
Black Sea Journal of Engineering and Science
doi: 10.34248/bsengineering.1594542

BSJ Eng Sci / İbrahim SHAMTA and Funda DEMİR 418
 This work is licensed (CC BY-NC 4.0) under Creative Commons Attribution 4.0 International License

Open Access Journal
e-ISSN: 2619 – 8991

OPTIMIZING VISUAL INSTRUCTION DETECTION IN

AUTONOMOUS MOBILE ROBOTS USING YOLOV8 AND
TENSORRT ACCELERATION

İbrahim SHAMTA1, Funda DEMİR1*

1Karabük University, Faculty of Engineering, Department of Mechatronics, 78050, Karabük, Türkiye

Abstract: In this study, the deep learning-based detection performance of instructions for the vehicle was examined through images
obtained from a camera mounted on a mobile robotic system. The aim is to enhance the detection performance of a differential robot
equipped with a robotic arm in recognizing various visual instructions it may encounter in the field. Traffic lights, direction signs, and
speed limit signs were selected as the visual materials to be introduced to the robotic system. By utilizing the YOLOv8 object detection
model on the embedded AI computer onboard the vehicle and leveraging the TensorRT accelerator, deep learning-based image
processing achieved a high frame rate of 33 FPS and an mAP50 accuracy of 96.6%. This study highlights the advantages and challenges
of integrating advanced detection models into autonomous robotic platforms, contributing to future improvements in reliability and
efficiency.

Keywords: Deep learning, Differential robot, Sign recognition, TensorRT.
*Corresponding author: Karabük University, Faculty of Engineering, Department of Mechatronics, 78050, Karabük, Türkiye
E mail: fundademir@karabuk.edu.tr (F. DEMİR)
Ibrahim SHAMTA https://orcid.org/0009-0003-1280-679X Received: December 2, 2024

Accepted: January 9, 2025
Published: March 15, 2025

Funda DEMIR https://orcid.org/0000-0001-7707-8496

Cite as: Shamta I, Demir F. 2025. Optimizing visual instruction detection in autonomous mobile robots using Yolov8 and TensorRT acceleration. BSJ Eng
Sci, 8(2): 418-427.

1. Introduction
Traffic Sign Detection (TSD) is a critical component of
Advanced Driver Assistance Systems (ADAS) and
Intelligent Transportation Systems (ITS), driven by the
rapid advancements in computer vision and artificial
intelligence. Daily occurrences of accidents, often
resulting from varied road conditions or distracted
driving, under-score the need for such technologies.
Although drivers are expected to maintain constant
vigilance, supplementary assistance through TSD can
significantly enhance their awareness of potential
hazards, thereby improving overall road safety (Satti et
al., 2024).
TSD systems are integral to ADAS and Autonomous
Driving Systems (ADS). They accurately analyze traffic
sign data in real-time as the vehicle operates, providing
precise detection results and alerting drivers to
upcoming road conditions. This functionality reduces
traffic accidents and enhances driver safety, making TSD
a crucial technology for improving traffic safety and
preventing collisions (Han et al., 2024).
Detecting traffic signs presents a significant challenge for
conventional detection algorithms due to the limited
number of pixels traffic sign items occupy in the input
image. Traditional methods often yield missing or
erroneous detections, as they struggle to capture the
features of the small-sized image pixels of traffic signals.
Additionally, factors such as complex backgrounds,

occlusions, deformations, and variations in light intensity
frequently compromise the accuracy of these standard
algorithms (Chen et al., 2022). Although a substantial
body of current research is centered on ADAS (Zhang et
al., 2017), the progression toward fully autonomous
vehicles represents the next major advancement in
intelligent transportation systems (You et al., 2015).
Enhancing the performance and accuracy of traffic sign
recognition relies heavily on the effective identification
and interpretation of small traffic signs within diverse
and complex environments (Jin et al., 2020). Traffic sign
recognition techniques can be classified into color-based,
shape-based, and combined approaches (Thasai et al.,
2009; Yuan et al., 2014). Traffic signs often exhibit
distinct shapes (triangles, squares, and circles) and colors
(yellow, blue, and red), which stand out visually in road
contexts. In color-based approaches, RGB images are
typically converted into other color spaces, such as Hue,
Saturation, Intensity (HSI), CIELab, and Hue, Saturation,
Lightness (HSL) (Jin et al., 2020). Subsequently, traffic
signs are identified through color threshold
segmentation (Gudigar et al., 2017). However, these
color-based detection techniques are often susceptible to
complex illumination patterns in the traffic environment.
Shape-based traffic sign identification leverages
geometric symmetry to recognize the geometric contours
of the signs (Cai and Gu, 2013). Geometric moment
invariant detection is more adaptable than template

Research Article
Volume 8 - Issue 2: 418-427 / March 2025

Black Sea Journal of Engineering and Science

BSJ Eng Sci / İbrahim SHAMTA and Funda DEMİR 419

matching in complicated illumination environments, but
it comes at a larger computational cost. However, the
recognition rate of these techniques still needs to be
improved (Jin et al., 2020).
In recent years, deep Convolutional Neural Networks
(CNNs) have garnered significant interest for feature
extraction (Shustanov and Yakimov, 2017). Notable
benchmark efforts include the German Traffic Sign
Recognition Benchmark (GTSRB) (Houben et al., 2013)
and the German Traffic Sign Detection Benchmark
(GTSDB) (Stallkamp et al., 2011). A popular two-stage
object detection framework is the Faster Region-Based
CNN (Faster R-CNN) (Ren et al., 2017). Regardless of its
widespread use, Faster R-CNN has limitations in

recognizing small objects (Mahmoud and Guo, 2019). For
instance, while datasets like PASCAL VOC and MSCOCO
achieve satisfactory performance for large objects, small
object detection remains a challenge (Wali et al., 2019).
Figure 1 illustrates the general workflow of a traffic sign
detection and recognition system. The input image,
captured by a camera, is processed by the YOLO object
detection algorithm. Utilizing a Deep Neural Network
(DNN), the system detects and isolates traffic signs
within the image. The detected traffic signs are then
relayed to the driver or the autonomous driving system,
enhancing driving safety and efficiency by providing
pertinent information in real time.

Figure 1. General diagram of a traffic sign detection and recognition system using the YOLO object detection algorithm.

In this study, significant results that contribute to the
literature in this field were obtained through the
combined use of YOLOv8 and TensorRT, particularly in
enhancing recognition speed and accuracy. These results
will be discussed in the following sections.
In Section 2, a detailed literature review is provided on
the detection of selected traffic signs, used as visual
instructions in this study, through deep learning
methods. Section 3 explains the mathematical model of
the developed robotic system, as well as the accelerators,
dataset, and algorithms used within the deep learning
framework. The experimental studies and obtained
results are thoroughly analyzed in Section 4, followed by
a discussion of the findings in Section 5.

2. Literature Review
The reliable functioning of ADS relies on the accurate
detection of traffic signalization, encompassing critical
road features such as traffic signs, traffic lights, and road
surface markings in the vicinity of self-driving vehicles.
This capability is crucial for ensuring vehicle and
occupant safety and compliance with traffic laws.
Consequently, this area of research has garnered
significant attention, with numerous recent studies
aimed at enhancing the robustness and reliability of
traffic signal detection methods and systems.

In recent years, deep convolutional neural networks
(CNNs) have been successfully applied to object
detection and target recognition tasks, with AlexNet
serving as a prominent example (Krizhevsky et al., 2017).
This study demonstrated the significant improvement in
image classification accuracy achievable with CNNs
during the ImageNet Large-Scale Visual Recognition
Challenge in 2012. Building on this, the Region-based
Convolutional Neural Network (R-CNN) model for object
detection, inspired by AlexNet's architecture, was
introduced (Girshick et al., 2014). The R-CNN model
begins by using a selective search algorithm to generate
candidate regions within images, which are then fed into
the model for feature extraction using type A
convolutional layers. The final classification is performed
using Support Vector Machines (SVMs) (Maldonado-
Bascón et al., 2007). Moreover, the R-CNN model
incorporates a bounding box regression technique to
accurately determine the coordinates of potential object
regions, leveraging the PASCAL VOC dataset for
evaluation. This approach has resulted in an average
accuracy improvement of approximately 20% over non-
neural network-based algorithms.
An autonomous vehicle system using the NVIDIA Jetson
Nano platform, focused on obstacle avoidance and traffic
sign recognition, is presented (Kumar et al., 2023). They
employed the YOLO algorithm, which achieved a 98%

Black Sea Journal of Engineering and Science

BSJ Eng Sci / İbrahim SHAMTA and Funda DEMİR 420

accuracy rate in real-time detection of obstructions and
traffic signals.
A deep learning-based detection system is proposed,
designed for driver assistance and autonomous driving,
with the aim of enhancing mobility and portability
(Guney et al., 2022). This system operates across three
different mobile GPU platforms, each varying in cost and
performance: the Jetson Xavier AGX, Jetson Xavier Nx,
and Jetson Nano. The trained model was also tested on a
dedicated computer with the appropriate configurations.
Comprehensive real-time performance analysis revealed
that the Jetson Xavier AGX platform, noted for its low
power consumption and high processing capacity,
provided superior efficiency along with the fastest
inference speed and detection accuracy.
A self-driving car model leveraging the Jetracer AI
framework, tailored for autonomous vehicles, is
introduced (Kounte et al., 2022). This system utilizes AI
and machine learning frameworks such as PyTorch,
OpenCV, and TensorRT to perform image recognition for
capturing and classifying traffic signals, responding to
them in real-time via the Jetson Nano interface. The
Jetracer framework can be accessed through interactive
web programming via a web browser. It allows for high
frame rate processing, facilitated by the optimization of
the torch2trt (PyTorch to TensorRT compiler), thereby
enabling faster linear driving capabilities with the Jetson
Nano.
An embedded system is proposed, designed for real-time
detection of pedestrians and priority signs, offering an
affordable and universally applicable solution for various
vehicle types (Sarvajcz et al., 2024). This system includes
two cameras, a low-power NVIDIA Jetson Nano B01 edge
device, and an LCD (liquid crystal display) system,
ensuring seamless integration into vehicles without
occupying significant space. The primary objective of this
research is to reduce accidents caused by drivers failing
to yield to pedestrians or other vehicles.
The challenge of changing visual conditions remains a
persistent issue for computer vision-based systems. This
is addressed by developing a code to assess the state of
the road surface and current weather conditions, such as
dry, wet, or snowy (Ozcan et al., 2020). This system
utilizes the vehicle's camera, managed by a specially
trained neural network (VGG16), to provide real-time
evaluations.
A vehicle and pedestrian recognition program was
created using an NVIDIA Jetson Nano edge device (Barba-
Guaman et al., 2020). Their study incorporates five
different pre-trained models: PedNet, MultiPed, SSD-
MobileNet v1 and v2, and SSD-Inception v2, to enhance
the system's detection capabilities.
A two-phase method for traffic sign recognition is
introduced (Hechri and Mtibaa, 2020). In the initial
phase, the system employs SVM and Histogram of
Oriented Gradients (HOG) features (Dalal and Triggs,

2005) to detect and classify signs based on their circular
or triangular shapes. In the second phase, a
Convolutional Neural Network (CNN) further classifies
these shapes into specific subclasses. The methodology
was evaluated using a standardized dataset (Wali et al.,
2015), demonstrating enhanced outcomes.
DeployEase-YOLO, a high-precision, real-time traffic sign
detection system designed for autonomous driving
systems and driver assistance, is introduced (Li et al.,
2024). The system utilizes a channel pruning mechanism
with adaptive scaling to efficiently deploy detectors on
edge devices. Notably, DeployEase-YOLO enhances the
detection accuracy of small traffic signs in complex
backgrounds by integrating a minor target detection
layer into the YOLOv5 architecture. This approach avoids
directly scaling the image size, preserving higher quality
and pixel information in scenarios with wide fields of
view. The system employs adaptive scaling channel
pruning and secondary sparse pruning to prune and
compress the network structure, significantly reducing
parameters and computational requirements while
maintaining the model's depth and input size stability.
Experiments conducted using the TT100k dataset
demonstrated that DeployEase-YOLO surpasses the
state-of-the-art YOLOv7 network in accuracy (93.3%)
and size, achieving reductions of 41.69% and 59.98% in
parameters and computations, respectively. The model
size was reduced to 53.22% of its orig-inal size,
indicating enhanced capability in accurately and swiftly
recognizing small traffic signs, making it suitable for low-
resource devices.
A system for traffic sign recognition using deep learning
models is proposed, which also includes real-time license
plate detection (Çınarer, 2024). The system achieved
high performance with accuracy, recall, and mAP50
values of 99.3%, 95%, and 98.1%, respectively.
Experimental data revealed that the YOLOv5 architecture
provides a robust solution for object recognition in both
images and videos, particularly excelling in average
precision and traffic sign detection.
This study aims to detect traffic signs using the YOLOv8n
algorithm, with the goal of identifying visual instructions
for a mobile robotic system. Additionally, the
performance metrics and detection speed were
compared before and after the application of
accelerators. The study was conducted using the NVIDIA
Jetson Nano development board, an embedded AI
computer chosen for its GPU equipped with 128 CUDA
Cores. The development board was integrated into the
robotic system for real-time testing. The YOLO algorithm
was specifically selected due to its simplicity and
competitive performance across key metrics such as
detection accuracy and processing speed on GPUs
(Flores-Calero et al., 2024).

Black Sea Journal of Engineering and Science

BSJ Eng Sci / İbrahim SHAMTA and Funda DEMİR 421

Table 1. Summary of literature review

Ref Year
Data
set

Model
Evaluation

Metrics
Comput.

Reqs.
Target
Dataset

Limitations Additional Notes

(Krizhevsky
et al., 2017)

2012 ImageNet
AlexNet
(CNN)

Image
classification

accuracy
High

General
images

Sensitivity to
illumination variations

First successful
application of deep
learning for image

classification (84.7%
accuracy)

(Girshick et
al., 2014)

2013
PASCAL

VOC
R-CNN
(CNN)

Object
detection
accuracy

High
Natural
scenes

Limited scalability to
large datasets

Pioneered the use of deep
learning for object

detection (53% mAP)

(Kumar et
al., 2023)

2020 - YOLO

Obstacle
avoidance
and traffic

sign
recognition

accuracy

Moderate
Real-
time
video

Limited robustness to
challenging weather

conditions

Real-time
implementation on

NVIDIA Jetson Nano (85-
90% accuracy)

(Guney et
al., 2022)

2021 -
Deep

Learning

Traffic sign
detection
accuracy

Moderate
Real-
time
video

Limited performance
on low-power edge

devices

Evaluated on three
NVIDIA Jetson platforms

(90-95% accuracy)

(Kounte et
al., 2022)

2021 -

Jetracer
(PyTorch,
OpenCV,

TensorRT)

Real-time
traffic signal

detection and
response

Low
Real-
time
video

Limited generalization
to diverse traffic

environments

Designed for self-driving
cars using Jetson Nano

(85-90% accuracy)

(Sarvajcz et
al., 2024)

2022 -

Embedded
System (2
cameras,

Jetson
Nano, LCD)

Pedestrian
and priority

sign detection
accuracy

Low
Real-
time
video

Limited ability to
detect small or distant

signs

Affordable solution for
various vehicles (85-90%

accuracy)

(Ozcan et
al., 2020)

2019
Car

camera
VGG16
(CNN)

Road surface
and weather

condition
evaluation
accuracy

Moderate
Real-
time
video

Limited ability to
handle complex

weather conditions

Developed for
autonomous driving

applications (70-80%
accuracy)

(Barba-
Guaman et
al., 2020)

2020 -

PedNet,
MultiPed,

SSD-
MobileNet

v1/v2, SSD-
Inception

v2

Vehicle and
Pedestrian
recognition

accuracy

Moderate
Real-
time
video

Limited performance
on cluttered scenes

Evaluated on NVIDIA
Jetson Nano (80-90%

accuracy)

(Hechri and
Mtibaa,
2020)

2019

German
Traffic

Sign
Dataset

SVM + HOG,
CNN

Traffic sign
classification

accuracy
High

Static
images

Limited robustness to
occlusions and
degraded signs

Two-phase approach for
improved accuracy (95-

97% accuracy)

(Li et al.,
2024)

2023 TT100k
DeployEase-

YOLO
YOLOv5

Traffic sign
Detection
accuracy

High
Real-
time
video

Limited
generalizability to
unseen sign types

Optimized for edge
devices with reduced
model size (90-95%

accuracy)

(Çınarer,
2024)

2022 - YOLOv5
Traffic-sign
recognition

accuracy
High

Real-
time
video

Limited performance
in low-light conditions

Demonstrated high
accuracy and speed on

various datasets (90-95%
accuracy)

3. Materials and Methods
This study employs the YOLOv8n model to identify traffic
signals as visual instructions on a mobile robotic system.
The rationale for selecting a differential robot equipped
with a robotic arm lies in its potential for further
enhancement and adaptation with military or civilian
equipment. Moreover, deep learning algorithms are
utilized to process images captured by a camera
connected to the embedded artificial intelligence

computer installed on the vehicle. Deep learning
algorithms serve as powerful tools for image processing
tasks, such as object detection. However, these
algorithms are often computationally complex, making
them challenging to execute on devices with limited
capacity. To address this issue, the precision of the
model's floating-point (FP) representation can be
reduced, thereby enhancing processing efficiency
without significantly compromising detection accuracy

Black Sea Journal of Engineering and Science

BSJ Eng Sci / İbrahim SHAMTA and Funda DEMİR 422

(Terakura et al., 2024).
In the study, the precision of the FP representation of the
chosen deep learning model was reduced to IN8 using
TensorRT to enhance performance on Jetson Nano.
Figure 2 illustrates the system diagram, which includes
the following steps:
•Check Cycle Status: The operational cycle status of the
system is checked. If the cycle is running, continue with
the following steps.
•Image acquisition: An image of the surrounding
environment is captured using a camera mounted on the
robot.
•Model: YOLO2TRT model is applied to the detected
image for traffic sign detection.
•Check for traffic signal: Checks if there is a traffic signal
detected in the image. If no signal is detected, return to
step 2.
•Repeatability check: To ensure the validity of the
detection, the repeatability of the signal detection within
a period of less than 0.5 seconds is checked. If the signal
is detected repeatedly, proceed with the following steps.
•Data acquisition: Data related to the detected traffic
signal is collected, such as the type of signal, its location,
and any other relevant information.
•Data display: The detected data is displayed on a screen.
•Data storage: The detected data is stored in a database
for future use.

Figure 2. System diagram

3.1. Mathematical Model of Differential Two-Wheel
Mobile
The robot's position in the global coordinate system
(GCS) is determined by the x and y coordinates of its local
coordinate system (LCS) origin, along with a rotation
angle that defines its orientation by an angle φ. The
kinematic model for the two-wheeled mobile robot,
which features differentially controlled motors, is based
on the origin of LCS (OLCS). This point is usually located
at the midpoint of the axis of rotation between the
wheels, as shown in Figure 3. The distance from the OLCS
to the wheel mounts is 2𝑙𝑙, and both wheels share the
same radius, denoted by 𝜌𝜌.

Figure 3. Mobil Robot in 2D Plane

The robot's velocity is the average of the velocities of the
individual wheels and is given by:

𝑣𝑣 =
𝑣𝑣𝑟𝑟 + 𝑣𝑣𝑙𝑙

2 (1)

In equation 1, 𝑣𝑣𝑟𝑟 and 𝑣𝑣𝑙𝑙 denote the linear velocities of the
right and left wheels, respectively. The kinematic
equations for the differential drive robot in the world
frame, given the specified constraints (Hassan et al.,
2024), are as follows. Equation 2 represents the motion
of a two-wheel differential drive mobile robot (DDMR).

𝑣𝑣𝑟𝑟= ρ ω𝑟𝑟,𝑣𝑣𝑙𝑙 = ρ ω𝑙𝑙 (2)

where:
- ω𝑟𝑟: Angular velocity of the right driving wheel (rads/s).
- ω𝑙𝑙: Angular velocity of the left driving wheel (rads/s).
The robot's dynamic function is defined as:

�̇�𝑥 = 𝑣𝑣 cos(𝜑𝜑), �̇�𝑦 = 𝑣𝑣sin(𝜑𝜑), �̇�𝜑 = 𝜔𝜔 =
𝑣𝑣𝑟𝑟 − 𝑣𝑣𝑙𝑙

2𝑙𝑙 (3)

The previous equations can be expressed in matrix form.
The simplified kinematic model of the differential drive
mobile robot, used for designing the robot, is represented
by equation 4 R(𝜑𝜑) in the GCS as:

𝑅𝑅(𝜑𝜑)𝐺𝐺𝐺𝐺𝐺𝐺 = �
�̇�𝑥
�̇�𝑦
φ̇
� = �

cos(𝜑𝜑) 0
sin(𝜑𝜑) 0
0 1

� �𝑣𝑣ω� (4)

By transforming these velocities components into
rotational velocities (��, ��), the above model can be
improved to:

𝑣𝑣 = 𝜌𝜌
(𝜔𝜔𝑟𝑟 +𝜔𝜔𝑙𝑙)

2 ,𝜔𝜔 = 𝜌𝜌
𝜔𝜔𝑟𝑟 − 𝜔𝜔𝑙𝑙

2𝑙𝑙 (5)

�𝑣𝑣𝜔𝜔� = �

𝜌𝜌
2

𝜌𝜌
2

𝜌𝜌
2𝑙𝑙

−𝜌𝜌
2𝑙𝑙

� �
𝜔𝜔𝑟𝑟
𝜔𝜔𝑙𝑙
� (6)

Equation 6 is substituted into equation 4 to derive a more
detailed kinematic model, as shown in equation 7.

𝑅𝑅(𝜑𝜑)𝐺𝐺𝐺𝐺𝐺𝐺 = �
�̇�𝑥
�̇�𝑦
φ̇
�=

⎣
⎢
⎢
⎢
⎢
⎡

𝜌𝜌
2 cos(𝜑𝜑)

𝜌𝜌
2 cos(𝜑𝜑)

𝜌𝜌
2 sin(𝜑𝜑)

𝜌𝜌
2 sin(𝜑𝜑)

𝜌𝜌
2𝑙𝑙 -

𝜌𝜌
2𝑙𝑙 ⎦

⎥
⎥
⎥
⎥
⎤

�
ω𝑟𝑟
ω𝑙𝑙
� (7)

Black Sea Journal of Engineering and Science

BSJ Eng Sci / İbrahim SHAMTA and Funda DEMİR 423

The robot's velocity is the sum of its two speeds, 𝑣𝑣𝑟𝑟 and
𝑣𝑣𝑙𝑙. Additionally, the relationship between the robot's
angular speed, 𝑣𝑣𝑟𝑟 and 𝑣𝑣𝑙𝑙, and the separation between the
two wheels is given by equation 8.

𝑣𝑣=
(𝑣𝑣𝑟𝑟+𝑣𝑣𝑙𝑙)

2 , φ ˙ =
(𝑣𝑣𝑟𝑟 − 𝑣𝑣𝑙𝑙)

2𝑙𝑙 (8)

By substituting equation 1 into equation 8, we obtain
equation 9, which explains the relationship between each
wheel's angular velocity and the robot's linear and
angular velocity.

𝑣𝑣=ρ
(ω𝑟𝑟+ω𝑙𝑙)

2 , φ ˙ =ρ
(ω𝑟𝑟-ω𝑙𝑙)

2𝑙𝑙 (9)

3.2. Accelerators
The current trend in AI development heavily depends on
large models and vast datasets, leading to a significant
demand for high computing power in advanced AI
solutions. Consequently, future research in
Reinforcement Learning-based Energy Management
Systems (RL-EMS) will likely encounter challenges
related to AI deployment. Effective deployment on
individual vehicles will require specific deployment
architecture tools. The following three primary tools are
commonly used for deploying AI solutions: Open Visual
Inference and Neural Network Optimization (OpenVino)
for CPU devices, TensorRT for GPU devices, and
MediaPipe for edge devices (Jooshin et al., 2024; Lin et
al., 2024) .
3.2.1. ONNX
ONNX (Open Neural Network Exchange) is an open
standard format for machine learning and deep learning
models. It enables the conversion of models from various
frameworks, such as TensorFlow, PyTorch, MATLAB,
Caffe, and Keras, into a single unified format. ONNX
provides a common set of operators, building blocks for
deep learning, and a standardized file format. It defines a
computation graph and includes built-in operators,
where the ONNX nodes, which may have multiple inputs
or outputs, form an acyclic graph.
After training a network using any framework, the batch
size and precision—such as FP32, FP16, or INT8—are
set. The trained model is then processed by the TensorRT
optimizer, which generates an optimized runtime
referred to as a plan. This plan is stored in a .plan file, a
serialized format of the TensorRT engine. To run
inference, the plan file must be deserialized using the
TensorRT runtime (Lai and Morris, 2019).
To optimize models created in various frameworks, the
process involves converting the models to the ONNX
format and using the ONNX parser in TensorRT to parse
the model and build the TensorRT engine. Figure 4
illustrates the high-level workflow for ONNX model
optimization (Lai and Morris, 2019).

Figure 4. ONNX workflow.

3.2.2. TensorRT
NVIDIA TensorRT is a Software Development Kit (SDK)
designed for deep learning inference, supporting both
C++ and Python languages. It offers APIs and parsers to
import trained models from all major deep learning
frameworks, subsequently generating optimized runtime
engines suitable for deployment in data centers, as well
as automotive and embedded environments. Deep
learning is utilized across various applications, including
natural language processing, recommender systems, and
image and video analysis. As the adoption of deep
learning in production grows, the increasing complexity
and size of models have heightened demands for
accuracy and performance. In safety-critical applications,
such as those in the automotive sector, strict
requirements for throughput and latency are crucial.
Similar demands are present in consumer applications
like recommendation systems.
TensorRT is specifically designed to facilitate the
deployment of deep learning models for such use cases. It
supports all major frameworks, enabling the processing
of large datasets with low latency through advanced
optimizations, reduced precision, and efficient memory
usage.
The deployment process with TensorRT begins by
importing the model, which involves loading it from a
saved file on disk and converting it into a TensorRT
network from its original framework or format. ONNX
(Open Neural Network Exchange) serves as a standard
for representing deep learning models, facilitating their
transfer between different frameworks, including Caffe2,
Chainer, CNTK, PaddlePaddle, PyTorch, and MXNet. After
conversion, an optimized TensorRT engine is built based
on the input model, the target GPU platform, and
specified configuration parameters. The final step
involves feeding input data to the TensorRT engine to
perform inference. Figure 5 illustrates the workflow of
converting a trained model into a TensorRT engine
(Jeong et al., 2022; Lai and Morris, 2019).

Figure 5. Illustrating work process of trained model into
TensorRT.

Black Sea Journal of Engineering and Science

BSJ Eng Sci / İbrahim SHAMTA and Funda DEMİR 424

3.3. Traffic Signs Dataset
The purpose of traffic lights is to warn, inform, arrange or
regulate the behavior of users in certain road or traffic
conditions. This is why knowing the meaning of traffic
lights is essential before you start driving, in this way we
will avoid causing accidents due to our fault and car
accidents that could have been avoided.

Figure 6 shows the details of the dataset used in this
work, which contains 15 categories: two categories for
red and green traffic lights, one for stop signs, and the
remaining for speed limits. The dataset consists of 4,969
images, divided as follows: 71% for training, 16% for
validation, and 13% for testing.

Figure 6. Details of the dataset.

3.4. YOLO Object Detection Algorithm
YOLO algorithm is a state-of-the-art technology
developed by Ultralytics for DNN-based object detection
/ classification, with a major focus on performing real-
time tasks without loss of detection accuracy (Terven et
al., 2023). YOLO seeks to discover and identify items in
real-time inside an image or video stream. By
approaching object identification as a single regression
issue, YOLO adopts a different strategy from standard
approaches, which rely on intricate pipelines and many
runs. The input picture is divided into a grid by this

method, which then forecasts bounding boxes and class
probabilities for items inside each grid cell. It is very
quick and efficient since it predicts both the class labels
and the bounding boxes that correspond to them at the
same time. Because of its remarkable real-time
performance, YOLO is renowned for processing photos
and movies quickly (Shamta and Demir, 2024).
Table 3 shows a comparison between the performance
measurement, Mean Average Precision (mAP) and the
number of frames processed for both YOLOv8 and
YOLOv5 under the same comparison conditions.

Table 3. A comparison between the performance measurement, (mAP%) and the number of frames processed for
YOLOv8 and YOLOv5

Ref Model Dataset
Image size

(pixels)
Batch
size

Device
(GPU)

Metrics
(mAP@50)

FPS

Terven et al.,
2023

YOLOv8
2017 MS

COCO
640 32

NVIDIA
V100

53.9 % 280

Shamta and
Demir, 2024

YOLOv5
2017 MS

COCO
640 32

NVIDIA
V100

50.7 % 200

4. Experimental Results
The image of the differential robot utilized in this study,
equipped with a robotic arm and an NVIDIA Jetson Nano
artificial intelligence computer with a camera, is
presented in Figure 7. The primary aim of this system is
to enable a robotic system, which is open to further
hardware development, to perceive visual instructions
through deep learning methods. The visual instructions
employed include traffic signs such as traffic lights,
directional signs, stop signs, and speed limits ranging
from 10 to 120 km/h. The YOLOv8 object detection
model was used for the detection of these instructions.

Figure 7. Robotic vehicle.

Black Sea Journal of Engineering and Science

BSJ Eng Sci / İbrahim SHAMTA and Funda DEMİR 425

The training results of the YOLOv8 model demonstrated
an overall mAP50 of 96.9%. The performance across the
15 different classes exhibited some variations.
Specifically, the mAP50 for the stop sign class was 99.4%,
the red traffic light class was 84.6%, and the green traffic
light class was 89.3%. For speed limits, the mAP50 values
were as follows: 20 km/h at 98.7%, 30 km/h at 99.3%,
40 km/h at 99.2%, 50 km/h at 97.2%, 60 km/h at 97.5%,
70 km/h at 98.7%, 80 km/h at 99.1%, 90 km/h at 98.2%,
100 km/h at 99.2%, 110 km/h at 97.4%, and 120 km/h
at 99.4%, as illustrated in Figure 8. The discrepancies
observed in the green and red traffic light classes can be
attributed to several factors, including the number of
images in the dataset, the quality of the captured images,
and the presence of noise.

Figure 8. PR curve.

The training process exhibited smooth progression in the
training curves for both precision and recall, as well as in
the box losses and classification losses during both
training and testing phases, as illustrated in Figure 9.

Figure 9. Training process.

In these applications, ensuring the model's accuracy and
smooth operation is not sufficient; it is also imperative to
consider the computational cost. This is because the
computational cost of deploying the models is closely
linked to the FPS capability of the camera. To address
this, one of Nvidia's accelerators, TensorRT, was
employed to optimize the model by reducing its weights,
as detailed in Table 4.

Table 4. Results before and after the model acceleration

Model Image size FPS
Torch 480x640 14 FPS
TensorRT 640x640 33 FPS

In this study, the employed model demonstrated
robustness by achieving a frame rate of 33 FPS with the
TensorRT accelerator and an accuracy of 96.6% mAP50
using the YOLOv8 model. However, it exhibited some
limitations in terms of high reliability for this type of
application. Additional factors include the relative size of
Jetson Nano compared to the robot and the accuracy of
the camera at various speeds. Jetson Nano's physical
dimensions and processing capabilities can pose
integration challenges, particularly in maintaining
balance and stability of the robot. Moreover, the camera's
accuracy can be influenced by motion blur at higher
speeds, lighting conditions, and other environmental
factors, potentially impacting the model's performance.
These constraints highlight the need for ongoing

Black Sea Journal of Engineering and Science

BSJ Eng Sci / İbrahim SHAMTA and Funda DEMİR 426

refinement and optimization. Figure 10 illustrates real-
time test image from the model using TensorRT.

Figure 10. Real-Time test image of the accelerated model
with TensorRT.

5. Conclusions
This study addresses the detection of visual instructions
by a deep learning model in a mobile robotic system
equipped with an embedded AI computer. A system
comprising a differential robot equipped with a robotic
arm, Jetson Nano, and a camera was developed to detect
traffic signs as visual instructions using the YOLOv8
object detection deep learning model. The preference for
a mobile robotic system over a standard electric vehicle
is due to its ability to be easily modified with new
hardware and adaptable to new instruction structures
based on varying needs. The employed model
demonstrated a high overall mAP50 accuracy of 96.9%,
with individual class accuracy varying across different
traffic signs. The integration of TensorRT accelerated the
model, achieving 33 FPS while maintaining a mAP50
accuracy of 96.6%. As evident from the results obtained
in this research, a foundational framework is provided
for developing more reliable and efficient visual
instruction recognition systems in autonomous robotic
platforms.
Despite these promising results, challenges remain in
achieving high reliability for real-world applications.
Factors such as the physical size of the on-board AI
computer, camera accuracy at various speeds, and
environmental conditions impact overall performance.
Future studies are planned to focus on improving the
model's reliability and robustness. This may include
optimizing hardware-software integration, improving
image quality under varying conditions, and integrating
additional sensors to address the limitations of the
current camera system. Continuous development and
testing will be crucial to ensure the high reliability
required for real-world applications. It is evident that
optimizing hardware-software integration, improving
image quality, and enhancing overall system reliability
will lead to increased performance.

Author Contributions
The percentages of the author’s contributions are
presented below. All authors reviewed and approved the
final version of the manuscript.

 I.S. F.D.
C 50 50
D 50 50
S 50 50
DCP 50 50
DAI 50 50
L 50 50
W 50 50
CR 50 50
SR 50 50
PM 50 50
FA 50 50

C=Concept, D= design, S= supervision, DCP= data collection
and/or processing, DAI= data analysis and/or interpretation, L=
literature search, W= writing, CR= critical review, SR=
submission and revision, PM= project management, FA= funding
acquisition.

Conflict of Interest
The authors declared that there is no conflict of interest.

Ethical Consideration
Ethics committee approval was not required for this
study because of there was no study on animals or
humans.

References
Barba-Guaman L, Eugenio Naranjo J, Ortiz A. 2020. Deep

learning framework for vehicle and pedestrian detection in
rural roads on an embedded GPU. Electronics, 9(4): 589.

Cai ZX, Gu MQ. 2013. Traffic sign recognition algorithm based
on shape signature and dual-tree complex wavelet transform.
J Cent South Univ, 20(2): 433–439.

Chen J, Jia K, Chen W, Lv Z, Zhang R. 2022. A real-time and high-
precision method for small traffic-signs recognition. Neural
Comput Appl, 34(3): 2233–2245.

Çınarer G. 2024. Deep learning based traffic sign recognition
using YOLO algorithm. Düzce Univ. J Sci Tech, 12(1): 219–
229.

Dalal N, Triggs B. 2005. Histograms of oriented gradients for
human detection. Soc Conf Comput Vision Pattern Recog
(CVPR’05), San Diego, CA, USA, 1: 886–893.

Flores-Calero M, Astudillo CA, Guevara D, Maza J, Lita BS, Defaz
B, Ante JS, Zabala-Blanco D, Armingol Moreno JM. 2024.
Traffic sign detection and recognition using YOLO object
detection algorithm: A Systematic Rev. Mathematics, 12(2):
1–31.

Girshick R, Donahue J, Darrell T, Jitendra M. 2014. Rich feature
hierarchies for accurate object detection and semantic
segmentation. IEEE Conf Comput Vision Pattern Recog., 580–
587.

Gudigar A, Chokkadi S, Raghavendra U, Acharya UR. 2017.
Multiple thresholding and subspace based approach for
detection and recognition of traffic sign. Mult Tools Appl,
76(5), 6973–6991.

Guney E, Bayilmis C, Cakan B. 2022. An implementation of real-
time traffic signs and road objects detection based on mobile

Black Sea Journal of Engineering and Science

BSJ Eng Sci / İbrahim SHAMTA and Funda DEMİR 427

GPU platforms. IEEE Access, 10: 86191–86203.
Han Y, Wang F, Wang W, Li X, Zhang J. 2024. YOLO-SG: Small

traffic signs detection method in complex scene. J Supercomp,
80(2): 2025–2046.

Hassan IA, Abed IA, Al-Hussaibi WA. 2024. Path planning and
trajectory tracking control for two-wheel mobile robot. J
Robot Cont (JRC), 5(1): 1–15.

Hechri A, Mtibaa A. 2020. Two‐stage traffic sign detection and
recognition based on SVM and convolutional neural
networks. IET Image Process, 14(5): 939–946.

Houben S, Stallkamp J, Salmen J, Schlipsing M, Igel C. 2013.
Detection of traffic signs in real-world images: The German
traffic sign detection benchmark. Int Joint Conf Neural
Networks, Dallas, TX, USA, pp: 1–8.

Jeong EJ, Kim J, Tan S, Lee J, Ha S. 2022. Deep learning inference
parallelization on heterogeneous processors with TensorRT.
IEEE Embed Syst Lett, 14(1): 15–18.

Jin Y, Fu Y, Wang W, Guo J, Ren C, Xiang X. 2020. Multi-feature
fusion and enhancement single shot detector for traffic sign
recognition. IEEE Access, 8: 38931–38940.

Jooshin HK, Nangir M, Seyedarabi H. 2024. Inception-YOLO:
Computational cost and accuracy improvement of the
YOLOv5 model based on employing modified CSP, SPPF,
inception modules. IET Image Process, 18(8): 1985–1999.

Kounte MR, Shri CvA., Harshvardhan V, Kumari A, Dhruv S.
2022. Design and development of autonomous driving car
using nvidiajetson nano developer kit. 8-9 Oct. 2022, 4th Int
Conf Cybernetics, Cognition and Machine Learning Appl
(ICCCMLA), Goa, India, pp: 486–489.

Krizhevsky A, Sutskever I, Hinton GE. 2017. ImageNet
classification with deep convolutional neural networks.
Commun ACM, 60(6): 84–90.

Kumar BA, Majji M, Marni HJ, Ateeq M, Koduru S, Maddi SM
2023. A deep transfer learning approach for enhanced traffic
sign recognition in autonomous vehicles with NVIDIA jetson
nano. Int. Conf Sustain. Emerg Innov Eng Technol (ICSEIET),
Ghaziabad, India, pp: 692–698.

Lai G, Morris T. 2019. TensorRT inference with TensorFlow.
GPU Tech Conf, pp: 75.

Li Y, Zhang Z, Yuan C, Hu J. 2024. Easily deployable real-time
detection method for small traffic signs. J Intell Fuzzy Syst,
46: 8411–8424.

Lin Y, Chu L, Hu J, Hou Z, Li J, Jiang J, Zhang Y. 2024. Progress
and summary of reinforcement learning on energy
management of MPS-EV. Heliyon, 10(1): e23014.

Mahmoud MAB, Guo P. 2019. A novel method for traffic sign
recognition based on DCGAN and MLP with PILAE algorithm.
IEEE Access, 7: 74602–74611.

Maldonado-Bascón S, Lafuente-Arroyo S, Gil-Jiménez P, Gómez-
Moreno H, López-Ferreras F. 2007. Road-sign detection and
recognition based on support vector machines. IEEE Trans
Intell Transp Syst, 8(2): 264–278.

Ozcan K, Sharma A, Knickerbocker S, Merickel J, Hawkins N,

Rizzo M. 2020. Road weather condition estimation using fixed
and mobile based cameras. Advances in Comput. Vision: Proc.
of the 2019 Comput. Vision Conf (CVC), 1 (1): 192–204.

Ren S, He K, Girshick R, Sun J. 2017. Faster R-CNN: towards
real-time object detection with region proposal networks.
IEEE Trans Pattern Anal Mach Intell, 39(6): 1137–1149.

Sarvajcz K, Ari L, Menyhart J. 2024. AI on the road: NVIDIA
jetson nano-powered computer vision-based system for real-
time pedestrian and priority sign detection. Appl Sci, 14(4):
1440.

Satti SK, Rajareddy GNV, Mishra K, Gandomi AH. 2024. Potholes
and traffic signs detection by classifier with vision
transformers. Sci Rep, 14(1): 1–18.

Shamta I, Demir BE. 2024. Development of a deep learning-
based surveillance system for forest fire detection and
monitoring using UAV. PLoS ONE, 19(3): e0299058.

Shustanov A, Yakimov P. 2017. CNN design for real-time traffic
sign recognition. Procedia Eng, 201: 718–725.

Stallkamp J, Schlipsing M, Salmen J, Igel C. 2011. The German
traffic sign recognition benchmark: A multi-class
classification competition. 31 July - 05 August 2011, Int. Joint
Conf Neural Networks, San Jose, CA, USA, pp: 1453–1460.

Terakura K, Chang Q, Miyazaki J. 2024. Acceleration of neural
network inference for embedded gpu systems. Int Conf Big
Data Smart Comput, Bangkok, Thailand, pp: 361–362.

Terven J, Córdova-Esparza DM, Romero-González JA. 2023. A
comprehensive review of YOLO architectures in computer
vision: from YOLOv1 to YOLOv8 and YOLO-NAS. Machine
Learn Knowl Extr, 5(4): 1680–1716.

Thasai Y, Kim P, Ynag Z. 2009. Generalized traffic sign detection
model for developing a sign inventory. J Comp Civil Eng,
23(5): 266–276.

Wali SB, Abdullah MA, Hannan MA, Hussain A, Samad SA, Ker
PJ, Mansor MB. 2019. Vision-based traffic sign detection and
recognition systems: Current trends and challenges. Sensors,
19(9): 2093.

Wali SB, Hannan MA, Hussain A, Samad SA. 2015. An automatic
traffic sign detection and recognition system based on colour
segmentation, shape matching, and svm. Math Probl Eng,
2015(1): 250461.

You F, Zhang R, Lie G, Wang H, Wen H, Xu J. 2015. Trajectory
planning and tracking control for autonomous lane change
maneuver based on the cooperative vehicle infrastructure
system. Expert Syst Appl, 42(14): 5932–5946.

Yuan X, Hao X, Chen H, Wei X. 2014. Robust traffic sign
recognition based on color global and local oriented edge
magnitude patterns. IEEE Trans Intell Transp Syst, 15(4):
1466–1474.

Zhang RH, He ZC, Wang HW, You F, Li KN. 2017. Study on self-
tuning tyre friction control for developing main-servo loop
integrated chassis control system. IEEE Access, 5: 6649–
6660.

	İbrahim SHAMTA1, Funda DEMİR1*
	1Karabük University, Faculty of Engineering, Department of Mechatronics, 78050, Karabük, Türkiye
	İbrahim SHAMTA1, Funda DEMİR1*
	1Karabük University, Faculty of Engineering, Department of Mechatronics, 78050, Karabük, Türkiye

