and 100. 

These materials were sourced from a renowned factory located in 

Savar, Dhaka – 1208. The chosen  and  ranges are typical for the 

production of twill woven fabric in the industry. 

2.2. Measurement of fabric thickness 

In compliance with ISO 5084:1996 at the textile testing services 

of a reputed lab located at Tejgaon, Dhaka, the thickness of the 

fabric was measured for this experiment using an AMES thickness 

gauge (Figure 2).  

2.3. Measurement of thermal insulation 

For this experiment, evaluations of thermal insulation were 

conducted at the Bangladesh University of Textiles' Apparel 

Engineering Lab in Tejgaon, Dhaka. The methodology employed 

a guarded hot plate apparatus, aligning with the specifications set 

forth in ISO 8302:1991 (as illustrated in Figure 2. The guarded hot 

plate technique, recognized for its steady-state approach, 

evaluates the thermal insulation of materials by monitoring the 

electrical energy consumption of a hot plate designed to direct heat 
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flow uniformly. Through this method, one side of the sample is 

exposed to heat from a plate that is electrically warmed, 

facilitating the determination of the material's ability to transmit 

heat. 

For a set of 30 different samples, Table 1 shows the data gathered 

on the input variables (Warps Per Inch),  (Wefts Per Inch), and 

fabric thickness (mm) in addition to the output variable (thermal 

insulation, expressed in terms of clo value). 

2.4. ANN modeling 

Artificial Neural Networks (ANNs) are key tools for data 

modeling and prediction, inspired by the human nervous system. 

They consist of an input layer, hidden layers to identify patterns, 

and an output layer for the final result. Each neuron applies an 

activation function to a weighted sum of inputs, introducing non-

linearity to model complex data interactions. Training involves 

adjusting weights through backpropagation, minimizing error 

using optimization methods like Levenberg-Marquardt and 

gradient descent. The Levenberg-Marquardt algorithm combines 

steepest descent and Gauss-Newton methods, providing stability 

and faster convergence for non-linear problems. 

 

Figure 2. (a) Equipment for testing thermal insulation using  

guarded hot plates and (b) AMES thickness gauge  

for measuring fabric thickness.  

 

Table 1. Experimental result of thermal insulation. 

Sl (Warps/Inch)  (Wefts/Inch) Fabric Thickness (mm) Thermal Insulation (clo) 

1 125 70 0.21 0.12753 

2 130 90 0.23 0.13955 

3 130 70 0.21 0.1255 

4 120 80 0.2 0.11657 

5 120 70 0.19 0.09871 

6 110 80 0.19 0.09758 

7 110 70 0.17 0.07872 

8 100 84 0.18 0.08859 

9 100 70 0.17 0.07861 

10 116 100 0.21 0.12621 

11 90 74 0.16 0.06975 

12 133 90 0.24 0.14052 

13 133 80 0.23 0.13985 

14 130 85 0.23 0.13982 

15 125 90 0.22 0.12981 

16 130 75 0.21 0.12681 

17 125 70 0.21 0.12753 

18 120 75 0.2 0.11958 

19 115 80 0.19 0.09918 

20 115 70 0.19 0.09877 

21 115 85 0.2 0.11455 

22 115 90 0.2 0.11321 

23 105 70 0.17 0.07582 

24 112 70 0.18 0.08274 

25 118 70 0.18 0.08175 

26 100 80 0.17 0.07953 

27 118 100 0.21 0.12383 

28 112 95 0.2 0.11883 

29 100 90 0.19 0.09535 

30 130 80 0.22 0.13982 
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In case of steepest descent method, weight update rule can be 

expressed as: 

𝑤𝑘+1 = 𝑤𝑘 − 𝛼g𝑘 (2) 

Here, 𝑤𝑘+1 represents the updated weight vector after the kth 

iteration, and 𝑤𝑘 is the weight vector before the update. “α” is the 

learning constant (step size) and “g” is gradient, which is defined 

as the first-order derivative of total error function.  

For the gauss newton method, update rule will be 

𝑤𝑘+1 = 𝑤𝑘 − (𝐽𝑘
𝑇𝐽𝑘)

−1𝐽𝑘𝑒𝑘 (3) 

Here, 𝐽𝑘 is the Jacobian matrix and 𝑒𝑘 is the residual (error) vector 

at the kth iteration.  𝐽𝑘
𝑇 is the transpose of the Jacobian matrix.  

Update rule for the Levenberg–Marquardt (LM) algorithm can be 

presented as 

𝑤𝑘+1 = 𝑤𝑘 − (𝐽𝑘
𝑇𝐽𝑘 + 𝜇𝐼)−1𝐽𝑘𝑒𝑘 (4) 

In this context, μ is the positive combination coefficient, and I is 

the identity matrix. The Levenberg-Marquardt (LM) algorithm 

alternates between the steepest descent and Gauss-Newton 

methods during training. When μ is small, the Gauss-Newton 

method is used; when μ is large, the steepest descent method is 

applied, with μ acting as the learning coefficient in this case [46]. 

2.5. ANFIS Modeling 

The adaptive neuro-fuzzy inference system (ANFIS) integrates 

fuzzy logic and neural networks to manage complex systems 

requiring human-like judgment. Its flexibility makes it ideal for 

problem-solving and process control, boosting productivity, 

sustainability, and quality in textile engineering. ANFIS is 

versatile across various applications. For example, in a Takagi-

Sugeno fuzzy model, two inputs, x and y, each have two 

membership functions (A1, A2 for x and B1, B2 for y), producing a 

single output, f, based on following "if-then" rules: 

Rule 1: If 𝑥 is 𝐴1 and 𝑦 is 𝐵1, then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

Rule 2: If 𝑥 is 𝐴2 and 𝑦 is 𝐵2, then 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

Here, p1, q1, r1 and p2, q2, r2 are parameters that define the linear 

relationship within each rule.  

The ANFIS architecture consists of five layers: fuzzy, product, 

normalized, defuzzification, and output layers, each performing a 

specific role in translating inputs to outputs. ANFIS uses a hybrid 

learning algorithm for training, combining backpropagation 

gradient descent and the least squares method. During the forward 

pass, fixed premise parameters are identified, and output 

parameters are estimated using least squares. In the backward 

pass, error rates are propagated, and premise parameters are 

updated using gradient descent [47, 48]. 

 

2.6. Analysis of Predictions Performance 

By examining the coefficient of determination (R2), which varies 

from 0 to 1, root mean square, and mean absolute error percentage 

(MAPE), the efficacy of the prediction value derived from the 

ANN & ANFIS model was assessed. Using Lewis' criteria, the 

MAPE calculation's findings may be utilized as a gauge for 

prediction accuracy. C.D. Lewis states that a forecast with a 

MAPE value of less than 10% is deemed very accurate, while one 

with an accuracy of 11% to 20% is said to be good. A projection 

is considered fair if its MAPE falls between 21% and 50%, while 

it is considered erroneous if its MAPE exceeds 51% [49]. The 

equations for these evaluations can be found in Equations 5 to 7 

[50]. 

 

 

 

EM stands for the average, Ep for the predicted result, Ea for the 

actual or experimented value, and N are different patterns.  

3. RESULTS AND DISCUSSION 

3.1. Development and prediction of ANN model 

An ANN model was developed to predict the thermal insulation 

value of 100% twill (2/1) woven cotton fabric using MATLAB's 

neural network fitting tool (version 9.14). The input layers 

included fabric thickness (0.16mm–0.24mm), warps per inch (70–

100), and wefts per inch (90–133), while thermal insulation (clo) 

was the output. The model had a 3-6-1 structure with three neurons 

in the input layer, six in the hidden layer, and one in the output 

layer, as shown in Figure 3. The output layer used a linear 

(purelin) function, and the hidden layer used a sigmoid (tansig) 

activation function, as shown in Figure 4. 

 

Figure 3.  ANN architecture showing input layer with three neuron, 

hidden layer with six neuron and output layer with one neuron. 

(5) 

 
(6) 

 

 

(7) 
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The model was developed using thirty datasets, with 70% for 

training and 30% randomly split for validation (15%) and testing 

(15%). No transfer function was applied to the input layer. The 

network was trained using the Levenberg-Marquardt (trainlm) 

feedforward backpropagation method, which is commonly used 

for small datasets. During training, the network adjusts weights 

and biases to avoid overfitting and ensure generalization to unseen 

data. Testing with independent data provides the final 

performance evaluation. The model’s performance was assessed 

using mean squared error (MSE), with training progress shown in 

Table 2. Weights and bias values were provided by MATLAB 

software. 

Figure 5(a) shows the ANN model's training performance over 20 

epochs, with MSE for the training, validation, and test datasets. 

The training MSE drops sharply initially, then slows, indicating 

convergence. The validation MSE plateaus early, suggesting 

limited improvement, while the test MSE closely follows the 

validation MSE, indicating good generalization. The 'Best' 

vertical line marks the optimal stopping point at epoch 14, where 

the validation MSE reaches its lowest value, preventing 

overfitting. The close alignment of the errors indicates the model 

is well-tuned and generalizes effectively. Figure 5(b) shows the 

ANN training state over 20 epochs, analyzing the gradient, 

damping factor (μ), and validation checks. The gradient decreases 

to 2.3456×10⁻⁵, indicating stabilization of the loss function. The 

damping factor (μ) adjusts to ensure efficient convergence, while 

the number of validation checks increases to six by epoch 20, 

signaling that further training may not improve performance and 

overfitting should be avoided.  

 

 

Figure 4.  Network topology of proposed ANN with activation function. (Here ‘b’ indicates bias and ‘W’ indicates weight ) 

 

Table 2. Training progress of ANN 

Unit Initial Value Stopped Value Target Value 

Epoch 0 20 1000 

Elapsed Time - 00:00:01 - 

Performance 0.00297 5.60 ×10-07 0.00 

Gradient 0.00642 2.35 ×10-05 1×10-07 

Mu 0.001 1.0 ×10-08 1×1010 

Validation Checks 0 6 6 

 

 

Figure 5. (a) Training performance of ANN over 20 epoch and (b) Training state of ANN with gradient, damping factor (mu) and validation check  
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Figure 6 shows an error histogram for the ANN, illustrating the 

distribution of errors between the network outputs and target 

values across training, validation, and test datasets. Errors are 

binned into 20 intervals, with the zero-error line (in orange) 

indicating perfect predictions. Most instances fall near zero error, 

suggesting the ANN's predictions are close to the targets. Larger 

errors appear further from the zero line, indicating areas where the 

predictions diverge from the targets. 

Figure 7 presents scatter plots of output values against targets for 

the training, validation, test, and all data trained by the ANN. Data 

points (circles) and the best-fit curve highlight the model's 

accuracy, with the ideal curve ('Y = T') showing where outputs 

match targets. The training plot (top-left) shows a near-perfect 

correlation (R = 0.99874), while the validation plot (top-right) 

shows strong generalization (R = 0.9972). The test data plot 

(bottom-left) demonstrates robust performance (R = 0.99459), and 

the full dataset plot (bottom-right) shows consistent performance 

(R = 0.99711), indicating the ANN's precision and strong 

generalization. 

Table 3 displays the created ANN model's predictions of thermal 

insulation values taking into account the input variables along 

with the absolute and squared errors. 

 

Figure 6. Error histogram of ANN prediction model  

 

 

Figure 7. Scatter plots of the output values with targets for training, validation, test,  

and all data in proposed ANN with correlation coefficient 
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Table 3. Prediction of thermal insulation by ANN with error 

Trial 

No 
Actual Thermal Insulation (clo) ANN Predicted Thermal Insulation (clo) Absolute Error Squared Error 

1 0.12753 0.12697 0.43885 3.13E-07 

2 0.13955 0.13732 1.59893 4.98E-06 

3 0.1255 0.12660 0.87896 1.22E-06 

4 0.11657 0.11628 0.24849 8.39E-08 

5 0.09871 0.09910 0.39860 1.55E-07 

6 0.09758 0.09464 3.00794 8.62E-06 

7 0.07872 0.07700 2.18336 2.95E-06 

8 0.08859 0.08847 0.14076 1.55E-08 

9 0.07861 0.07805 0.71621 3.17E-07 

10 0.12621 0.12566 0.43874 3.07E-07 

11 0.06975 0.07611 9.11122 4.04E-05 

12 0.14052 0.14182 0.92322 1.68E-06 

13 0.13985 0.14102 0.83901 1.38E-06 

14 0.13982 0.14051 0.49531 4.80E-07 

15 0.12981 0.13025 0.33600 1.90E-07 

16 0.12681 0.12745 0.50249 4.06E-07 

17 0.12753 0.12697 0.43885 3.13E-07 

18 0.11958 0.11723 1.96348 5.51E-06 

19 0.09918 0.09744 1.75785 3.04E-06 

20 0.09877 0.09883 0.06127 3.66E-09 

21 0.11455 0.11414 0.35993 1.70E-07 

22 0.11321 0.11458 1.21258 1.88E-06 

23 0.07582 0.07735 2.01718 2.34E-06 

24 0.08274 0.08353 0.94945 6.17E-07 

25 0.08175 0.08390 2.62420 4.60E-06 

26 0.07953 0.07974 0.26482 4.44E-08 

27 0.12383 0.12470 0.70210 7.56E-07 

28 0.11883 0.11735 1.24443 2.19E-06 

29 0.09535 0.09621 0.90273 7.41E-07 

30 0.13982 0.13732 1.78822 6.25E-06 

 

 

3.2. Development and prediction of ANFIS model 

The ANFIS model was developed using the neuro-fuzzy designer 

app from MATLAB's fuzzy logic toolbox (version 9.14) to predict 

the thermal insulation of 100% cotton twill fabric considering 

input and out features as used in ANN. The model was trained 

over 100 epochs using a hybrid optimization approach, combining 

gradient descent for the backward pass and least squares for the 

forward pass. Triangular membership functions (trimf) were 

assigned to the inputs, with 4-3-3 membership functions for input 

variables. A Sugeno-type fuzzy inference system (FIS) was 

created using grid partitioning. Figure 8 displays the FIS interface 

in MATLAB. 

The FIS processes three input variables and one output variable, 

using Sugeno-type fuzzy logic for better computational efficiency 

and adjustability compared to Mamdani-type systems. The 

"AND" condition uses the product operation ("prod"), the "OR" 

condition uses a probabilistic OR ("probor"), and the 

"Implication" and "Aggregation" use the "min" and "max" 

operators, respectively. Defuzzification is done using the 

weighted average ("wtaver"). A total of 30 datasets were used, 

with 30% for testing and 70% for training, selected randomly to 

ensure an unbiased evaluation. Figure 9 illustrates the ANFIS 

model architecture, where input membership functions link the 

fuzzy sets to input variables. 
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Figure 8. Interface a sugeno-type FIS with input and output variable 

 

 

 

Figure 9. Proposed ANFIS architecture 
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The center column labeled "rule" represents the 36 fuzzy logic 

rules used in the rule layer, describing how input membership 

functions infer the output. The next column, "outputmf," displays 

the output membership functions, which are processed to produce 

a clear output. The final "output" node aggregates the results and 

performs defuzzification, converting the fuzzy outcomes into a 

single, distinct value, which is the ANFIS model’s final predicted 

output. 

Figure 10 shows the ANFIS training error over 100 epochs, with 

the error remaining consistently low (final epoch error: 

1.1301×10-06), indicating effective learning without overfitting. 

Figure 11(a) presents a scatter plot comparing the ANFIS model's 

outputs to training data, with most predicted values closely 

matching actual values, confirming this low training error. Figure 

11(b) displays testing data performance, showing some deviation 

between predicted (red asterisks) and actual (blue dots) outputs, 

with an average testing error of 0.0086322, suggesting good 

predictive accuracy. Figure 12 illustrates the ANFIS rule viewer, 

showing input variables (warps per inch, Weft Per Inches, and 

fabric thickness) and their corresponding membership functions. 

These graphical representations show the degree to which a given 

input value belongs to each fuzzy set, highlighted by the yellow 

shading. The red vertical line within each input column indicates 

the specific value for that input being analyzed. The interactions 

between these input values and the system’s rules result in the 

activation of certain rules. The inference process utilized these 

activated rules and applied them to ascertain the degree of 

membership for the output variable's membership functions, 

which are illustrated in the final column. The blue squares in this 

output column show the inferred fuzzy values before they are 

defuzzied into a crisp output. 

 

 

Figure 10. Training interface of ANFIS with training error over 100 epochs 

 

 

 

Figure 11. Training and testing performance of ANFIS. (a) Training data vs. FIS Output and (b) Testing data vs. FIS Output  

 

 



 

 

Journal of Textiles and Engineer 

 

Cilt (Vol): 32 No: 138 

SAYFA 138 

 

Tekstil ve Mühendis 

Predicting the Thermal Insulation Properties of Twill  
Woven Cotton Fabric by Using ANN and ANFIS 

Mahmuda AKTER, 
et al. 

 

Figure 12. Rule viewer of ANFIS model 

 

 

Figure 13 illustrates a set of 3D surface plots from an ANFIS 

model, each representing the relationship between two input 

variables and the predicted output variable, thermal insulation 

(clo), for twill woven fabric. These plots are graphical 

representations of the rule-based inference logic of model, 

capturing the nonlinear relations between input variables and their 

influence on the output. Every surface plot has a color scheme that 

represents various output values (heights), changing from blue to 

yellow as thermal insulation value rises. These plots show clearly 

how the change in physical parameters of twill woven fabric affect 

the thermal insulation value. For instance, one can perceive 

corresponding changes in the expected thermal insulation of the 

fabric when  and  values increase or decrease. 

Table 4 displays predictions of thermal insulation values based on 

the established ANFIS model and performance matrices, taking 

into account input variables. 
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Figure 13. 3D surface plots from ANFIS showing (a) Effect of  and  on thermal insulation, (a) Effect of  and fabric thickness on 

thermal insulation and (a) Effect of warp per inch (EPI) and weft per inch (PPI), and fabric thickness on thermal insulation. 
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Table 4. Prediction of thermal insulation by ANFIS with error 

Trial No Actual Thermal Insulation (clo) ANFIS Predicted Thermal Insulation (clo) Absolute Error Squared Error 

1 0.12753 0.12753 0.00082 1.09E-12 

2 0.13955 0.13955 0.00138 3.74E-12 

3 0.1255 0.1255 0.00018 5.18E-14 

4 0.11657 0.12315 5.64525 4.33E-05 

5 0.09871 0.09871 0.00266 6.87E-12 

6 0.09758 0.09287 4.82853 2.22E-05 

7 0.07872 0.07872 0.00054 1.82E-13 

8 0.08859 0.08859 0.00034 9.26E-14 

9 0.07861 0.07292 7.23907 3.24E-05 

10 0.12621 0.12621 0.00071 7.94E-13 

11 0.06975 0.07556 8.33482 3.38E-05 

12 0.14052 0.14052 0.00034 2.35E-13 

13 0.13985 0.12472 10.81576 0.0002288 

14 0.13982 0.13982 0.00032 2.01E-13 

15 0.12981 0.12981 0.00033 1.86E-13 

16 0.12681 0.14215 12.09934 0.0002354 

17 0.12753 0.12753 0.00082 1.09E-12 

18 0.11958 0.11958 0.00063 5.73E-13 

19 0.09918 0.09918 0.00049 2.33E-13 

20 0.09877 0.09193 6.9218 4.67E-05 

21 0.11455 0.11455 0.00122 1.96E-12 

22 0.11321 0.11321 0.00221 6.26E-12 

23 0.07582 0.07582 0.00014 1.05E-14 

24 0.08274 0.08274 0.00011 8.34E-15 

25 0.08175 0.08175 0.00239 3.83E-12 

26 0.07953 0.07953 0.00026 4.44E-14 

27 0.12383 0.11854 4.27302 2.80E-05 

28 0.11883 0.11883 0.00032 1.43E-13 

29 0.09535 0.09535 0.00053 2.58E-13 

30 0.13982 0.13982 0.00018 6.46E-14 

 

 

3.3. Comparative Study between ANN and ANFIS Modeling 

Three input features were used to statistically assess the accuracy 

of two techniques for determining the thermal insulation value of 

twill-woven fabric: fabric thickness (mm), wefts per inch, and 

warps per inch. ANN and ANFIS models were combined with 

experimental actual data and predictions in these techniques. The 

same set of experimental data was used to assess the accuracy of 

the ANFIS and ANN models in order to confirm validity. The 

actual value, ANN projected value, and ANFIS predicted value 

errors are shown in Table 5. 

Explicitly, from the table 5, it clearly shows that the R2 value of 

0.9942 is very much large for the ANN model, signifying that it 

fits to the data much compared to the ANFIS model at an R2 value 

of 0.9570. This higher fit points to a stronger predictive capacity 

of the ANN model in comparison to accounting for the variations 

of the three input features. On a further look at the mean absolute 

percentage error (MAPE), the result revealed that the ANN’s 

predictions had lower deviation from the actual values, with a 

MAPE of 1.314012009, as opposed to the ANFIS model’s MAPE 

of 2.074955264, further strengthening the higher accuracy in 

ANN. When considered mean squared error (MSE) and root mean 

squared error (RMSE), both for ANFIS at 0.0000239510 and 

0.0048939727, respectively, when compared to ANN's 

0.0000030946 and 0.0017591395, respectively, generally mean 

that the ANN model has closer predictions to the actual values 

consistently. These differences in error metrics emphasize how 

well ANN can model the relationship between input features and 

thermal insulation compared to ANFIS model. The accuracy of 

the ANN model might possibly lead to more effective forecasts 

and optimizations in the area of textile production and design, 

especially in situations where heat regulation is critical. 
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Table 5. Performance evaluation metrics of ANN and ANFIS models 

Model MAPE MSE RMSE Coefficient of determination (R2) Correlation coefficient (R) 

ANN 1.31401  0.000003 0.00176 0.9942 0.9971 

ANFIS 2.07495  0.000024 0.00489 0.9570 0.9782 

 

 

 

Figure 14. Correlation between the actual and predicted values of thermal insulation. (a) ANN model and (b) ANFIS model  

 

Two correlation graphs of the actual and expected values of 

thermal insulation values (Clo) for 100% cotton twill woven fabric 

are shown in Figure 14. The effectiveness of ANN and ANFIS is 

contrasted in these scatter plots. Each plot's red line represents the 

line of best fit, and each model's goodness of fit is shown by the 

coefficient of determination, or R2. According to the picture, the 

ANN model's data points are more densely packed around the red 

line (with an R2 value of 0.9942) than the ANFIS plot (with an R2 

value of 0.9570). It implies that the predicted and real values have 

a very good correlation, demonstrating the accuracy with which 

the ANN model can forecast thermal insulation. 

The superior performance of the ANN over the ANFIS, despite 

ANFIS's hybrid nature combining ANN and fuzzy logic, can be 

attributed to several factors to te considered. First, the 3-6-1 

network topology, which was tailored for this particular 

application, helps the ANN model, indicating that the model's 

complexity was well aligned with the data's pattern. For thermal 

insulation of twill woven cotton fabric, the ANN's sigmoid and 

linear activation functions would have been better at capturing the 

non-linear connections between the inputs and the output variable, 

clo. Second, the Levenberg-Marquardt (trainlm) method, which is 

utilized for training, is well-known for its reliable performance in 

function approximation issues. Compared to ANFIS's approaches, 

it may have offered a quicker and more accurate convergence to 

the optimal solution, which would have resulted in the ANN 

model's observed better accuracy. In contrast, the ANFIS model 

makes predictions by combining neural networks with fuzzy logic. 

While this can be advantageous for capturing the uncertainty and 

handling the imprecision inherent in many real-world problems, it 

might also introduce additional complexity that was not necessary 

or beneficial for this particular dataset, which appears to be well-

characterized by the crisp logic employed by the ANN. The 

selection of membership functions and the defuzzification method 

in ANFIS, being more generalist, might not have been as fine-

tuned to the specific distribution of the dataset as the ANN's 

approach. Furthermore, if the data does not contain the sort of 

uncertainties and imprecision that fuzzy logic is designed to 

handle, then the simplicity and directness of ANN's approach may 

yield better results, as it relies on direct function approximation 

without the intermediate fuzzy encoding and defuzzification steps.  

Figures 15 and 16 provide residual plots for the ANN and ANFIS 

models, respectively. The ANN's normal probability plot indicates 

a normal distribution of residuals because of the good match with 

the reference line, and the residuals against fits plot displays no 

obvious patterns, confirming a satisfactory fit. There are no 

trwarps in the residuals over time, indicating residual 

independence, and the residuals histogram is largely symmetric, 

but slightly skewed. In contrast, the ANFIS model's residuals 

show deviations from normality, particularly in the tails, and the 

histogram reveals a notable skew, pointing to prediction bias. The 

plot versus order for ANFIS indicates outliers, suggesting some 

observations are not well explained by the model. Overall, the 

ANN demonstrates better adherence to statistical assumptions 

compared to ANFIS, suggesting it may offer more reliable 

predictions for the given dataset. 
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Figure 15. Residual plots for ANN model 

 

 

Figure 16. Residual plots for ANFIS model 

 

The line graph in Figure 17 compares the actual values of thermal 

insulation that were measured with the projected values derived 

from the ANN and ANFIS prediction models. Experimental 

thermal insulation levels are represented by the blue line; ANN-

predicted values are shown by the orange line; and ANFIS-

predicted values are shown by the grey line. When assessing 

prediction models, these lines act as standards. According to the 

figure, both prediction models have a reasonable level of accuracy 

since they closely resemble the trajectory of the actual 

experimental results across the trials. There is a point where the 

predictions start to deviate from the experimental values, 

reflecting the inherent limitations of model-based predictions. 

 

 
 
 

 
 
 



 

 

Journal of Textiles and Engineer 

 

Cilt (Vol): 32 No: 138 

SAYFA 143 

 

Tekstil ve Mühendis 

Predicting the Thermal Insulation Properties of Twill  
Woven Cotton Fabric by Using ANN and ANFIS 

Mahmuda AKTER, 
et al. 

 

 

Figure 21. Comparison of ANN and ANFIS predicted values with experimental values for thermal insulation 

 

The findings of this study on predicting the thermal insulation of 

100% twill cotton fabric using ANFIS and ANN models align with 

previous research on fabric thermal properties. Akter et al. 

demonstrated the effectiveness of ANN in predicting thermal 

resistance of cotton fabrics, with key fabric parameters such as 

thread density and thickness significantly influencing thermal 

properties [16]. Similarly, Ahmad et al. found that weave 

structure, particularly twill, impacts thermal resistance, which 

complements the results of this study on twill woven fabric [18]. 

Mitra et al. also highlighted the importance of fabric construction 

parameters like EPI and PPI in predicting thermal resistance, 

supporting the choice of these variables in our model [17]. 

Additionally, Ho et al. emphasized the role of fabric structure and 

thickness in thermal comfort, which aligns with our focus on these 

parameters for thermal insulation [14]. These studies collectively 

reinforce the reliability of ANFIS and ANN models in predicting 

thermal insulation properties based on fabric characteristics. 

3. CONCLUSION 

The purpose of this study is to evaluate the precision and 

effectiveness of two different predictive modeling methods, namely 

the ANN and the ANFIS, in predicting the thermal insulation value, 

expressed in Clo, for twill woven cotton fabric while taking into 

account three crucial fabric structural parameters: fabric thickness, 

warps per inch, and wefts per inch. According to a number of 

performance measures, the ANN model proved to be the most 

accurate predictor following a thorough testing and analysis 

process. The model was able to explain nearly all of the variability 

in the thermal insulation data, as seen by the remarkable R2 of 

0.9942. A mean absolute percentage error (MAPE) of 1.314%, 

MSE of 0.0000031, RMSE of 0.00176, correlation coefficient (R) 

of 0.9971 indicates great precision in the ANN's predictive 

capabilities, further supports this degree of accuracy. The residual 

plots for the ANN also well agree with its high performance, having 

residuals almost well-lined along with the straight line of the normal 

probability plot and showing no patterns in the residuals vs. fits or 

the residuals vs. order. This randomness in the residuals ensures the 

reliability of this model. This also strongly indicates the absence of 

systematic errors. On the other hand, the ANFIS model shows a R2 

of 0.9570, value of mean absolute percentage error (MAPE) of 

2.0749%, MSE of 0.000023, RMSE of 0.00489, correlation 

coefficient (R) of 0.9782 indicates a slightly lower accuracy than 

ANN model. It is well noted that MAPE is less than 5% for both 

ANN and ANFIS, indicates excellent predictive capability and 

competency of predicting thermal insulation of twill woven fabric 

considering thread density ( and ) and thickness for both 

approaches. This research is obviously important for the textile 

manufacturing industry, particularly woven fabric design and 

production sector for producing appropriate thermal insulated twill 

fabric for enhancing end-user satisfaction more easily without 

undergoing trial and error method. Future research should consider 

expanding the dataset to encompass a more diverse range of fabric 

types and properties. Further exploration into hybrid models that 

combine the strengths of ANN and ANFIS could also be beneficial, 

as well as the application of other advanced machine learning 

algorithms that might provide alternative insights into the complex 

relationships within textile engineering. 
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