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Abstract 

This paper presents a novel method for feature selection in binary classification tasks based on histogram-based scoring. By leveraging the distribution differences 

between feature values associated with positive and negative classes, we generate a score to determine the most informative features. The method, called 

Histogram-Based Feature Selection (HBFS) has been tested against a variety of datasets and compared to the Fisher Score for performance assessment. Our 

findings indicate that HBFS either matches or outperforms Fisher Score in most datasets. 
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1. Introduction

1.1 Background 

Feature selection is an essential preprocessing step in 

machine learning, particularly in high-dimensional data 

scenarios. High-dimensional datasets, characterized by a 

large number of features relative to the number of samples, 

pose significant challenges,  overfitting, including 
computational inefficiency,  reduced model and 
interpretability (Li et al., 2023). To address these issues, 

feature selection aims to identify and retain only the most 

informative features, improving model accuracy, and

efficiency. 

Among the many methods developed for feature 

selection, the Fisher Score (Duda et al., 2001)  remains one 

of the most widely used due to its simplicity, efficiency, 

and strong theoretical foundation. It evaluates the 

discriminative power of individual features by analyzing 

the ratio of inter-class variance to intra-class variance. This 

univariate approach is computationally efficient, making it 

particularly suitable for high-dimensional datasets in fields 

such as bioinformatics, text classification, and image 

recognition (Abiodun et al., 2021). However, Fisher Score 

operates under the assumption that feature contributions are 

independent and linear, which can limit its effectiveness in 

capturing more complex relationships in modern datasets 

(Gan & Zhang., 2021).  

This study introduces a Histogram-Based Feature 

Selection (HBFS) method that builds upon the principles of 

distribution-based feature selection. Unlike the Fisher 

Score, which focuses on variance-based separability, HBFS 

quantifies the differences in feature value distributions 

across class labels using histogram comparisons. By 

addressing the limitations of traditional methods, the 

proposed HBFS method aims to provide a robust and 

scalable solution for binary classification tasks. The 

effectiveness of HBFS is evaluated by directly comparing its 

performance to the Fisher Score, leveraging the latter’s well-

established baseline status to highlight the advantages of the 

proposed method. 

1.2 Related Works 

Feature selection has been extensively studied, with 

methods broadly categorized into filter, wrapper, and 

embedded approaches (He et al., 2005). Among these, filter-

based methods like the Fisher Score remain popular due to 

their computational efficiency and statistical scalability 

(Guyon & Elisseeff, 2003). The Fisher Score is particularly 

effective in assessing the relevance of individual features in 

high-dimensional datasets, as demonstrated in applications 

ranging from gene expression analysis to handwritten digit 

recognition. Despite its widespread use, its inability to capture 

interactions between features or account for complex data 

distributions has motivated the development of alternative 

approaches (Gan & Zhang., 2021). 

Advancements in feature selection have progressively 

leveraged distributional properties to capture complex patterns 

in high-dimensional spaces. Jagdhuber et al. (2020) 

demonstrated the benefits of cost-constrained feature selection 

using genetic algorithms, highlighting the potential of 

incorporating constraints to optimize performance.  

Recently, Khan et al. (2024) introduced a weighted scoring 

method tailored for imbalanced datasets, further advancing the 

field. Additionally, they explored histogram-based approaches, 

using normalized histograms to enhance robustness and 

stability in feature selection. These techniques collectively 

underscore the growing importance of distribution-based 

scoring in binary classification tasks. 

Expanding on these advancements, this study introduces a 

novel Histogram-Based Feature Selection (HBFS) method for 

binary classification. By leveraging differences in the 
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distributions of continuous features across class labels, the 

proposed HBFS method aims to address the limitations of 

traditional techniques. To further enhance its effectiveness, 

a refinement step inspired by the Minimum Redundancy 

Maximum Relevance (MRMR) method (Peng et al., 2005) 

is incorporated to reduce redundancy among selected 

features. 

2. Methodology

2.1 Fisher Score 

The Fisher Score is a widely used similarity-based 

feature selection method designed to evaluate the 

discriminative power of individual features in classification 

tasks. It measures the ratio of inter-class variance to intra-

class variance for each feature, making it particularly 

effective in identifying features that contribute to class 

separability (Duda et al., 2001). This method has been 

widely applied in domains such as gene expression 

analysis, image recognition, and text classification, where 

distinguishing relevant features from irrelevant ones is 

critical. 

Mathematical Definition 

Given a dataset with n samples and d features, let 𝑋 =
[𝑥1, 𝑥2, . . . , 𝑥𝑛] represent the samples, and let 𝑦 ∈
{1,2, . . . , 𝐶} denote the class labels. The Fisher Score for a 

feature j is computed as: 

Fisher Score (𝑗) = 
∑ 𝑁𝑐(𝜇𝑗

(𝑐)
− 𝜇𝑗)

2
𝐶
𝑐=1

∑ 𝑁𝑐𝜎𝑗
(𝑐)2𝐶

𝑐=1

Where: 

𝑁𝑐  is the number of samples in class c, 

𝜇𝑗
(𝑐)

 is the mean of feature j for class c,

𝜇𝑗 is the mean of feature j across all samples, 

𝜎𝑗
(𝑐)2

 is the variance of feature j for class c. 

The Fisher Score quantifies how well a feature 

separates samples from different classes while minimizing 

variation within the same class. 

Key Properties 

1. Class Separability: Features with higher Fisher

Scores indicate better discriminative capability as

they maximize inter-class variance while minimizing

intra-class variance.

2. Univariate Method: The Fisher Score evaluates

each feature independently, without considering

feature interactions or correlations.

3. Efficiency: As a similarity-based method, it is

computationally efficient, making it suitable for

high-dimensional datasets.

2.2 Histogram-Based Feature Selection (HBFS) 

For each feature, HBFS generates two histograms: 

one for instances with positive class labels (Y=1) and 

the other for instances with negative class labels (Y=0). 

The histograms are normalized so that the total area sums 

to 1, ensuring a consistent basis for comparison. The bins 

are set to 100 to provide sufficient granularity in 

representation. If the histograms are identical, all 

differences will be 0, resulting in a score of 0. As the 

overlap between the histograms decreases and the 

distributions become more distinct, the sum of absolute 

differences increases, ultimately reaching a maximum value 

of 2. 

The absolute difference between these histograms is 

calculated and summed to generate a feature 

score 𝑆(𝑓𝑖) defined as: 

𝑆(𝑓𝑖) = ∑ ∣ 𝐻𝑝𝑜𝑠(𝑗) − 𝐻𝑛𝑒𝑔(𝑗) ∣

100

𝑗=1

 

where 𝐻𝑝𝑜𝑠(𝑗) and 𝐻𝑛𝑒𝑔(𝑗) are the normalized 

histogram values for positive and negative classes at bin j, 

respectively. If two distributions overlap entirely, the score 

will be 0; if they are completely distinct, the score will 

reach a maximum of 2. Features are then ranked by their 

scores, allowing for selection based on a chosen threshold. 

For all features, the HBFS scores are calculated and ranked 

in descending order to select features based on their scores. 

Input: Dataset D with features F={f1,f2,...,fn} and class 

labels Y={0,1} 

Output: Ranked list of features based on HBFS score 

1. For each feature fi  in F:

• Extract values for class  Y=1 and Y=0 separately.

• Create histograms for both classes with bin size

= 100.

• Normalize histograms such that the total area

equals 1.

• Calculate the absolute difference between the

two histograms.

• Sum the differences to obtain the HBFS score

for feature fi.

2. Rank all features based on their HBFS scores in

descending order.

3. Return the ranked list of features.

The graphical representations included in Fig. 1 

illustrate the distribution of feature values for both positive 

(Y = 1) and negative (Y = 0) classes, as well as the 

resulting in histograms used to compute the HBFS 
scores. These graphics provide a visual demonstration 

of how feature distributions differ across classes, and the 
impact of histogram normalization. By examining these 

histograms, it is easier to understand the degree of 

overlap and the distinctiveness of each feature, 
which directly influences the calculated HBFS scores. 

The first histogram (Fig. 1-a) shows the distribution 

where the positive and negative class distributions 

significantly overlap, highlighting the challenge of
distinguishing between these classes. The second histogram 

(Fig. 1-b) represents a scenario with moderate overlap, 

whereas the third histogram (Fig. 1-c) shows a clear 
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separation between the distributions of positive and 

negative classes. These visuals demonstrate the varying 

discriminative power of different features, which the 

HBFS method uses to calculate the feature importance 

scores. 

a) Class Distribution Significant Overlap

b) Class Distribution Moderate Overlap

c) Class Distribution Clear Separation

Fig. 1. HBFS Score Calculation as Class Distribution 

2.3 HBFS Refined Approach  

The HBFS method was extended to consider feature-

specific ranges. Instead of applying a fixed histogram 

range, the minimum and maximum values of each 

feature were utilized as bounds. The histogram 

granularity (number of bins) is adjustable as a 

hyperparameter (e.g., alpha = 100). The scoring process 

remains consistent, with features initially ranked in 

descending order based on their scores. 

To further refine the feature selection process and 

reduce redundancy, a two-step approach was 

implemented. First, the top 10 features with the highest 

HBFS scores were selected. Next, from the remaining 

pool, 240 additional features were chosen based on their 

minimal correlation with the highest-scoring feature. 

This approach ensured a final subset of 250 features, 

balancing discriminative power and diversity. To 

address potential redundancy among selected features, a 

refinement step inspired by the Minimal Redundancy 

Maximal Relevance (mRMR) criterion (Peng et al., 2005) 

was introduced. This refinement involves calculating 

correlations among selected features using: 

𝐶𝑜𝑟𝑟(𝑓𝑖 , 𝑓𝑗) =
𝐶𝑜𝑣(𝑓𝑖, 𝑓𝑗)

𝜎{𝑓𝑖} 𝜎{𝑓𝑗}

where 𝐶𝑜𝑟𝑟(𝑓𝑖 , 𝑓𝑗) is the covariance between features 𝑓𝑖 and 𝑓𝑗, 

while 𝜎{𝑓𝑖} and 𝜎{𝑓𝑗} are their standard deviations. This

refinement aims to reduce redundancy and select features that 

are both highly informative and minimally correlated. 

The refined framework aims to select features that not only 

demonstrate high relevance to the target classification variable 

but also exhibit minimal redundancy among themselves. By 

integrating this step, the selection process effectively enhances 

the quality of the feature subset, ensuring that each feature 

contributes unique information while maintaining strong 

predictive power for the classification task. This dual focus on 

relevance and redundancy is essential for achieving optimal 

model performance in high-dimensional data environments. 

3. Experimental Setup

3.1. Dataset

In this study, we utilize a collection of widely recognized 

datasets (Table 1) to evaluate the proposed method. These 

datasets, commonly used in feature selection and classification 

research, are characterized by a high number of features relative 

to the number of samples. This property, known as high-

dimensional, low-sample-size data, poses significant challenges 

in machine learning, particularly in overfitting and computational 

efficiency. These datasets cover diverse domains, including high-

dimensional and low-sample-size gene expression datasets, as 

well as synthetic and real-world data with challenging 

classification problems. The selected datasets (Datasets: Feature 

selection, n.d.) are as follows: 

1. ALLAML (Davide, 2019): This gene expression dataset

comprises 72 instances with 7,129 features. It involves a

binary classification task distinguishing acute

lymphoblastic leukemia (ALL) from acute myeloid
leukemia (AML). As a high-dimensional, low-sample-

size dataset, it reflects typical challenges in biomedical

research.

2. GLI_85 (GEO Accession viewer, n.d.; Freije et al.,

2004.): Consisting of 85 instances and 22,283 features,

this dataset includes glioma gene expression data. It is

used to classify glioblastomas versus normal samples,

making it a benchmark for evaluating feature selection

in biological data.

3. SMK_CAN_187(Spira et al., 2007; Gustafson et al.,

2010) : This dataset features 187 samples and 19,993

gene expression features. It is another high-dimensional

dataset that poses significant challenges for



66

dimensionality reduction and classification. There 

are two classes – 123 cancer samples and 64 normal 

tissue samples. 

4. Arcene (Datasets: Feature selection, n.d.; Wayback

machine, n.d.; ): Derived from mass spectrometry

data, this dataset includes 200 instances and 10,000

features. It is designed for binary classification tasks

and is characterized by noise and high

dimensionality, making it suitable for evaluating

feature selection methods. Two classes – evenly

distributed (100 instances per class).

5. Madelon (Datasets: Feature selection, n.d.;

Wayback machine, n.d.; ): A synthetic dataset with

2,600 instances and 500 features. This dataset is

explicitly constructed for binary classification tasks,

where relevant features are intentionally masked by

irrelevant ones, making feature selection critical.

Two balanced classes – 1,300 instances per class.

6. Gisette (Datasets: Feature selection, n.d.; Wayback

machine, n.d.; ): With 7,000 instances and 5,000

features, this dataset is derived from handwritten

digit recognition tasks. It involves distinguishing

between digits "4" and "9," showcasing real-world

classification challenges. Two classes – 3,500

instances per class.

7. Prostate_GE (Datasets: Feature selection, n.d.):

This dataset includes 102 instances and 5,966 gene

expression features. It is used for classifying prostate

cancer samples versus normal tissue samples,

highlighting challenges in processing biological

data. Two classes – 52 prostate cancer samples and

50 normal tissue samples.

Table 1 

Dataset summary. 

No Dataset # of 

Sample 

# of 

Features 

Type 

1 ALLAML 72 7129 Biological 

Data 

2 GLI_85 85 22283 Biological 

Data 

3 SMK_CAN_187 187 19993 Biological 

Data 

4 arcene 200 10000 Mass 

Spectrometry 

5 madelon 2600 500 Artificial 

6 gisette 7000 5000 Digit 

Recognition 

7 Prostate_GE 102 5966 Biological 

Data 

3.2 Feature selection

Features are selected in incremental steps based on 
their rankings using Fisher Score and HBFS. Feature

vector sizes vary from 10 to 250 in increments of 10. 

This step evaluates the impact of the number of 

selected features on model performance.

We employ the Fisher Score to rank and select features 

based on their relevance to classification tasks. This allows 

us to reduce the dimensionality of datasets while preserving 

the most informative features. The implementation of 

the Fisher Score used in this study is based on the scikit-

feature package, a feature selection library built on the 

design principles of the scikit-learn project (Buitinck et al., 

2013). 

The proposed HBFS method was tested against the 

Fisher Score method using seven datasets: ALLAML, 

GLI_85, SMK_CAN_187, Arcene, Madelon, Gisette, and 

Prostate_GE. Each dataset contains high-dimensional 

features with binary class labels.  

The training process is conducted incrementally to 

analyze the impact of the number of selected features on 

model performance: 

1. Feature Subset Selection: Features are

incrementally added in subsets of size 10, starting

from the top 10 ranked features and increasing to

250 features.

2. Model Training: For each subset, the Extra Trees

Regressor is trained on the selected features from

the training data.

3. Evaluation: The model’s performance is evaluated

on the test data using the Weighted F1 Score, which

balances precision and recall while considering class

imbalance.

3.3. Model and Training 

The machine learning model used in this study is the 

Extra Trees Regressor (Extremely Randomized Trees 

Regressor), which is an ensemble learning method (Geurts 

et al., 2006) designed to improve predictive performance 

and control overfitting. It builds multiple regression trees 

by introducing randomness during tree construction, such 

as selecting random split thresholds for features. This 

approach enhances generalization, particularly in high-

dimensional datasets, making it well-suited for the feature 

selection tasks in this study. 

Motivation for Extra Trees Regressor 

The Extra Trees Regressor is particularly suitable for 

this study due to its: 

• Ability to Handle High-Dimensional Data: The

randomization in tree construction reduces

overfitting, making it effective in high-dimensional,

low-sample-size datasets.

• Feature Importance Assessment: The method

provides insights into the importance of features,

aligning with the study's focus on feature selection.

This systematic training and evaluation approach 

ensures a robust assessment of the feature selection 

methods and their impact on model performance. 

Model Configuration 

The Extra Trees Regressor is configured with the 

following parameters: 

• Number of Estimators: 70 trees are built in the
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ensemble. 

• Random State: A fixed value of 123 ensures

reproducibility of results across multiple runs.

Data Splitting 

Each dataset is divided into training and test subsets: 

• Training Set: 80% of the data is used for

training the model.

• Test Set: 20% of the data is reserved for

evaluating the model’s performance.

The split is performed using the train_test_split

function from scikit-learn with a fixed random

state to ensure consistency.

3.4. Evaluation

The model is trained on the selected features 

incrementally, starting from 10 features and increasing 

by 10 up to 250 features. For each subset of features, 

the following steps are performed: 

1. Train the model on the training set using the

specified number of features.

2. Evaluate the model on the test set.

3. Record the Weighted F1 Score for each feature

subset.

Both methods were evaluated by selecting features 

based on ranking and assessing classification 

performance using F1-score: 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

To validate the effectiveness of the proposed feature 

selection system, classification performances of features 

selected using HBFS were compared with those 

selected using Fisher Score. 

4. Results and Discussion

4.1 HBFS Score Distributions 

The HBFS score distributions for the datasets are 

presented in Fig. 2 (a) to (g). These histograms provide a 

visual overview of how the feature scores are distributed 

across different datasets, offering insights into the 

discriminative power of features. In general, features with 

higher HBFS scores indicate better separation between the 

positive and negative classes, while lower scores suggest 

significant overlap between class distributions. 

Most datasets exhibit a skewed or asymmetric 

distribution, where the majority of features tend to have 

relatively low scores, while only a smaller subset achieves 

higher discriminative values. This pattern underscores that 

while many features contribute marginally to class 

differentiation, a select few have significant impact, 

guiding the need for effective feature selection strategies. 

The variability in these distributions suggests that different 

datasets may require customized thresholds for feature 

selection, depending on the shape and spread of their score 

distributions. 

The histograms show that some datasets, such as GLI_85 

(Fig. 2-d) and ALLAML (Fig. 2-a), exhibit a broader range of 

moderately high scores, indicating a higher number of 

informative features. In contrast, datasets like Gisette (Fig. 2-

c) and Madelon (Fig. 2-e) display a concentration of features

with lower scores, implying a more challenging feature

selection process with fewer clearly discriminative features.

These visual patterns highlight the importance of tailoring

feature selection approaches to the specific characteristics of

each dataset to optimize classification performance.

a) HBFS Score Distribution for ALLAML Dataset

b) HBFS Score Distribution for Arcene Dataset

c) HBFS Score Distribution for Gisette Dataset

d) HBFS Score Distribution for GLI_85 Dataset
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e) HBFS Score Distribution for Madelon Dataset

f) HBFS Score Distribution for Prostate_GE Dataset

g) HBFS Score Distribution for SMK_CAN_187 Dataset

Fig. 2. HBFS Score Distributions 

4.2 Comparison with Fisher Score 

The results summarized in Table 2 illustrate the 

performance of the Histogram-Based Feature Selection (HBFS) 

method compared to the Fisher Score across seven diverse 

datasets. Notably, HBFS outperformed Fisher Score in four 

datasets and matched its performance in the remaining three. 

The refinement process applied to HBFS (termed HBFS 

Refine) further enhanced the results, achieving the highest F1-

scores in six out of seven datasets. 

Table 2 

Results of the HBFS vs Fisher Score Comparison. 

No Dataset Fisher Score 

Feature size 

Fisher Score 

Best F1 

HBFS Score 

Feature size 

HBFS 

Score Best 

F1 

HBFS Score 

Feature size 

HBFS Score 

Refine Best F1 

1 ALLAML 20 1 20 1 20 1 

2 Arcene 130 0.95 170 0.975 210 1 

3 Gisette 250 0.908 160 0.971 220 0.973 

4 GLI_85 30 1 10 1 10 1 

5 Madelon 180 0.842 160 0.883 10 0.863 

6 Prostate_GE 230 0.905 10 0.952 50 1 

7 SMK_CAN_187 40 0.87 150 0.87 150 0.87 

When comparing HBFS with Fisher scores, HBFS demonstrates superior performance in 4 out of 7 datasets, with the remaining 3 

achieving the same high accuracy. This indicates that HBFS not only matches but often exceeds Fisher in feature selection 

efficiency, providing both improved F1 scores and more compact feature sets in several cases. 

4.3 Feature Selection Performance 

The HBFS method demonstrated consistent performance 

across the datasets, achieving notably higher F1-scores 

compared to the Fisher Score for datasets like Arcene 
(0.975 vs. 0.950), Gisette (0.971 vs. 0.908), and 

Prostate_GE (0.952 vs. 0.905) as shown in Table 2. 

When applying HBFS Refine, additional improvement 

was observed in datasets such as Prostate_GE, which 

reached an F1-score of 1.000 with refined feature 

selection compared to 0.952 without refinement. 

The Fisher score, while providing accurate results, did 

not achieve the best outcome across any dataset on its own. 

Among the 3 datasets where Fisher and HBFS produced 

equal performance, only one dataset required fewer features 

to achieve the same result. The HBFS method 
outperformed Fisher in 4 out of 7 datasets, with the 
remaining 3 achieving equal results.

Finally, HBFS Refine stands out as the most effective 

method, delivering the best results in 6 out of 7 datasets, 

surpassing both Fisher and standard HBFS in almost every 

case. This demonstrates that the refined HBFS method not only 

maintains high performance but also optimizes feature 

selection for better efficiency. 

The experimental results illustrate the comparative 

performance of HBFS, Refined HBFS, and Fisher methods 

across multiple datasets, with F1 score distributions provided 

for each dataset to highlight performance variability and trends 

across the three methods (Fig. 3, subgraphs (a) to (g)). In the 

graphs, HBFS is represented iny green, Refined HBFS by red,

and Fisher by blue, allowing for a clear visual distinction 

between the methods and their respective performance 

trajectories. 
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a) Weighted F1 Scores /ALLAML

b) Weighted F1 Scores /Arcene

c) Weighted F1 Scores /Gisette

d) Weighted F1 Scores /GLI_85

e) Weighted F1 Scores /Madelon

f) Weighted F1 Scores /Prostate_GE

g) Weighted F1 Scores /SMK_CAN_187

Fig. 3. F1 Distributions: HBFS (green) / Refined HBFS (red) / Fisher  (blue) 

Fig. 3-a (ALLAML) demonstrates that both HBFS and 

Refined HBFS maintain consistently high Weighted F1 Scores, 

nearing 1.0 across the entire feature size spectrum. This stability 

underscores the robustness of these methods in datasets where 

feature discriminative power is uniformly distributed. In 

contrast, Fisher exhibits substantial fluctuations, particularly as 

the feature size increases, indicating its sensitivity to the 

selection of features and possible susceptibility to noise. 

A similar trend is observed in Fig. 3-b (Arcene), where 

Refined HBFS outperforms the other methods, especially at 

smaller feature sizes. This suggests that refining the feature 

selection process improves the identification of the most 

discriminative features in datasets with high dimensionality.  

HBFS shows steady performance, while Fisher's variability 

persists, reinforcing its dependency on optimal feature set 

selection. Interestingly, Fig. 3-c (Gisette) highlights a 

convergence of all three methods as feature size increases, 

suggesting that when more features are included, the distinctions 

between these approaches become less significant. However, in 

the early stages, Refined HBFS demonstrates a clear advantage 

in achieving higher F1 Scores with fewer features. 

5. Conclusion

This paper introduced a novel Histogram-Based

Feature Selection (HBFS) method, which leverages 

histogram-based scoring to differentiate feature 

distributions across classes. The results demonstrated 

that the proposed HBFS method effectively identifies 

features that enhance classification accuracy, 

outperforming the traditional Fisher Score in multiple  

datasets. Furthermore, the inclusion of a redundancy 

reduction step significantly improved the method's 

capability, making it a robust and scalable tool for feature 

selection in high-dimensional classification tasks. 

The findings emphasize the value of distribution-based 

approaches in feature selection, addressing the limitations of 

variance-based methods like the Fisher Score. Additionally, 



the proposed refinement process highlighted the 

importance of balancing feature relevance and 

redundancy to achieve optimal classification 

performance. 

Future research will aim to extend the HBFS method 

to multi-class classification scenarios, a critical step for 

broader applicability. Furthermore, incorporating 

adaptive binning strategies will be explored to enhance 

the robustness and flexibility of the method, particularly 

for datasets with complex or imbalanced distributions. 
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