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Abstract: In this study, the deep learning-based detection performance of instructions for the vehicle was examined through images 
obtained from a camera mounted on a mobile robotic system. The aim is to enhance the detection performance of a differential robot 
equipped with a robotic arm in recognizing various visual instructions it may encounter in the field. Traffic lights, direction signs, and 
speed limit signs were selected as the visual materials to be introduced to the robotic system. By utilizing the YOLOv8 object detection 
model on the embedded AI computer onboard the vehicle and leveraging the TensorRT accelerator, deep learning-based image 
processing achieved a high frame rate of 33 FPS and an mAP50 accuracy of 96.6%. This study highlights the advantages and challenges 
of integrating advanced detection models into autonomous robotic platforms, contributing to future improvements in reliability and 
efficiency. 
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1. Introduction 
Traffic Sign Detection (TSD) is a critical component of 
Advanced Driver Assistance Systems (ADAS) and 
Intelligent Transportation Systems (ITS), driven by the 
rapid advancements in computer vision and artificial 
intelligence. Daily occurrences of accidents, often 
resulting from varied road conditions or distracted 
driving, under-score the need for such technologies. 
Although drivers are expected to maintain constant 
vigilance, supplementary assistance through TSD can 
significantly enhance their awareness of potential 
hazards, thereby improving overall road safety (Satti et 
al., 2024). 
TSD systems are integral to ADAS and Autonomous 
Driving Systems (ADS). They accurately analyze traffic 
sign data in real-time as the vehicle operates, providing 
precise detection results and alerting drivers to 
upcoming road conditions. This functionality reduces 
traffic accidents and enhances driver safety, making TSD 
a crucial technology for improving traffic safety and 
preventing collisions (Han et al., 2024).  
Detecting traffic signs presents a significant challenge for 
conventional detection algorithms due to the limited 
number of pixels traffic sign items occupy in the input 
image. Traditional methods often yield missing or 
erroneous detections, as they struggle to capture the 
features of the small-sized image pixels of traffic signals. 
Additionally, factors such as complex backgrounds, 

occlusions, deformations, and variations in light intensity 
frequently compromise the accuracy of these standard 
algorithms (Chen et al., 2022). Although a substantial 
body of current research is centered on ADAS (Zhang et 
al., 2017), the progression toward fully autonomous 
vehicles represents the next major advancement in 
intelligent transportation systems (You et al., 2015). 
Enhancing the performance and accuracy of traffic sign 
recognition relies heavily on the effective identification 
and interpretation of small traffic signs within diverse 
and complex environments (Jin et al., 2020). Traffic sign 
recognition techniques can be classified into color-based, 
shape-based, and combined approaches (Thasai et al., 
2009; Yuan et al., 2014). Traffic signs often exhibit 
distinct shapes (triangles, squares, and circles) and colors 
(yellow, blue, and red), which stand out visually in road 
contexts. In color-based approaches, RGB images are 
typically converted into other color spaces, such as Hue, 
Saturation, Intensity (HSI), CIELab, and Hue, Saturation, 
Lightness (HSL) (Jin et al., 2020). Subsequently, traffic 
signs are identified through color threshold 
segmentation (Gudigar et al., 2017). However, these 
color-based detection techniques are often susceptible to 
complex illumination patterns in the traffic environment. 
Shape-based traffic sign identification leverages 
geometric symmetry to recognize the geometric contours 
of the signs (Cai and Gu, 2013). Geometric moment 
invariant detection is more adaptable than template 

Research Article 
Volume 8 - Issue 2: 418-427 / March 2025 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / İbrahim SHAMTA and Funda DEMİR 419 
 

matching in complicated illumination environments, but 
it comes at a larger computational cost. However, the 
recognition rate of these techniques still needs to be 
improved (Jin et al., 2020). 
In recent years, deep Convolutional Neural Networks 
(CNNs) have garnered significant interest for feature 
extraction (Shustanov and Yakimov, 2017). Notable 
benchmark efforts include the German Traffic Sign 
Recognition Benchmark (GTSRB) (Houben et al., 2013) 
and the German Traffic Sign Detection Benchmark 
(GTSDB) (Stallkamp et al., 2011). A popular two-stage 
object detection framework is the Faster Region-Based 
CNN (Faster R-CNN) (Ren et al., 2017). Regardless of its 
widespread use, Faster R-CNN has limitations in 

recognizing small objects (Mahmoud and Guo, 2019). For 
instance, while datasets like PASCAL VOC and MSCOCO 
achieve satisfactory performance for large objects, small 
object detection remains a challenge (Wali et al., 2019). 
Figure 1 illustrates the general workflow of a traffic sign 
detection and recognition system. The input image, 
captured by a camera, is processed by the YOLO object 
detection algorithm. Utilizing a Deep Neural Network 
(DNN), the system detects and isolates traffic signs 
within the image. The detected traffic signs are then 
relayed to the driver or the autonomous driving system, 
enhancing driving safety and efficiency by providing 
pertinent information in real time.

 

 
 

Figure 1. General diagram of a traffic sign detection and recognition system using the YOLO object detection algorithm. 
 
In this study, significant results that contribute to the 
literature in this field were obtained through the 
combined use of YOLOv8 and TensorRT, particularly in 
enhancing recognition speed and accuracy. These results 
will be discussed in the following sections. 
In Section 2, a detailed literature review is provided on 
the detection of selected traffic signs, used as visual 
instructions in this study, through deep learning 
methods. Section 3 explains the mathematical model of 
the developed robotic system, as well as the accelerators, 
dataset, and algorithms used within the deep learning 
framework. The experimental studies and obtained 
results are thoroughly analyzed in Section 4, followed by 
a discussion of the findings in Section 5. 
 
2. Literature Review 
The reliable functioning of ADS relies on the accurate 
detection of traffic signalization, encompassing critical 
road features such as traffic signs, traffic lights, and road 
surface markings in the vicinity of self-driving vehicles. 
This capability is crucial for ensuring vehicle and 
occupant safety and compliance with traffic laws. 
Consequently, this area of research has garnered 
significant attention, with numerous recent studies 
aimed at enhancing the robustness and reliability of 
traffic signal detection methods and systems. 

In recent years, deep convolutional neural networks 
(CNNs) have been successfully applied to object 
detection and target recognition tasks, with AlexNet 
serving as a prominent example (Krizhevsky et al., 2017). 
This study demonstrated the significant improvement in 
image classification accuracy achievable with CNNs 
during the ImageNet Large-Scale Visual Recognition 
Challenge in 2012. Building on this, the Region-based 
Convolutional Neural Network (R-CNN) model for object 
detection, inspired by AlexNet's architecture, was 
introduced (Girshick et al., 2014). The R-CNN model 
begins by using a selective search algorithm to generate 
candidate regions within images, which are then fed into 
the model for feature extraction using type A 
convolutional layers. The final classification is performed 
using Support Vector Machines (SVMs) (Maldonado-
Bascón et al., 2007). Moreover, the R-CNN model 
incorporates a bounding box regression technique to 
accurately determine the coordinates of potential object 
regions, leveraging the PASCAL VOC dataset for 
evaluation. This approach has resulted in an average 
accuracy improvement of approximately 20% over non-
neural network-based algorithms. 
An autonomous vehicle system using the NVIDIA Jetson 
Nano platform, focused on obstacle avoidance and traffic 
sign recognition, is presented (Kumar et al., 2023). They 
employed the YOLO algorithm, which achieved a 98% 
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accuracy rate in real-time detection of obstructions and 
traffic signals. 
A deep learning-based detection system is proposed, 
designed for driver assistance and autonomous driving, 
with the aim of enhancing mobility and portability 
(Guney et al., 2022). This system operates across three 
different mobile GPU platforms, each varying in cost and 
performance: the Jetson Xavier AGX, Jetson Xavier Nx, 
and Jetson Nano. The trained model was also tested on a 
dedicated computer with the appropriate configurations. 
Comprehensive real-time performance analysis revealed 
that the Jetson Xavier AGX platform, noted for its low 
power consumption and high processing capacity, 
provided superior efficiency along with the fastest 
inference speed and detection accuracy. 
A self-driving car model leveraging the Jetracer AI 
framework, tailored for autonomous vehicles, is 
introduced (Kounte et al., 2022). This system utilizes AI 
and machine learning frameworks such as PyTorch, 
OpenCV, and TensorRT to perform image recognition for 
capturing and classifying traffic signals, responding to 
them in real-time via the Jetson Nano interface. The 
Jetracer framework can be accessed through interactive 
web programming via a web browser. It allows for high 
frame rate processing, facilitated by the optimization of 
the torch2trt (PyTorch to TensorRT compiler), thereby 
enabling faster linear driving capabilities with the Jetson 
Nano. 
An embedded system is proposed, designed for real-time 
detection of pedestrians and priority signs, offering an 
affordable and universally applicable solution for various 
vehicle types (Sarvajcz et al., 2024). This system includes 
two cameras, a low-power NVIDIA Jetson Nano B01 edge 
device, and an LCD (liquid crystal display) system, 
ensuring seamless integration into vehicles without 
occupying significant space. The primary objective of this 
research is to reduce accidents caused by drivers failing 
to yield to pedestrians or other vehicles. 
The challenge of changing visual conditions remains a 
persistent issue for computer vision-based systems. This 
is addressed by developing a code to assess the state of 
the road surface and current weather conditions, such as 
dry, wet, or snowy (Ozcan et al., 2020). This system 
utilizes the vehicle's camera, managed by a specially 
trained neural network (VGG16), to provide real-time 
evaluations. 
A vehicle and pedestrian recognition program was 
created using an NVIDIA Jetson Nano edge device (Barba-
Guaman et al., 2020). Their study incorporates five 
different pre-trained models: PedNet, MultiPed, SSD-
MobileNet v1 and v2, and SSD-Inception v2, to enhance 
the system's detection capabilities. 
A two-phase method for traffic sign recognition is 
introduced (Hechri and Mtibaa, 2020). In the initial 
phase, the system employs SVM and Histogram of 
Oriented Gradients (HOG) features (Dalal and Triggs, 

2005) to detect and classify signs based on their circular 
or triangular shapes. In the second phase, a 
Convolutional Neural Network (CNN) further classifies 
these shapes into specific subclasses. The methodology 
was evaluated using a standardized dataset (Wali et al., 
2015), demonstrating enhanced outcomes. 
DeployEase-YOLO, a high-precision, real-time traffic sign 
detection system designed for autonomous driving 
systems and driver assistance, is introduced (Li et al., 
2024). The system utilizes a channel pruning mechanism 
with adaptive scaling to efficiently deploy detectors on 
edge devices. Notably, DeployEase-YOLO enhances the 
detection accuracy of small traffic signs in complex 
backgrounds by integrating a minor target detection 
layer into the YOLOv5 architecture. This approach avoids 
directly scaling the image size, preserving higher quality 
and pixel information in scenarios with wide fields of 
view. The system employs adaptive scaling channel 
pruning and secondary sparse pruning to prune and 
compress the network structure, significantly reducing 
parameters and computational requirements while 
maintaining the model's depth and input size stability. 
Experiments conducted using the TT100k dataset 
demonstrated that DeployEase-YOLO surpasses the 
state-of-the-art YOLOv7 network in accuracy (93.3%) 
and size, achieving reductions of 41.69% and 59.98% in 
parameters and computations, respectively. The model 
size was reduced to 53.22% of its orig-inal size, 
indicating enhanced capability in accurately and swiftly 
recognizing small traffic signs, making it suitable for low-
resource devices.   
A system for traffic sign recognition using deep learning 
models is proposed, which also includes real-time license 
plate detection (Çınarer, 2024). The system achieved 
high performance with accuracy, recall, and mAP50 
values of 99.3%, 95%, and 98.1%, respectively. 
Experimental data revealed that the YOLOv5 architecture 
provides a robust solution for object recognition in both 
images and videos, particularly excelling in average 
precision and traffic sign detection. 
This study aims to detect traffic signs using the YOLOv8n 
algorithm, with the goal of identifying visual instructions 
for a mobile robotic system. Additionally, the 
performance metrics and detection speed were 
compared before and after the application of 
accelerators. The study was conducted using the NVIDIA 
Jetson Nano development board, an embedded AI 
computer chosen for its GPU equipped with 128 CUDA 
Cores. The development board was integrated into the 
robotic system for real-time testing. The YOLO algorithm 
was specifically selected due to its simplicity and 
competitive performance across key metrics such as 
detection accuracy and processing speed on GPUs 
(Flores-Calero et al., 2024). 
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Table 1. Summary of literature review 

Ref Year 
Data 
set 

Model 
Evaluation 

Metrics 
Comput. 

Reqs. 
Target 
Dataset 

Limitations Additional Notes 

(Krizhevsky 
et al., 2017) 

2012 ImageNet 
AlexNet 
(CNN) 

Image 
classification 

accuracy 
High 

General 
images 

Sensitivity to 
illumination variations 

First successful 
application of deep 
learning for image 

classification (84.7% 
accuracy) 

(Girshick et 
al., 2014) 

2013 
PASCAL 

VOC 
R-CNN 
(CNN) 

Object 
detection 
accuracy 

High 
Natural 
scenes 

Limited scalability to 
large datasets 

Pioneered the use of deep 
learning for object 

detection (53% mAP) 

(Kumar et 
al., 2023) 

2020 - YOLO 

Obstacle 
avoidance 
and traffic 

sign 
recognition 

accuracy 

Moderate 
Real-
time 
video 

Limited robustness to 
challenging weather 

conditions 

Real-time 
implementation on 

NVIDIA Jetson Nano (85-
90% accuracy) 

(Guney et 
al., 2022) 

2021 - 
Deep 

Learning 

Traffic sign 
detection 
accuracy 

Moderate 
Real-
time 
video 

Limited performance 
on low-power edge 

devices 

Evaluated on three 
NVIDIA Jetson platforms 

(90-95% accuracy) 

(Kounte et 
al., 2022) 

2021 - 

Jetracer 
(PyTorch, 
OpenCV, 

TensorRT) 

Real-time 
traffic signal 

detection and 
response 

Low 
Real-
time 
video 

Limited generalization 
to diverse traffic 

environments 

Designed for self-driving 
cars using Jetson Nano 

(85-90% accuracy) 

(Sarvajcz et 
al., 2024) 

2022 - 

Embedded 
System (2 
cameras, 

Jetson 
Nano, LCD) 

Pedestrian 
and priority 

sign detection 
accuracy 

Low 
Real-
time 
video 

Limited ability to 
detect small or distant 

signs 

Affordable solution for 
various vehicles (85-90% 

accuracy) 

(Ozcan et 
al., 2020) 

2019 
Car 

camera 
VGG16 
(CNN) 

Road surface 
and weather 

condition 
evaluation 
accuracy 

Moderate 
Real-
time 
video 

Limited ability to 
handle complex 

weather conditions 

Developed for 
autonomous driving 

applications (70-80% 
accuracy) 

(Barba-
Guaman et 
al., 2020) 

2020 - 

PedNet, 
MultiPed, 

SSD-
MobileNet 

v1/v2, SSD-
Inception 

v2 

Vehicle and 
Pedestrian 
recognition 

accuracy 

Moderate 
Real-
time 
video 

Limited performance 
on cluttered scenes 

Evaluated on NVIDIA 
Jetson Nano (80-90% 

accuracy) 

(Hechri and 
Mtibaa, 
2020) 

2019 

German 
Traffic 

Sign 
Dataset 

SVM + HOG, 
CNN 

Traffic sign 
classification 

accuracy 
High 

Static 
images 

Limited robustness to 
occlusions and 
degraded signs 

Two-phase approach for 
improved accuracy (95-

97% accuracy) 

(Li et al., 
2024) 

2023 TT100k 
DeployEase-

YOLO 
YOLOv5 

Traffic sign 
Detection 
accuracy 

High 
Real-
time 
video 

Limited 
generalizability to 
unseen sign types 

Optimized for edge 
devices with reduced 
model size (90-95% 

accuracy) 

(Çınarer, 
2024) 

2022 - YOLOv5 
Traffic-sign 
recognition 

accuracy 
High 

Real-
time 
video 

Limited performance 
in low-light conditions 

Demonstrated high 
accuracy and speed on 

various datasets (90-95% 
accuracy) 

 
3. Materials and Methods 
This study employs the YOLOv8n model to identify traffic 
signals as visual instructions on a mobile robotic system. 
The rationale for selecting a differential robot equipped 
with a robotic arm lies in its potential for further 
enhancement and adaptation with military or civilian 
equipment. Moreover, deep learning algorithms are 
utilized to process images captured by a camera 
connected to the embedded artificial intelligence 

computer installed on the vehicle. Deep learning 
algorithms serve as powerful tools for image processing 
tasks, such as object detection. However, these 
algorithms are often computationally complex, making 
them challenging to execute on devices with limited 
capacity. To address this issue, the precision of the 
model's floating-point (FP) representation can be 
reduced, thereby enhancing processing efficiency 
without significantly compromising detection accuracy 
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(Terakura et al., 2024). 
In the study, the precision of the FP representation of the 
chosen deep learning model was reduced to IN8 using 
TensorRT to enhance performance on Jetson Nano. 
Figure 2 illustrates the system diagram, which includes 
the following steps: 
•Check Cycle Status: The operational cycle status of the 
system is checked. If the cycle is running, continue with 
the following steps. 
•Image acquisition: An image of the surrounding 
environment is captured using a camera mounted on the 
robot. 
•Model: YOLO2TRT model is applied to the detected 
image for traffic sign detection. 
•Check for traffic signal: Checks if there is a traffic signal 
detected in the image. If no signal is detected, return to 
step 2. 
•Repeatability check: To ensure the validity of the 
detection, the repeatability of the signal detection within 
a period of less than 0.5 seconds is checked. If the signal 
is detected repeatedly, proceed with the following steps. 
•Data acquisition: Data related to the detected traffic 
signal is collected, such as the type of signal, its location, 
and any other relevant information. 
•Data display: The detected data is displayed on a screen. 
•Data storage: The detected data is stored in a database 
for future use. 
 

 
 

Figure 2. System diagram 
 
3.1. Mathematical Model of Differential Two-Wheel 
Mobile 
The robot's position in the global coordinate system 
(GCS) is determined by the x and y coordinates of its local 
coordinate system (LCS) origin, along with a rotation 
angle that defines its orientation by an angle φ. The 
kinematic model for the two-wheeled mobile robot, 
which features differentially controlled motors, is based 
on the origin of LCS (OLCS). This point is usually located 
at the midpoint of the axis of rotation between the 
wheels, as shown in Figure 3. The distance from the OLCS 
to the wheel mounts is 2𝑙𝑙, and both wheels share the 
same radius, denoted by 𝜌𝜌. 

 
 

Figure 3. Mobil Robot in 2D Plane 
 
The robot's velocity is the average of the velocities of the 
individual wheels and is given by: 
 

𝑣𝑣 =
𝑣𝑣𝑟𝑟 + 𝑣𝑣𝑙𝑙

2  (1) 
 

In equation 1,  𝑣𝑣𝑟𝑟  and 𝑣𝑣𝑙𝑙 denote the linear velocities of the 
right and left wheels, respectively. The kinematic 
equations for the differential drive robot in the world 
frame, given the specified constraints (Hassan et al., 
2024), are as follows. Equation 2 represents the motion 
of a two-wheel differential drive mobile robot (DDMR). 
 

𝑣𝑣𝑟𝑟= ρ ω𝑟𝑟,𝑣𝑣𝑙𝑙  = ρ ω𝑙𝑙  (2) 
 

where:  
- ω𝑟𝑟: Angular velocity of the right driving wheel (rads/s). 
- ω𝑙𝑙: Angular velocity of the left driving wheel (rads/s). 
The robot's dynamic function is defined as: 
 

�̇�𝑥 = 𝑣𝑣 cos(𝜑𝜑), �̇�𝑦 = 𝑣𝑣sin(𝜑𝜑), �̇�𝜑 = 𝜔𝜔 =
𝑣𝑣𝑟𝑟 − 𝑣𝑣𝑙𝑙

2𝑙𝑙  (3) 
 

The previous equations can be expressed in matrix form. 
The simplified kinematic model of the differential drive 
mobile robot, used for designing the robot, is represented 
by equation 4 R(𝜑𝜑) in the GCS as: 
 

𝑅𝑅(𝜑𝜑)𝐺𝐺𝐺𝐺𝐺𝐺 = �
�̇�𝑥
�̇�𝑦
φ̇
� = �

cos(𝜑𝜑)   0
sin(𝜑𝜑)    0
0               1

� �𝑣𝑣ω� (4) 

 

By transforming these velocities components into 
rotational velocities (��, ��), the above model can be 
improved to: 
 

𝑣𝑣 = 𝜌𝜌
(𝜔𝜔𝑟𝑟 +𝜔𝜔𝑙𝑙)

2 ,𝜔𝜔 = 𝜌𝜌
𝜔𝜔𝑟𝑟 − 𝜔𝜔𝑙𝑙

2𝑙𝑙  (5) 
 

�𝑣𝑣𝜔𝜔� = �

𝜌𝜌
2

𝜌𝜌
2

𝜌𝜌
2𝑙𝑙

−𝜌𝜌
2𝑙𝑙

� �
𝜔𝜔𝑟𝑟
𝜔𝜔𝑙𝑙
� (6) 

 

Equation 6 is substituted into equation 4 to derive a more 
detailed kinematic model, as shown in equation 7. 
 

𝑅𝑅(𝜑𝜑)𝐺𝐺𝐺𝐺𝐺𝐺 = �
�̇�𝑥
�̇�𝑦
φ̇
�=

⎣
⎢
⎢
⎢
⎢
⎡

 

𝜌𝜌
2 cos(𝜑𝜑)

𝜌𝜌
2 cos(𝜑𝜑)

𝜌𝜌
2 sin(𝜑𝜑)

𝜌𝜌
2 sin(𝜑𝜑)

𝜌𝜌
2𝑙𝑙 -

𝜌𝜌
2𝑙𝑙 ⎦

⎥
⎥
⎥
⎥
⎤

�
ω𝑟𝑟
ω𝑙𝑙
� (7) 
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The robot's velocity is the sum of its two speeds, 𝑣𝑣𝑟𝑟  and 
𝑣𝑣𝑙𝑙. Additionally, the relationship between the robot's 
angular speed, 𝑣𝑣𝑟𝑟  and 𝑣𝑣𝑙𝑙, and the separation between the 
two wheels is given by equation 8. 
 

𝑣𝑣=
(𝑣𝑣𝑟𝑟+𝑣𝑣𝑙𝑙)

2  , φ ˙ =
(𝑣𝑣𝑟𝑟 − 𝑣𝑣𝑙𝑙)

2𝑙𝑙  (8) 
 

By substituting equation 1 into equation 8, we obtain 
equation 9, which explains the relationship between each 
wheel's angular velocity and the robot's linear and 
angular velocity. 
 

𝑣𝑣=ρ
(ω𝑟𝑟+ω𝑙𝑙)

2 , φ ˙ =ρ
(ω𝑟𝑟-ω𝑙𝑙)

2𝑙𝑙  (9) 
 

3.2. Accelerators 
The current trend in AI development heavily depends on 
large models and vast datasets, leading to a significant 
demand for high computing power in advanced AI 
solutions. Consequently, future research in 
Reinforcement Learning-based Energy Management 
Systems (RL-EMS) will likely encounter challenges 
related to AI deployment. Effective deployment on 
individual vehicles will require specific deployment 
architecture tools. The following three primary tools are 
commonly used for deploying AI solutions: Open Visual 
Inference and Neural Network Optimization (OpenVino) 
for CPU devices, TensorRT for GPU devices, and 
MediaPipe for edge devices (Jooshin et al., 2024; Lin et 
al., 2024) . 
3.2.1. ONNX 
ONNX (Open Neural Network Exchange) is an open 
standard format for machine learning and deep learning 
models. It enables the conversion of models from various 
frameworks, such as TensorFlow, PyTorch, MATLAB, 
Caffe, and Keras, into a single unified format. ONNX 
provides a common set of operators, building blocks for 
deep learning, and a standardized file format. It defines a 
computation graph and includes built-in operators, 
where the ONNX nodes, which may have multiple inputs 
or outputs, form an acyclic graph.  
After training a network using any framework, the batch 
size and precision—such as FP32, FP16, or INT8—are 
set. The trained model is then processed by the TensorRT 
optimizer, which generates an optimized runtime 
referred to as a plan. This plan is stored in a .plan file, a 
serialized format of the TensorRT engine. To run 
inference, the plan file must be deserialized using the 
TensorRT runtime (Lai and Morris, 2019).  
To optimize models created in various frameworks, the 
process involves converting the models to the ONNX 
format and using the ONNX parser in TensorRT to parse 
the model and build the TensorRT engine. Figure 4 
illustrates the high-level workflow for ONNX model 
optimization (Lai and Morris, 2019). 

 
 

Figure 4. ONNX workflow. 
 
3.2.2. TensorRT 
NVIDIA TensorRT is a Software Development Kit (SDK) 
designed for deep learning inference, supporting both 
C++ and Python languages. It offers APIs and parsers to 
import trained models from all major deep learning 
frameworks, subsequently generating optimized runtime 
engines suitable for deployment in data centers, as well 
as automotive and embedded environments. Deep 
learning is utilized across various applications, including 
natural language processing, recommender systems, and 
image and video analysis. As the adoption of deep 
learning in production grows, the increasing complexity 
and size of models have heightened demands for 
accuracy and performance. In safety-critical applications, 
such as those in the automotive sector, strict 
requirements for throughput and latency are crucial. 
Similar demands are present in consumer applications 
like recommendation systems. 
TensorRT is specifically designed to facilitate the 
deployment of deep learning models for such use cases. It 
supports all major frameworks, enabling the processing 
of large datasets with low latency through advanced 
optimizations, reduced precision, and efficient memory 
usage. 
The deployment process with TensorRT begins by 
importing the model, which involves loading it from a 
saved file on disk and converting it into a TensorRT 
network from its original framework or format. ONNX 
(Open Neural Network Exchange) serves as a standard 
for representing deep learning models, facilitating their 
transfer between different frameworks, including Caffe2, 
Chainer, CNTK, PaddlePaddle, PyTorch, and MXNet. After 
conversion, an optimized TensorRT engine is built based 
on the input model, the target GPU platform, and 
specified configuration parameters. The final step 
involves feeding input data to the TensorRT engine to 
perform inference. Figure 5 illustrates the workflow of 
converting a trained model into a TensorRT engine 
(Jeong et al., 2022; Lai and Morris, 2019). 
 

 
 

Figure 5. Illustrating work process of trained model into 
TensorRT. 
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3.3. Traffic Signs Dataset 
The purpose of traffic lights is to warn, inform, arrange or 
regulate the behavior of users in certain road or traffic 
conditions. This is why knowing the meaning of traffic 
lights is essential before you start driving, in this way we 
will avoid causing accidents due to our fault and car 
accidents that could have been avoided.  

Figure 6 shows the details of the dataset used in this 
work, which contains 15 categories: two categories for 
red and green traffic lights, one for stop signs, and the 
remaining for speed limits. The dataset consists of 4,969 
images, divided as follows: 71% for training, 16% for 
validation, and 13% for testing. 

 

 
 

Figure 6. Details of the dataset. 
 
3.4. YOLO Object Detection Algorithm 
YOLO algorithm is a state-of-the-art technology 
developed by Ultralytics for DNN-based object detection 
/ classification, with a major focus on performing real-
time tasks without loss of detection accuracy (Terven et 
al., 2023). YOLO seeks to discover and identify items in 
real-time inside an image or video stream. By 
approaching object identification as a single regression 
issue, YOLO adopts a different strategy from standard 
approaches, which rely on intricate pipelines and many 
runs. The input picture is divided into a grid by this 

method, which then forecasts bounding boxes and class 
probabilities for items inside each grid cell. It is very 
quick and efficient since it predicts both the class labels 
and the bounding boxes that correspond to them at the 
same time. Because of its remarkable real-time 
performance, YOLO is renowned for processing photos 
and movies quickly (Shamta and Demir, 2024). 
Table 3 shows a comparison between the performance 
measurement, Mean Average Precision (mAP) and the 
number of frames processed for both YOLOv8 and 
YOLOv5 under the same comparison conditions. 

 
Table 3. A comparison between the performance measurement, (mAP%) and the number of frames processed for 
YOLOv8 and YOLOv5 
 

Ref Model Dataset 
Image size 

(pixels) 
Batch 
size 

Device 
(GPU) 

Metrics 
(mAP@50) 

FPS 

Terven et al., 
2023 

YOLOv8 
2017 MS 

COCO 
640 32 

NVIDIA 
V100 

53.9 % 280 

Shamta and 
Demir, 2024 

YOLOv5 
2017 MS 

COCO 
640 32 

NVIDIA 
V100 

50.7 % 200 

 
4. Experimental Results 
The image of the differential robot utilized in this study, 
equipped with a robotic arm and an NVIDIA Jetson Nano 
artificial intelligence computer with a camera, is 
presented in Figure 7. The primary aim of this system is 
to enable a robotic system, which is open to further 
hardware development, to perceive visual instructions 
through deep learning methods. The visual instructions 
employed include traffic signs such as traffic lights, 
directional signs, stop signs, and speed limits ranging 
from 10 to 120 km/h. The YOLOv8 object detection 
model was used for the detection of these instructions. 

 
 

Figure 7. Robotic vehicle. 
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The training results of the YOLOv8 model demonstrated 
an overall mAP50 of 96.9%. The performance across the 
15 different classes exhibited some variations. 
Specifically, the mAP50 for the stop sign class was 99.4%, 
the red traffic light class was 84.6%, and the green traffic 
light class was 89.3%. For speed limits, the mAP50 values 
were as follows: 20 km/h at 98.7%, 30 km/h at 99.3%, 
40 km/h at 99.2%, 50 km/h at 97.2%, 60 km/h at 97.5%, 
70 km/h at 98.7%, 80 km/h at 99.1%, 90 km/h at 98.2%, 
100 km/h at 99.2%, 110 km/h at 97.4%, and 120 km/h 
at 99.4%, as illustrated in Figure 8. The discrepancies 
observed in the green and red traffic light classes can be 
attributed to several factors, including the number of 
images in the dataset, the quality of the captured images, 
and the presence of noise. 

 
 

Figure 8. PR curve. 
 
The training process exhibited smooth progression in the 
training curves for both precision and recall, as well as in 
the box losses and classification losses during both 
training and testing phases, as illustrated in Figure 9.

 

 
 

Figure 9. Training process. 
 
In these applications, ensuring the model's accuracy and 
smooth operation is not sufficient; it is also imperative to 
consider the computational cost. This is because the 
computational cost of deploying the models is closely 
linked to the FPS capability of the camera. To address 
this, one of Nvidia's accelerators, TensorRT, was 
employed to optimize the model by reducing its weights, 
as detailed in Table 4. 
 
Table 4. Results before and after the model acceleration 

Model Image size FPS 
Torch 480x640 14 FPS 
TensorRT 640x640 33 FPS 

 

In this study, the employed model demonstrated 
robustness by achieving a frame rate of 33 FPS with the 
TensorRT accelerator and an accuracy of 96.6% mAP50 
using the YOLOv8 model. However, it exhibited some 
limitations in terms of high reliability for this type of 
application. Additional factors include the relative size of 
Jetson Nano compared to the robot and the accuracy of 
the camera at various speeds. Jetson Nano's physical 
dimensions and processing capabilities can pose 
integration challenges, particularly in maintaining 
balance and stability of the robot. Moreover, the camera's 
accuracy can be influenced by motion blur at higher 
speeds, lighting conditions, and other environmental 
factors, potentially impacting the model's performance. 
These constraints highlight the need for ongoing 
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refinement and optimization. Figure 10 illustrates real-
time test image from the model using TensorRT. 
 

 
 

Figure 10. Real-Time test image of the accelerated model 
with TensorRT. 
 
5. Conclusions 
This study addresses the detection of visual instructions 
by a deep learning model in a mobile robotic system 
equipped with an embedded AI computer. A system 
comprising a differential robot equipped with a robotic 
arm, Jetson Nano, and a camera was developed to detect 
traffic signs as visual instructions using the YOLOv8 
object detection deep learning model. The preference for 
a mobile robotic system over a standard electric vehicle 
is due to its ability to be easily modified with new 
hardware and adaptable to new instruction structures 
based on varying needs. The employed model 
demonstrated a high overall mAP50 accuracy of 96.9%, 
with individual class accuracy varying across different 
traffic signs. The integration of TensorRT accelerated the 
model, achieving 33 FPS while maintaining a mAP50 
accuracy of 96.6%. As evident from the results obtained 
in this research, a foundational framework is provided 
for developing more reliable and efficient visual 
instruction recognition systems in autonomous robotic 
platforms. 
Despite these promising results, challenges remain in 
achieving high reliability for real-world applications. 
Factors such as the physical size of the on-board AI 
computer, camera accuracy at various speeds, and 
environmental conditions impact overall performance. 
Future studies are planned to focus on improving the 
model's reliability and robustness. This may include 
optimizing hardware-software integration, improving 
image quality under varying conditions, and integrating 
additional sensors to address the limitations of the 
current camera system. Continuous development and 
testing will be crucial to ensure the high reliability 
required for real-world applications. It is evident that 
optimizing hardware-software integration, improving 
image quality, and enhancing overall system reliability 
will lead to increased performance. 
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