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Abstract

Common Cuckoo is a brood-parasite which lays its egg in the nest of other bird species
and use them to raise its young. We present a Common Cuckoo and a host bird interaction
deterministic model taking into account maternal care of offspring. The model consists
of a coupled system of integro-partial differential equations subject to the conditions of
the integral type. Number of equations in the system depends on a biologically possible
maximal number of eggs of the same clutch laid by a host bird. Separable solutions of this
model are studied.

1. Introduction

Brood parasites are organisms that use of host individuals either of the same or different species to raise the young of the brood-parasite. We
consider the Common Cuckoo (Cuculus canorus), formerly European Cuckoo, and host birds interaction deterministic model. Cuckoo is a
brood-parasite, which lays its eggs in the nests of other bird species, particularly of Dunnocks, Meadow Pipits, and Eurasian Reed Warblers.
The cuckoo egg hatches earlier than eggs of the host bird. Cuckoo chick is much larger than its hosts [1]. It grows faster and monopolizes
food supplied by the host parents [2]. Shortly after hatching it evicts all host eggs and chicks by rolling and pushing the other eggs and
chicks out of the nest [2]. For the sake of simplicity we assume that it evicts all host chicks and eggs immediately after hatching and that the
host bird takes care of only one cuckoo’s chick living in the nest. If the hen cuckoo is out-of-phase with the host eggs, she will eat them all so
that the hosts are forced to start another brood [2, 3].
In this paper, we present a common cuckoo and a host species interaction deterministic model described by a coupled system of integro-PDEs
and prove the existence of its separable solutions. We take into account age of birds and a finite set of eggs in the nest and generalize
a one-sex population model given in [4]. We assume that all individuals have pre-reproductive, reproductive, and post-reproductive age
intervals. Individuals of reproductive age are divided into single and those who care of young offspring. Individuals of pre-reproductive
age are divided into young (under maternal care) and juvenile classes. Juveniles can live without maternal care but cannot produce their
offspring. It is assumed that after the death of mother all her young offspring die.
For the sake of simplicity, we consider (i) the joint parental care period which consists of the incubation and chick feeding periods and (ii)
the same reproductive period for cuckoos and host birds. We also assume that the brood parasite lays his egg before incubation of clutch has
started and do not take into account migration of cuckoos. To the best of our knowledge deterministic differential models have not been used
yet for description of the interaction of cuckoos and host bird species.
The paper is organized as follows. In Section 2 we formulate the problem. In Section 3 we consider separable solutions of the model.
Concluding remarks are given in Section 5.

2. Notation

(0,T ) and (T1,T3) (T < T1 < T3, T < T3−T1): the child care and reproductive age intervals, respectively, (the same for host birds and
cuckoos),
u(t,τ1): the age density of host birds aged τ1 at time t who are of juvenile (τ1 ∈ (T,T1)), single (τ1 ∈ (T1,T3)), or post-reproductive (τ1 > T3)
age,
uk(t,τ1,τ2): the age density of host birds aged τ1 at time t who take care of their k, 1≤ k ≤ n, offspring aged τ2 at the same time,
ν(t,τ1): the natural death rate of host birds aged τ1 > T at time t who are of juvenile or adult age,
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νk(t,τ1,τ2): the natural death rate of host birds aged τ1 at time t who take care of their k offspring aged τ2,
νks(t,τ1,τ2): the natural death rate of k− s host young offspring aged τ2 at time t whose mother is aged τ1 at the same time,
αk(t,τ1)u(t,τ1)dτ1dt, αk(t,τ1)< 1,: the average number of host birds of age from interval [τ1,τ1 +dτ1], τ1 ∈ (T1,T3), at time t who lay k
eggs in their nest in time interval [t, t +dt],
uc(t,τ1,τ2): the age density of host birds aged τ1 at time t who take care of a cuckoo chick aged τ2,
νc(t,τ1,τ2): the natural death rate of host birds aged τ1 at time t who take care of a cuckoo chick aged τ2,
νc0(t,τ1,τ2): the natural death rate of cuckoo chick aged τ2 at time t whose host mother is aged τ1 at the same time,
αck(t,τ1)αk(t,τ1)u(t,τ1)dτ1dt, 0 < αck(t,τ1)< 1,: the average number of nests formed of one Cuckoo’s and k of host bird eggs laid in time
interval [t, t +dt] by host birds of age from interval [τ1,τ1 +dτ1],
f (t,τc): the age density of Cuckoos aged τc at time t who are of juvenile (τc ∈ (T,T1)), reproductive (τc ∈ (T1,T3)), or post-reproductive
(τc > T3) age,
ν f (t,τc): the natural death rate of Cuckoos aged τc at time t,
u0(τ1),uk0(τ1,τ2),uc0(τ1,τ2), f0(τc): the initial age distributions,
T2 = T1 +T : the minimal age of an individual finishing care of offspring of the first generation,
T4 = T3 +T : the maximal age of an individual finishing care of offspring of the last generation,
α = ∑

n
k=1 αk, ν̃k = νk +∑

k−1
s=0 νks,

Q = {(τ1,τ2) : τ1 ∈ (T1 + τ2,T3 + τ2), τ2 ∈ (0,T )}.

3. The model

In this section we present a deterministic model for co-evolution of an age-structured population of host birds and cuckoos taking into
account a finite number of eggs in the nest. We assume that all young offspring become juveniles at age τ1 = T and all juveniles become
adults at the age τ1 = T1. Let n be the biologically possible maximal number of eggs of prey laid in the nest. Denote

L1u = ∂tu+∂τ1 u+νu, (3.1)

L2z = ∂tz+∂τ1 z+∂τ2 z for z = uc, uk. (3.2)

The model is composed of the following coupled system of integro-differential equations:


L2uc +∂τ2 uc +(νc +νc0)uc = 0, (τ1,τ2) ∈ Q, t > 0,

uc
∣∣
τ2=0 =

n
∑

k=1
αckαku, τ1 ∈ (T1,T3), t ≥ 0,

uc
∣∣
t=0 = uc0, (τ1,τ2) ∈ Q,

(3.3)



L2un +(νn +
n−1
∑

s=0
νns)un = 0, (τ1,τ2) ∈ Q, t > 0,

L2uk +
(
νk +

k−1
∑

s=0
νks
)
uk

=
n
∑

s=k+1
νskus, 1≤ k ≤ n−1, (τ1,τ2) ∈ Q, t > 0,

uk
∣∣
t=0 = uk0, (τ1,τ2) ∈ Q, k = 1, . . . ,n,

uk
∣∣
τ2=0 = αku(1−αck), τ1 ∈ (T1,T3), t ≥ 0, k = 1, . . . ,n,

(3.4)

L1u =



0, τ1 ∈ (T,T1)∪ (T4,∞), t > 0,

−αu+
τ1−T1∫

0

( n
∑

k=1
νk0uk +νc0uc

)
dτ2, τ1 ∈ (T1,T2), t > 0,

−αu+
T∫
0

( n
∑

k=1
νk0uk +νc0uc

)
dτ2

+
( n

∑
k=1

uk +uc
)
|τ2=T , τ1 ∈ (T2,T3), t > 0,

T∫
τ1−T3

( n
∑

k=1
νk0uk +νc0uc

)
dτ2

+
( n

∑
k=1

uk +uc
)
|τ2=T , τ1 ∈ (T3,T4), t > 0,

u
∣∣
τ1=T =

T4∫
T2

n
∑

k=1
kuk
∣∣
τ2=T dτ1, t ≥ 0,

u
∣∣
t=0 = u0, τ1 ∈ [T,∞),

u
∣∣
τ1=Ti−0 = u

∣∣
τ1=Ti+0, i = 1,2,3,4, t ≥ 0,

(3.5)
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
∂t f +∂τc f =−ν f f , τc > T, t > 0,

f
∣∣
τc=T =

T4∫
T2

uc
∣∣
τ2=T dτ1, t ≥ 0,

f
∣∣
t=0 = f0, τc ∈ [T,∞).

(3.6)

Here ∂t and ∂τk signify partial derivatives. We describe fraction αck by the function

αck(t,τ1) =

T3∫
T1

βk(t,τ1,τc) f (t,τc)dτc

T3∫
T1

f (t,τc)dτc

. (3.7)

The first term on the right-hand side in Eq. (3.5) is conditioned by individuals who produces offspring, the second and third terms are

conditioned by individuals whose all young offspring die and who finish child care, respectively. The transition term
k−1
∑

s=0
νksuk on the

left-hand side in Eq. (3.4) is conditioned by individuals aged τ1 at time t who take care of k young offspring and whose at least one young
offspring dies. Similarly, the term on the right-hand side in this equation is conditioned by individuals aged τ1 at time t who take care of
more than k,1≤ k ≤ n−1, young offspring aged τ2 whose number after the death of the other offspring is equal to k. As follows from the
foregoing, the given functions ν ,νk,νks,νc,νc0,ν f ,αk,αck, u0,uk0,uc0, f0 must be positive supported. Constants T,T1, and T3 are assumed
to be given and positive. The assumptions T < T1, T < T3−T1 given in Section 2 are natural.

Densities of offspring of hosts and cuckoo we define by formulas

u(t,τ2) =

T3+τ2∫
T1+τ2

n

∑
k=1

kuk(t,τ1,τ2)dτ1, f (t,τ2) =

T3+τ2∫
T1+τ2

uc(t,τ1,τ2)dτ1 (3.8)

where τ2 ∈ [0,T ].

4. Separable solutions to problem (1)–(7)

In this section we restrict ourselves to the case where the vital rates ν ,νc,νc0, ν f ,νk,νks, αk, αck and βk do not depend on t. We seek
solutions of the form

u =Uv(τ1)ρ(t,τ1,λ ), v(T ) = 1,
uk =Uv(τ1− τ2)vk(τ1,τ2)ρ(t,τ1,λ ),

uc =Uv(τ1− τ2)vc(τ1,τ2)ρ(t,τ1,λ ),

f =Uw(τc)ρ(t,τc,λ ),

(4.1)


u0 =Uv(τ1)ρ(0,τ1,λ ),

uk0 =Uv(τ1− τ2)vk(τ1,τ2)ρ(0,τ1,λ )

uc0 =Uv(τ1− τ2)vc(τ1,τ2)ρ(0,τ1,λ )

f0 =Uw(τc)ρ(0,τc,λ ),

(4.2)

where ρ(t,τ1,λ ) = exp{λ (t− τ1 +T )}, U > 0 is an arbitrary constant while constant λ and functions v,vk,vc, and w are to be determined.
Obviously, separable solutions are the steady-state solutions if λ = 0, die if λ < 0, and grow if λ > 0.

Theorem 4.1. Letν and ν f , βk, αk, and functions νk, νks, νc, νc0 be positive in domains [T,∞), [T1,T3]× [T1,T3], [T1,T3], and Q, respectively,
and let α < 1 in [T1,T3], βk < 1 in [T1,T3]× [T1,T3].

If βk ∈ C1,0([T1,T3]× [T1,T3]
)
, νk, νks, νc, and νc0 ∈ C0(Q)∩C10(Q), αk ∈ C0([T1,T3]∩C1(T1,T3), ν and ν f ∈ C0[T,∞), then system

(1)–(7) has at least one class of positive separable solutions of type (4.1), (4.2).

If ∂τc βk = 0 and βk ∈C0([T1,T3]∩C1((T1,T3)), then system (1)–(7) has only one class of positive separable solutions of type (4.1), (4.2).

In both cases of βk, vc and vk ∈C0(Q)∩C1(Q), k = 1, . . . ,n, v ∈C0([T,∞))∩C1((T,∞)\{T1,T2,T3,T4}
)
.

Proof. Inserting Eqs. (4.1), (4.2) into (1)–(7) we derive equations for vc, vk,w,v,

∂τ1 vc +∂τ2 vc +(νc +νc0)vc = 0 in Q,

vc(τ1,0) =
n
∑

k=1
αk(τ1)qk(τ1,λ ), τ1 ∈ (T1,T3),

(4.3)


∂τ1 vn +∂τ2 vn + ν̃nvn = 0 in Q,

∂τ1 vk +∂τ2 vk + ν̃kvk =
n
∑

s=k+1
νskvs, 1≤ k ≤ n−1 in Q,

vk(τ1,0) = αk(1−qk(τ1,λ )), k = 1, . . . ,n, τ1 ∈ (T1,T3),

(4.4)
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
w′ =−ν f w in (T,∞)

w(T ) =
T3∫
T1

v(x)vc(x+T,T )exp{−λx}dx,
(4.5)

v′+νv =



0 in (T,T1)∪ (T4,∞), v(T ) = 1,

−αv+
τ1∫
T1

K(τ1,τ1− x)v(x)dx in (T1,T2),

−αv+
τ1∫

τ1−T
K(τ1,τ1− x)v(x)dx+A(τ1)v(τ1−T )

in (T2,T3),
T3∫

τ1−T
K(τ1,τ1− x)v(x)dx+A(τ1)v(τ1−T ) in (T3,T4),

v(Ti−0) = v(Ti +0), i = 1,2,3,4,

(4.6)

and the characteristic equation for λ ,

T3∫
T1

exp{−λx}
n

∑
k=1

kvk(x+T,T )v(x)dx = 1 (4.7)

where

qk(τ1,λ ) =
T3∫
T1

βk(τ1,x)w(x)exp{−λx}dx
( T3∫

T1

w(x)exp{−λx}dx
)−1

,

K(τ1,τ2,λ ) =
n
∑

k=1
νk0(τ1,τ2)vk(τ1,τ2)+νc0(τ1,τ2)vc(τ1,τ2),

A(τ1,λ ) =
n
∑

k=1
vk(τ1,T )+ vc(τ1,T ).

Here and in what follows the prime indicates differentiation.
We integrate Eq. (4.5) obtaining

w(τc) = w(T )exp
{
−

τc∫
T

ν f (ξ )dξ

}
. (4.8)

Therefore

qk(τ1,λ ) =

∫ T3
T1

βk(τ1,x)exp{−λx−
∫ x

T ν f (ξ )dξ}dx∫ T3
T1

exp{−λx−
∫ x

T ν f (ξ )dξ}dx
.

Then integrating Eqs. (4.3) and (4.4) we determine functions vc and vn,

vc(τ1,τ2) =
n

∑
k=1

αk(τ1− τ2)qk(τ1− τ2,λ )× exp{−
τ2∫

0

(νc(x+ τ1− τ2,x)+νc0(x+ τ1− τ2,x))dx}, (4.9)

vn(τ1,τ2) = αn(τ1− τ2)(1−qn(τ1− τ2,λ ))exp
{
−

τ2∫
0

ν̃n(x+ τ1− τ2,x)dx
}

(4.10)

and derive equations for vk, k = 1, ...,n−1,

vk(τ1,τ2) = αk(τ1− τ2)(1−qk(τ1− τ2,λ )) (4.11)

× exp{−
τ2∫

0

ν̃k(x+ τ1− τ2,x)dx}+
τ2∫

0

n

∑
s=k+1

(νskvs)(y+ τ1− τ2,y)exp{−
τ2∫

y

ν̃k(x+ τ1− τ2,x)dx}dy

Equation (4.11) can be solved in the recurrent way starting with k = n− 1 and using function (4.10). It is evident that vc and vk ∈
C0(Q)∩C1(Q), k = 1, . . . ,n.
Now we solve Eq. (4.6). From (4.6)1 for τ1 ∈ [T,T1] it follows that
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v(τ1) = exp
{
−

τ1∫
T

ν(ξ )dξ

}
.

To determine v for τ1 ∈ (T1,T2] we integrate Eq. (4.6)2 together with the initial condition v(T1) = exp{−
∫ T1

T ν(ξ )dξ} getting

v(τ1) = v(T1)exp
{
−

τ1∫
T1

(ν(ξ )+α(ξ ))dξ

}
v(τ1)+

τ1∫
T1

exp
{
−

τ1∫
y

(ν(ξ )+α(ξ ))dξ

}
dy

y∫
T1

K(y,y− x,λ )v(x)dx.

Then changing the order of integration we reduce it to the Volterra type equation
v(τ1) = v(T1)exp{−

τ1∫
T1

(ν(ξ )+α(ξ ))dξ}

+
τ1∫
T1

v(x)dx
τ1∫
x

K(y,y− x,λ )exp{−
τ1∫
y
(ν(ξ )+α(ξ ))dξ}dy

(4.12)

which has a unique positive solution v for any finite λ .
To determine v in (T2,T3] we have to solve Eq. (4.6)3 with the initial value v(T2) determined by Eq. (4.12). Because of the retarded structure
with delay T we consider this equation going with the step T along the axis τ1. For τ1 ∈ [T2 + sT,min(T2 +(s+1)T,T3)), s = 0,1, ..., we
rewrite it in the form



v(τ1) = v(T2 + sT )exp{−
τ1∫

T2+sT

(
ν(ξ )+α(ξ )

)
dξ}

+
τ1∫

T2+sT
exp{−

τ1∫
y

(
ν(ξ )+α(ξ )

)
dξ}dy

y∫
y−T

K(y,y− x,λ )v(x)dx

+
τ1−T∫

T2+(s−1)T
exp{−

τ1∫
x+T

(
ν(ξ )+α(ξ )

)
dξ}A(x+T,λ )v(x)dx.

(4.13)

Since {(x,y) : x ∈ [y−T,y], y ∈ [T2 + sT,τ1]}= D1∪D2∪D3,
where

D1 = {(x,y) : x ∈ [y−T,τ1−T ], y ∈ [T2 + sT,τ1]}
= {(x,y) : x ∈ [T2 +(s−1)T,τ1−T ], y ∈ [T2 + sT,x+T ]},

D2 = {(x,y);x ∈ [τ1−T,T2 + sT ], y ∈ [T2 + sT,τ1]},
D3 = {(x,y) : x ∈ [T2 + sT,y],y ∈ [T2 + sT,τ1]}

= {(x,y) : x ∈ [T2 + sT,τ1], y ∈ [x,τ1]},
the second term in the right-hand side of Eq. (4.13) can be written as follows:

τ1∫
T2+sT

exp
{
−

τ1∫
y

(ν(ξ )+α(ξ ))dξ

}
dy

y∫
y−T

K(y,y− x,λ )v(x)dx

=

τ1−T∫
T2+(s−1)T

v(x)dx
x+T∫

T2+sT

K(y,y− x,λ )exp
{
−

τ1∫
y

(ν(ξ )+α(ξ ))dξ

}
dy

+

T2+sT∫
τ1−T

v(x)dx
τ1∫

T2+sT

K(y,y− x,λ )exp
{
−

τ1∫
y

(ν(ξ )+α(ξ ))dξ

}
dy

+

τ1∫
T2+sT

v(x)dx
τ1∫

x

K(y,y− x,λ )exp
{
−

τ1∫
y

(ν(ξ )+α(ξ ))dξ

}
dy.

Denote

gs(τ1,λ ) = v(T2 + sT )exp
{
−

τ1∫
T2+sT

(ν(ξ )+α(ξ ))dξ

}
+

τ1−T∫
T2+(s−1)T

A(x+T )v(x)exp
{
−

τ1∫
x+T

(ν(ξ )+α(ξ ))
}

dξ

+

τ1−T∫
T2+(s−1)T

v(x)dx
x+T∫

T2+sT

K(y,y− x,λ )exp
{
−

τ1∫
y

(ν(ξ )+α(ξ ))dξ

}
dy

+

T2+sT∫
τ1−T

v(x)dx
τ1∫

T2+sT

K(y,y− x,λ )exp
{
−

τ1∫
y

(ν(ξ )+α(ξ ))dξ

}
dy
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and rewrite Eq. (4.13) in the Volterra form

v(τ1) = gs(τ1,λ )+

τ1∫
T2+sT

v(x)dx
τ1∫

x

K(y,y− x,λ )exp
{
−

τ1∫
y

(ν(ξ )+α(ξ ))dξ

}
dy (4.14)

for τ1 ∈ [T2 + sT,min(T2 +(s+1)T,T3)].

Starting with s = 0 and using the recurrent way we first determine gs(τ1,λ ) and then solve Volterra Eq. (4.14) getting v ∈C0([T2,T3]). It is
evident that v ∈C1(T2 + sT,min(T2 +(s+1)T,T3)) for every fixed s. Direct calculation shows that v′ is continuous at points T2 + sT < T3
with s > 1.

Then we solve Eq. (4.6)4 for τ1 ∈ (T3,T4] with known the right hand side to get

v(τ1) = v(T3)exp
{
−

τ1∫
T3

ν(ξ )dξ

}
+

τ1∫
T3

exp
{
−

τ1∫
y

ν(ξ )dξ

}
dy

T3∫
y−T

K(y,y− x,λ )v(x)dx

+

τ1−T∫
T3−T

exp
{
−

τ1∫
y+T

ν(ξ )dξ

}
A(y+T,λ )v(y)dy.

For τ1 > T4 we solve Eq. (4.6)1 to get v(τ1) = v(T4)exp{−
∫

τ1
T4

ν(ξ )dξ}.
From Eqs. (4.5)2 and (4.9) we get

w(T ) =
T3∫

T1

v(x)
n

∑
k=1

αk(x)qk(x,λ )exp
{
−λx−

T∫
0

(νc(ξ ,ξ )+νc0(ξ ,ξ ))dξ

}
dx

where v is determined by Eqs. (4.12) and (4.14). It is evident that

v ∈C0([T,∞))∩C1((T,∞)\{T1,T2,T3,T4}
)
.

At last, inserting vk and v determined above into Eq. (4.7) we derive an equation for λ ,

L(λ ) = 1, L(λ ) :=
T3∫

T1

e−λx
n

∑
k=1

kvk(x+T,T )v(x)dx. (4.15)

If βk is independent of τc, then qk is independent of λ too. Hence, qk = βk(τ1). Therefore, v, vk, and vc do not depend on λ as well. Because
of the monotonicity in λ and since L→∞ as λ →−∞ and L→ 0 as λ →∞ Eq. (4.15) has a unique real root λ0 such that λ0 < 0, if L(0)< 1
(in this case cuckoo and host bird populations die), λ0 = 0, if L(0) = 1 (both populations die), and λ0 > 0, if L(0)> 1 (both populations
grow).
In the case where ∂τc βk 6= 0, we have

0 < βk∗ = min
[T1,T3]×[T1,T3]

βk < qk(τ1,λ )< max
[T1,T3]×[T1,T3]

βk = β
∗
k < 1.

Let v∗c(τ1,τ2) and vc∗(τ1,τ2) be functions defined by Eq. (4.9) with qk replaced by β ∗k and βk∗, respectively. Let v∗k(τ1,τ2) and vk∗(τ1,τ2), k =
1,2, ...,n, be functions defined by Eqs. (4.10) and (4.11) with qk replaced by βk∗ and β ∗k , respectively. Then vc∗ < vc < v∗c and vk∗ < vk < v∗k .
Hence,

K∗(τ1,τ2) :=
n

∑
k=1

νk0(τ1,τ2)vk∗(τ1,τ2)+νc0(τ1,τ2)vc∗(τ1,τ2)< K(τ1,τ2,λ )

< K∗(τ1,τ2) :=
n

∑
k=1

νk0(τ1,τ2)vk ∗ (τ1,τ2)+νc0(τ1,τ2)vc ∗ (τ1,τ2),

A∗(τ1) :=
n

∑
k=1

vk∗(τ1,T )+ vc∗(τ1,T )< A(τ1,λ )

< A∗(τ1) :=
n

∑
k=1

vk ∗ (τ1,T )+ vc ∗ (τ1,T ).

Then we solve Eqs. (4.12) and (4.14) with K(τ1,τ2,λ ), A(τ1,λ ) replaced by K∗(τ1,τ2), A∗(τ1) and K∗(τ1,τ2), A∗(τ1) getting v∗ and v∗,
respectively, for τ1 ∈ [T1,T3]. Obviously, v∗ < v < v∗.
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Therefore,

L∗(λ ) :=
T3∫

T1

e−λx
n

∑
k=1

kvk∗(x+T,T )v∗(x)dx < L(λ )

< L∗(λ ) :=
T3∫

t1

e−λx
n

∑
k=1

kvk∗(x+T,T )v∗(x)dx.

These equations show that Eq. (4.15) has at least one real root λ . Moreover, λ > 0, if L∗(0) > 1, and λ < 0, if L∗(0) < 1. The proof is
complete.
Knowing v, vc, vk, k = 1, . . . ,n, we determine densities of cuckoo and host chicks of age τ2 ≤ T by formulas (3.8),

f (t,τ2) =U
T3∫

T1

v(x)vc(x+ τ2,τ2)exp{λ (t− x+T − τ2)}dx,

u(t,τ2) =U
T3∫

T1

v(x)
n

∑
k=1

kvk(x+ τ2,τ2)exp{λ (t− x+T − τ2)}dx.

5. Conclusions

The rather generic phenomenological model for Common Cuckoo interaction with the other bird species is presented. The model is composed
of a system of integro-partial differential equations. All individuals have pre-reproductive, reproductive, and post-reproductive age intervals.
Individuals of reproductive age are divided into single and those who care of young offspring. Individuals of pre-reproductive age are divided
into young (under maternal care) and juvenile classes. Juveniles can live without maternal care but cannot produce their offspring.
In the case of special initial distributions, the existence of separable solutions of type (4.1) is proved. The conditions for the convergence of
separable solutions to a steady-state solution, populations death and growth are given. The solvability of the model for the initial distributions
of a general type is an open problem.
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