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Development A Hybrid Model Based on Harris Hawks Optimization 

(HHO) Algorithm and Quantum Learning to Diagnosis of Prostate 

Cancer 

Highlights 

❖ A novel hybrid model combining Harris Hawks Optimization (HHO) and Quantum Learning (QL) is 

proposed. 

❖ Achieved 97.84% diagnostic accuracy on a clinical prostate cancer dataset. 

❖ Reduces computational complexity through intelligent feature selection. 

Graphical Abstract 

 

Figure. Graphical Abstract 

Aim 

To develop an accurate and efficient hybrid model using Harris Hawks Optimization (HHO) and Quantum Learning 

(QL) for early and non-invasive diagnosis of prostate cancer using clinical data. 

Design & Methodology 

• Dataset: 100 clinical samples (38% cancer, 62% healthy) from Kaggle. 

• Feature Selection: HHO algorithm selected 6 optimal features out of 8. 

• Classification: Quantum Learning model trained with selected features. 

Originality 

This study introduces a novel hybrid approach (HHO + QL) to tackle prostate cancer diagnosis. Unlike conventional 

models, it reduces unnecessary biopsies and improves classification accuracy by combining metaheuristic 

optimization with quantum-inspired computation. 

Findings 

• Achieved 97.84% accuracy in classification. 

• Outperformed existing methods such as MLP (91.36%), SVM (84.16%), and CIWO+DL (97.19%). 

Conclusion  

The proposed HHO-QL hybrid model proves to be an effective, accurate, and efficient method for prostate cancer 

diagnosis. Its performance surpasses traditional machine learning models and presents a promising solution for 

clinical application. 
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ABSTRACT 

Prostate cancer (PC) represents a significant health problem and stands among the primary mortality causes in men, partly due to 

the drawbacks of the diagnostic techniques currently used. Annually, these current diagnosis techniques cause many men to lose 

their lives simply because they cannot get an accurate diagnosis on time. A potentially practical and cost-effective approach for 

diagnosing PC is applying artificial intelligence, particularly machine learning. This work is aimed at developing a machine 

learning (ML) model for the diagnosis of prostate cancer on clinical data of 100 men, among whom 38% were suffering and 62% 

were healthy. The proposed model combines the Harris Hawk Optimization (HHO) and Quantum Learning (QL) methods. The 

results reveal that this new approach provides better accuracy, 97.84%, than other ML approaches. 

Keywords: Prostate cancer detection, Machine Learning, Cancer detection, Quantum learning, Harris Hawk Optimization 

(HHO) 

Prostat Kanserinin Teşhisinde Harris Hawks 

Optimizasyon (HHO) Algoritması ve Kuantum 

Öğrenmeye Dayalı Hibrit Bir Model Geliştirilmesi 

ÖZ 

Prostat kanseri (PK) önemli bir sağlık sorunudur ve kısmen kullanılan tanı tekniklerinin dezavantajları nedeniyle erkeklerde başlıca 

ölüm nedenleri arasında yer almaktadır. Her yıl, bu mevcut teşhis teknikleri, sadece zamanında doğru bir teşhis alamadıkları için 

birçok erkeğin hayatını kaybetmesine neden olmaktadır. PK teşhisi için potansiyel olarak pratik ve uygun maliyetli bir yaklaşım, 

yapay zeka, özellikle de makine öğrenimi uygulamaktır. Bu çalışma, %38'i hasta ve %62'si sağlıklı olan 100 erkeğin klinik verileri 

üzerinde prostat kanseri teşhisi için bir makine öğrenimi (ML) modeli geliştirmeyi amaçlamaktadır. Önerilen model Harris Hawk 

Optimizasyonu (HHO) ve Kuantum Öğrenme (QL) yöntemlerini birleştirmektedir. Sonuçlar, bu yeni yaklaşımın diğer ML 

yaklaşımlarına göre %97,84 oranında daha iyi doğruluk sağladığını ortaya koymaktadır. 

Anahtar Kelimeler: Prostat kanseri tespiti, Makine Öğrenmesi, Kanser tespiti, Kuantum öğrenme, Harris Hawk 

Optimizasyonu (HHO). 

1. INTRODUCTION 

Even after so much advancement in medical science, 

cancer continues to be a significant health problem of our 

times. It forms the second most common cause of death 

after heart and lung diseases[1], [2]. Cancer is a deadly 

disease and is often caused by an accumulation of genetic 

disorders and several pathological changes[3]. 

Cancerous cells are abnormal growths that may occur in 

any part of the body and pose a severe threat to life [4]. 

Also known as tumors, cancers require early detection to 

determine the most effective treatment options[5]. 

Inadequate diagnosis, complicated medical history, and 

challenges of treatment usually are the main drivers of 

mortality [6]. According to the World Health 

Organization(WHO), over 10 million people across the 

globe are diagnosed with various types of cancer each 

year, with this number expected to rise to 15 million by 

2030 [7]. Prostate cancer is a type of cancer that starts in 

the prostate gland, one of the small organs of men that 

produce seminal fluid [8]. Prostate cancer is the second 

most common type of cancer worldwide in men. Its 

incidence rate increases drastically after the age of 50 

years [8]. Prostate cancer comes out to be at the top of the 

list of the most frequently diagnosed cancers[9], and, at 

the moment, represents an increasingly important public 

health challenge with population aging [10], [11]. This 

risk of developing prostate cancer is increased by several 

factors, which include advancing age, family history of 

the disease, and genetic mutations, such as BRCA1 and 

BRCA2 [12], [13]. Additionally, African American men 

have higher incidence rates of prostate cancer compared 

to other racial groups [14]. Lifestyle factors, such as a 

high intake of red meat and dairy products and obesity, 

are also associated with an increased risk [14]. In its early 

stages, prostate cancer may not present any symptoms 

[15]. The prostate is an integral part of the male 

reproductive system, located in the pelvic region beneath 

the urinary bladder and anterior to the rectum, as shown 
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in Figure 1. It encircles a portion of the urethra and 

typically measures about 3 cm in length and weighs 

around 20 grams in an adult male. The prostate is known 

for its ability to accumulate zinc and produce citrate, 

playing a role in the creation and storage of seminal fluid. 

Prostate glands contribute to about 20% of seminal fluid 

production. When affected by disease, they can impact 

urination, ejaculation, and bowel movements[16]. The 

symptoms of prostate cancer can closely resemble those 

of other conditions, especially in the early stages. 

Common indicators include urinary difficulties, pelvic 

discomfort, hematuria (blood in urine), and fatigue from 

anemia. Risk factors for prostate cancer include advanced 

age, genetic predisposition, and ethnicity, with having a 

close relative with prostate cancer increasing one’s risk 

due to its hereditary nature [16]. 

 
Figure 1. Prostate physiology [16] 

The practice of prostate cancer screening has been 

controversial since the Medicare Benefits Schedule 

(MBS) commenced subsidizing PC testing in 1989. 

While PC testing and DRE represent an essential 

assessment of risk and making an initial diagnosis, 

concerns about over-diagnosis and overtreatment have 

driven improvements in diagnostic pathways [17]. 

Although PC screening may have some utility in defining 

risk assessment to decide who will need further 

evaluation in specific individuals, it is not recommended 

in asymptomatic individuals, and decisions should be 

individualized based on such factors as age, life 

expectancy, and risk factors, including family history, as 

well as consideration of informed choices. It may lead to 

excessive interventions due to the misuse of PC screening 

because of the possibility of high PSA levels in 

nonmalignant conditions like benign prostatic 

hyperplasia, prostatitis, or even after prostate 

manipulation, thereby leading to unnecessary biopsies. 

Moreover, unnecessary and excessive treatment may be 

followed in managing all cancers [18]. Given the 

importance of prostate cancer and the high incidence of 

cases in men, interest has long been expressed in 

developing new modalities for the early detection of 

PC[17].  Table 1 illustrates the progress in the diagnostic 

front of prostate cancer from 1995 to 2022. 

The table shows the progress that started with the prostate 

cancer diagnostic methods at their most essential in 1995 

and changed into sophisticated approaches by 2022. 

Table 1. Evolution trend of prostate cancer diagnosis methods 
1995 DRE/raised 

PSA 
6 core 
TRUS 

biopsy 

Treatment
/AS 

  

2005 DRE/raised 

PSA 

10 core 

TRUS 
biopsy 

Treatment

/AS 

  

2015 DRE/raised 

PSA 

mpMRI 18-30 

core 
transperin

eal biopsy 

CT + 

Bone 
scan 

AS/ 

Treatm
ent 

2022 DRE/raised 

PSA 

mpMRI 18-30 

core 
transperin

eal biopsy 

PSMA 

PET 

AS/ 

Treatm
ent/ 

focal 

therapy 

Hint: AS = active surveillance; CT = computed tomography; DRE 

= digital rectal examination; mpMRI = multiparametric magnetic 

resonance imaging; PET = positron emission tomography; PSA = 
prostate-specific antigen; PSMA = prostate-specific membrane 

antigen; TRUS = transrectal ultrasound 

 
Advanced imaging modalities, such as multiparametric 

magnetic resonance imaging and prostate-specific 

membrane antigen positron emission tomography, have 

revolutionized the accuracy of diagnosis after the 

standardization and refinement of biopsy techniques. 

More accurate diagnostic capability has added treatment 

options for more precise treatment strategies like focal 

therapy, in addition to the traditional methods and active 

surveillance of prostate cancer. 

These numerous improvements show that technology 

continues to evolve and brings further understanding of 

prostate cancer. These improvements strive to progress 

early detection, refine diagnostic processes, and lead to 

better patient outcomes at the very end. 

Early detection of prostate cancer is crucial for improving 

patient outcomes. Given the variety of available 

treatment options, understanding the specific 

characteristics of different tumor types is essential for 

developing effective treatment strategies. Currently, 

histopathology and immunohistochemistry are the 

primary diagnostic techniques. However, these methods 

can be complex and may not always provide accurate 

results for every patient. Consequently, there is a pressing 

need for a rapid, non-invasive, and highly sensitive 

method to differentiate between various tumor 

forms[19].  Economic valuations of health and illness 

[20], [21], and disease management programs, including 

the following types of costs, are borne by individuals and 

society. These are: 

• Direct costs:  These are capital and operational 

costs for health interventions. 

• Intangible, direct costs: These are costs for 

support of the program or other sundry types of 

payments. 

• Indirect costs:  These are patients' and their 

families' time and opportunity costs. 

• Intangible costs:  This is the cost in terms of pain, 

anxiety, and stress that people suffer. 

• Indirect costs:  The productivity and efficiency 

lost from falling ill. 



 

 

Maintaining a healthy lifestyle with a balanced diet and 

regular physical can help reduce the risk of prostate 

cancer [22]. Early detection through routine screenings 

makes the disease more manageable [23]. The 

introduction of advanced computer-based technologies, 

particularly artificial intelligence(AI) [24], and machine 

learning[25], has enabled more precise and cost-effective 

early diagnosis of PC [26]. AI improves diagnostic 

sensitivity by analyzing complex data from various 

sources, such as PSA levels, MRI-guided biopsies, and 

genomic biomarkers, thereby enhancing efficiency and 

accuracy in diagnosing and managing prostate cancer 

[27]. AI significantly advances prostate cancer care by 

improving diagnosis, treatment, and management, 

promising faster, personalized care and reduced costs. 

However, overcoming challenges in data exchange and 

building strong clinical evidence is essential for its 

continued integration into standard clinical practice [28]. 

Quantum learning, which implements quantum 

algorithms into machine learning processes, uses the 

parallel computational power of quantum systems to 

accelerate processes and make them more effective[29]. 

For example, quantum classifiers reached 86% accuracy 

for Progressive Supranuclear Palsy diagnosis, 

outperforming classic methods [30]. Hybrid approaches 

mixing quantum and classical algorithms have also been 

probed to improve data science, in a demonstration of 

how versatile QML can be [31]. 

This study developed a hybrid quantum deep 

convolutional neural network to provide the best 

accuracy for the diagnosis of CKD, 99.98%, and 

efficiency, 0.0641 seconds per image. However, 

accessing and generalizing this model can be challenging 

due to its complex nature and computational resource 

demand[32]. Reference [33] aims to detect prostate 

cancer by enhancing the Quantum Support Vector 

Machine and high-power quantum feature mapping. 

QSVM has higher sensitivity and a high F1-Score of 

93.33%, though it is more complex and resource-

intensive than classical methods. The study aimed to 

develop a quantum-inspired deep learning model with 

ordinal regression, which may give higher performance 

for medical image diagnosis related to prostate cancer 

and diabetic retinopathy. While it attained better 

performance and interpretability by exploiting ordinal 

information and quantifying prediction uncertainty, there 

is a trade-off related to multi-class accuracy and 

complexity [34]. The research was focused on proposing 

and validating a Quantum Squirrel-inspired Feature 

Selection algorithm that would facilitate high-accuracy 

gene selection in prostate cancer. Accordingly, QSFS 

achieved 100% accuracy with the least features and 

identified relevant biomarkers, although careful hyper-

parameter tuning is required, with local search efficiency 

varying [35]. 

1.1. Contribution 

This study focuses on developing a hybrid model for the 

early diagnosis of prostate cancer using clinical data to 

enhance diagnostic accuracy and speed. The main 

contributions of this paper include:  

- Developing a quantum learning approach using Harris 

Hawks Optimization (HHO). 

- Reduction of the computational complexity associated 

with the quantum learning approach. 

- Improvement of medical systems for prostate cancer 

diagnosis. 

1.2. Originality 

The research focused on some of the most critical 

challenges in the diagnosis of prostate cancer, such as the 

case of high numbers of unnecessary biopsies due to low 

specificity and the scarcity of standard diagnostic data. It 

proposed selecting optimal features using the HHO 

optimization algorithm to solve unnecessary biopsies. It 

highlighted the use of standard data sets from reputed 

scientific sources for the challenge of limited data 

availability. 

 

2. RELATED WORKS 

This Prostate cancer was initially described by Adams in 

1853. At that time, the disease was considered to be a rare 

one and not well understood, with only limited methods 

for its detection available. An evolutionary process 

underlying cancer progression, formulated by Darwin, 

leads to many subclones within a single primary 

tumor[36]. This is an essential evolutionary mechanism 

in the process of metastasis formation, which is one of 

the main causes of morbidity and complications in cancer 

patients. Metastasis is a process through which cancer 

cells spread from their primary site to different body 

parts. In PC, cancer arises as a result of genetic mutations 

in cells of the prostate gland. As expected, primary 

androgen deprivation therapy is usually given to men 

with metastatic PC; however, resistance against this 

treatment develops over time[37]. Research has 

identified recurrent somatic mutations, changes in DNA 

copy number, and oncogenic structural rearrangements in 

primary PC[38], [39]. The possibility of totally 

revolutionizing the field of medicine in terms of 

diagnostic accuracy finally got a much-needed boost 

through the integration of AI-based technologies. Some 

very novel methods offering promising results have been 

developed in the highly imaging techniques-dependent 

prostate cancer diagnosis. For instance, a study [40], For 

example, a study proposed several machine learning 

techniques like Bayesian techniques, Support Vector 

Machines (SVM) with several types of kernels (like 

polynomial, RBF, and Gaussian), and Decision Trees for 

the diagnosis of prostate cancer. It used texture analysis 

techniques, morphological features, Scale-Invariant 

Feature Transform (SIFT), and Elliptic Fourier 

Descriptors for feature extraction. The SVM with 

Gaussian Kernel showed a maximum accuracy of 

98.34%, and the SVM model based on Gaussian Kernel 

generated an AUC of 0.999. When the texture and 

morphological feature extractions were integrated with 

either SVM with Gaussian Kernel or the EFDs, the 

performance in terms of accuracy reached 99.71%, and 



 

 

in terms of AUC, reached 1.00. Another research [41] 

developed an ensemble model by implementing 

intelligence analysis to increase the accuracy of 

classification, diagnosis, and treatment of prostate 

cancer. This study showed 92.45% accuracy. The results 

underscore the effectiveness of various algorithms. Since 

high-dimensional datasets related to prostate conditions 

are primarily redundant and anomalous, dimensionality 

reduction and isolating only very relevant features have 

to be taken into consideration to improve classification 

precision and diminish operational costs. Identifying the 

best feature subset from a vast search space is a 

challenging problem. The central feature selection issue 

is identifying the most informative features that explain 

the system best. Feature selection lends several 

advantages: reduced processing time, ease of data 

interpretation, avoiding dimensionality problems, and 

less risk of overfitting. Extraneous, irrelevant, and 

redundant features are removed after the identification of 

the most relevant features, hence shrinking the 

computational size and increasing the speed of data 

analysis. Of the meta-heuristic algorithms, HHO is 

outstanding because of its wide range of searches within 

the computing space. On this basis, the HHO algorithm 

is a meta-heuristic technique capable of simulating 

Harris's hawk-hunting process, wherein different vectors 

update their positions toward choosing the best solutions 

for selecting relevant features from among the best values 

attained. 

Although extensive research has focused on single 

metaheuristic algorithms and quantum machine learning 

techniques, the lack of effective integration between 

nature-inspired optimization strategies and quantum 

learning in the field of prostate cancer diagnosis remains 

a major challenge. Existing diagnostic models mainly 

utilize traditional optimization methods or standard 

learning approaches, which may show limitations in the 

face of medical data complexity and the need for high 

accuracy. In this paper, a novel hybrid framework, HHO-

QL, is proposed, which uniquely combines the powerful 

global search capabilities of Harris Hawks Optimization 

(HHO) with the computational advantages of Quantum 

Learning (QL) principles. This innovative combination 

not only significantly improves the diagnostic 

performance of the model, but also reduces its 

computational complexity. The proposed hybrid model, 

by improving the process of selecting relevant features 

and accelerating the convergence of the learning process, 

effectively addresses the fundamental limitations of 

previous studies and takes an important step towards 

developing more accurate and efficient prostate cancer 

detection systems. 

 

3. MATERIAL AND METHOD 

3.1. Material 

This study used the prostate cancer dataset, available 

from Kaggle, as a high-quality benchmark in diagnosing 

diseases. The data retrieved from Kaggle.com contains 

100 individual samples, each described by eight features: 

- "radius," "texture," "perimeter," "area," "smoothness," 

"compactness," "symmetry," and "fractal dimension." Of 

those 100 patients, 38 have been diagnosed with prostate 

cancer, and the rest are healthy 

(https://www.kaggle.com/datasets/sajidsaifi/prostate-

cancer.). Table 2 below presents a smaller subset of these 

samples for closer inspection. Each row concerns a 

particular case and details various measurements related 

to tumors. The table has the following fields: 

1- ID: An identifier that identifies most cases uniquely. 

2- Radius: The size of the radius of the tumor. Typically, 

in millimeters 

3- Texture: A value denoting the roughness or 

smoothness of the tumor. 

4- Perimeter: The parameter of the tumor. 

6- Perimeter: Representing the perimeter of the tumor, 

expressed in square millimeters. 

6- Smoothness: Describing tumor surface smoothness or 

roughness. 

7- Compactness: Similar to the area in a way, except it 

applies to compactness. 

8- Symmetry: This is defined by the degree to which the 

tumor shape is identical. 

9- Fractal Dimension: the complexity of the shape, which 

includes any irregularities of the tumor. 

10- Diagnosis: Final diagnosis, '1' being a malign tumor, 

and '0' a benign one. 
Table 2. Part of the prostate cancer dataset 

id
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er
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sm
o

o
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co
m
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ac

tn
es

s 

sy
m
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et

ry
 

F
ra

ct
al

 

d
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en
si

o
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D
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g
n

o
si

s 

re
su

lt
 

1 23 12 151 954 0.143 0.278 0.242 0.079 0 

2 9 13 133 1326 0.143 0.079 0.181 0.057 1 

3 21 27 130 1203 0.125 0.16 0.207 0.06 0 

4 14 16 78 386 0.07 0.284 0.26 0.097 0 

5 9 19 135 1297 0.141 0.133 0.181 0.059 0 

6 25 25 83 477 0.128 0.17 0.209 0.076 1 

7 16 26 120 1040 0.095 0.109 0.179 0.057 0 

8 15 18 90 578 0.119 0.165 0.22 0.075 0 

9 19 24 88 520 0.127 0.193 0.235 0.074 0 

10 25 11 84 476 0.119 0.24 0.203 0.082 0 

https://www.kaggle.com/datasets/sajidsaifi/prostate-cancer
https://www.kaggle.com/datasets/sajidsaifi/prostate-cancer


 

 

* Note: "1" in Diagnosis result means "Big tumor (i.e., 

cancer)" and "0" means "most common (i.e., healthy)" 

Table 2 illustrates the variability of tumor measures and 

characteristics case by case, with "Diagnosis Result" 

being the final classification based on the malignancy of 

the tumor. 

3.2. Proposed method 

This research is based on a new quantum learning 

approach combining quantum algorithms with machine 

learning systems to establish a compelling computational 

paradigm. Quantum learning exploits these peculiar 

properties of quantum computing, namely, superposition 

and entanglement, which empower it to treat information 

in ways that no classical computer can rival. It provides 

complex data set analysis and fast execution of machine 

learning algorithms at speeds way above the 

conventional methods. Such possible applications of 

quantum learning are immense because it really can 

revolutionize areas like cryptography, pharmaceutical 

research, and optimization by providing both more 

efficient and accurate solutions than those concocted by 

traditional computing techniques [41]. In this regard, the 

Harris Hawk Optimization method has been utilized to 

fine-tune the proposed quantum learning algorithm, 

especially in hyperparameter tuning and optimization of 

the training process for the involved data. The HHO 

represents a gradient-free, population-based optimization 

technique inspired by the natural strategy of Harris 

hawks' hunt. This method can be applied to any 

optimization problem with an appropriate formulation. 

The hunting behavior of the Harris hawk is a prime 

example of nature's ingenuity and adaptability. This bird 

is known for its ability to imitate some hunting actions 

and calls in order to further blend in with an environment. 

This flexibility opens an effective form of hunting, which 

conserves energy for attaining maximum results while 

hunting, yet being less eager while chasing to protect 

from some dangers, which shows a balance of aggression 

and caution [50]. 

The hawks, as predators, determine their fellow 

members' distances and the position of the prey, which is 

the hare. If q < 0.5, the hawks randomly perch on top of 

high trees, as detailed in Equation 1. Otherwise, if q ≥ 

0.5, the Hawks will use another mechanism in search of 

the optimal way of hunting. 

(1) 

𝑋(𝑡 + 1)

= {
𝑋𝑟𝑎𝑏𝑖𝑡(𝑡) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)| 𝑞 ≥ 0.5

(𝑋𝑟𝑎𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)) 𝑞 < 0.5
 

The following will be considered the parameters for the 

model: 

• (X(t+1)): The hawks are located at the following 

location. 

• ( 𝑋𝑟𝑎𝑏𝑖𝑡(𝑡) ): The location of the rabbit at time ( 

t ). 

• (X(t)): The actual location of the hawks at the 

time ( t ). 

• ( 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑞 ): Random numbers between 0 

and 1 are used for random selection. 

• LB and UB: The lower and upper bound for the 

variables. 

• ( 𝑋𝑟𝑎𝑛𝑑 (𝑡)): Hawks were randomly selected 

from the active hawks population. 

• ( 𝑋𝑚 ): Mean of location of active hawks. 

The model is meant to generate random locations over 

the confined area of group space (LB, UB). The first law 

is algebraic and dependent on a random location and 

location of hawks. The best location is searched in the 

second law, so that group is much a source of entropy by 

itself. A parameter (r3) is a scaling factor for enlarging 

randomness and one more (r4) is a proximity factor to 1, 

allowing the production of similar groups. In the case 

above, randomness comes from the randomness in the 

distance of displacement, which is summed up in the 

value of LB. Another factor of randomness is summed 

for being checked to obtain greater diversity in the 

output, that is, to discover other districts of the area. 

Throughout the presentation of the results, it is possible 

to devise various laws by this process. But still, we have 

chosen the most straightforward law that could only drive 

the hawks' behavior according to Eq. (2). 

(2) 𝑋𝑚(𝑡) =
1

𝑁
∑ 𝑋𝑖(𝑡)

𝑁

𝑖=1

 

In this respect, (𝑋𝑖(𝑡)) is the position of each hawk in the 

t-th iteration, and (N) is the overall hawk population. 

Even if the central position of the hawks can be figured 

out by simple techniques, we use the simplest rule 

approach to make the hawks' movements defined in 

Equation (2). 

The optimization algorithm of the Harris hawks is 

designed to transfer the explorative phase to the 

exploitative phase by varying the variance in hunting 

tactics once the prey has escaped. During the escape 

behavior, the energy level of the prey diminishes to an 

extent that is significant enough to be included in the 

model, and the prey energy has been characterized as 

follows [50]: 

(3) 𝐸 = 2𝐸0(1 −
𝑡

𝑇
) 

The parameter (E) indicates the prey's energy level, 

which has just fled. The parameter (T) refers to the 

maximum number of iterations, while (E0) is the initial 

energy level of the prey. When the algorithm is running, 

E0 randomly changes in each iteration. (E0) is always 

between 0 and 1, showing a decrease in the physical 

strength of the prey. When the value of (E0) drops from 

0 to 1, it implies that the hare is physically exhausted. On 

the other hand, when the value of (E0) rises from 0 to 1, 

the hare is physically strengthening[50] 

 

The pseudo-code of the HHO proposed is reported in 

the following algorithm [50] 

1. Algorithm 1 Pseudo-code of HHO algorithm 

2. Inputs: The population size N and maximum 

number of iterations T 



 

 

3. Outputs: The location of rabbit and its fitness 

value 

4. Initialize the random population Xi (i = 1, 2... N) 

5. While (stopping condition is not met) do 

6. Calculate the fitness values of hawks 

7. Set Xrabbit as the location of rabbit (best location) 

8. for (each hawk (Xi)) do 

9. Update the initial energy E0 and jump strength J▷ 

E0=2rand () 1, J=2(1-rand ()) 

10. Update the E using Eq. (3) 

11. if (E1) then ▷ Exploration phase 

12. Update the location vector using Eq. (1) 

13. if (E < 1) then > Exploitation phase 

14. if (r ≥0.5 and E≥ 0.5) then ▷ Soft besiege 

15. Update the location vector  

16. else if (r ≥0.5 and |E| <0.5) then ▷ Hard besiege 

17. Update the location vector  

18. else if (r <0.5 and |E|≥ 0.5) then ▷ Soft besiege 

with progressive rapid dives  

19. Update the location vector  

20. else if (r <0.5 and |E| < 0.5) then ▷ Hard besiege 

with progressive rapid dives 

21. Update the location vector  

22. Return Xrabbit 

 
This flowchart represents a structured process for 

developing and implementing a diagnostic model to 

avoid unnecessary biopsies in clinical practice. It is the 

systematized approach toward improving the diagnosis 

of prostate cancer by using sophisticated algorithms with 

machine learning techniques to decrease unnecessary 

medical procedures and enhance the specificity of 

diagnostic methods. The proposed method is detailed in 

Figure. 2. 

The process begins with reading the dataset, which 

consists of clinical information for PC patients, after 

which data preprocessing is conducted. HHO has been 

used to select the optimal features. In the context of 

HHO, N denotes the number of Hawks, and D is the 

number of dimensions of the optimization problem or 

decision variables. Thus, the HHO is represented by an 

(N*D) matrix where every row represents a possible 

solution to the optimization problem. Herein, N is the 

size of the dataset entries, while D refers to the number 

of features. Their position of Hawks is calculated 

according to Equation 4 as follows: 

𝐻𝑎𝑤𝑘𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  [

𝑥11 𝑥12
⋯ 𝑥12

𝑥22 𝑥22
… 𝑥2𝑑

⋮
𝑥𝑛1

⋮
𝑥𝑛2

⋮ ⋮
… 𝑥𝑛𝑑

]                      

(4) 

In the set𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑), 𝑖 = 1,2, … . , 𝑛,  each 𝑥𝑖  

represents a possible solution in the solution space. The 

fitness of Hawks is computed based on the objective 

function according to Eq. (5): 

𝑓𝑖𝑡𝑖 = 1 − 
𝑂𝑏𝑗𝑖−𝑤𝑜𝑟𝑠𝑡(𝑂𝑏𝑗)

𝑏𝑒𝑠𝑡(𝑂𝑏𝑗)−𝑤𝑜𝑟𝑠𝑡(𝑂𝑏𝑗)
                           (5) 
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Figure 2. The Systematic Path to Improving Prostate Cancer 

Diagnosis Accuracy 

In Eq. (5), 𝑓𝑖𝑡𝑖 is the fitness of the Hawk. The parameter 

𝑂𝑏𝑗𝑖 is the value of the objective function for the i-th 

Hawk. The worst and best parameters are the worst and 

the best position of rabbits. Initiating also, in the 

developed model, for the same reason mentioned above 

in the initialization section, the HHO should be discrete, 

not continuous. The following equation is used to convert 

the numbers into binary, and this equation accepts two 

solutions found by the V-shaped hyperbolic tangent 

function. 

According to the following equation (6), because in the 

proposed method, it has continuous values, then it should 

be converted into binary because it's due to the random 

stepping. 

𝑦𝑘 = |𝑡𝑎𝑛ℎ𝑥𝑘|                                                         (6) 

𝑥𝑖𝑗 = {
0,    𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑦𝑘

1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                         (7) 

The HHO algorithm is applied to select potential feature 

subsets for the best performance in the proposed model. 

The fitness function used in feature selection by HHO is 

formulated according to Equation (8). In this equation, |n| 

is the total features, and |S| is the number of selected 

features. The term 'accuracy parameter' indicates the 

accuracy rate, and the parameters δ and ρ are constants 

and are driven to the values 1 and 99, respectively. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛿. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝜌.
|𝑛|−|𝑆|

|𝑛|
                        (8) 

In the next stage, the QL algorithm is used to classify the 

features. Finally, in the performance analysis of the 

model, in the utilization of the following equations, the 

respective confusion matrix is applied to it: 



 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                   (9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                              (10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                           (11) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                    (12) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)/
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)                                         (13) 

 

4. RESULTS AND DISCUSSION 

4.1. Feature Selection Using Harris Hawks 

Optimization Algorithm 

The first stage utilized an HHO algorithm to select the 

most appropriate features in this dataset. For this purpose, 

80% of the data was used for training, and the rest, 20%, 

for testing. Eight hawks were used with 150 iterations. 

Figure 3 illustrates the steep convergence curve at the 

beginning, thus proving that the algorithm quickly 

converges to a near-optimal solution—a characteristic 

very important in feature selection, as it decreases 

computational time. Then, it levels off at the bottom, thus 

indicating that the algorithm has converted into a local or 

global optimum with no further significant improvement. 

In this respect, smoothness or little bumps on the curve 

reflect a stable optimization process that might improve 

the reliability of the feature selection. 

 
Figure 3. The convergence curve of HHO in feature selection 

4.2. Advanced Prostate Cancer Detection Using 

Harris Hawks Optimization And Quantum Learning 

Techniques 

The HHO algorithm becomes very promising in feature 

selection, particularly within large datasets. The HHO 

selects only the relevant features and increases the 

performance of a machine-learning model by reducing 

noise and increasing generalization. In addition, the fast 

convergence rate of HHO saves computational time, 

becoming vital in applications sensitive to time. This 

algorithm can still improve parameters tuning, such as 

population size and balance between exploration and 

exploitation. Table 3 also presents the results regarding 

mean squared error, number of selected features, and 

total features for feature selection.  In the feature 

selection process, the HHO algorithm succeeded in 

identifying and selecting the top six features, which were 

selected based on their ability to improve classification 

accuracy and reduce overlap (redundancy) between 

features. The algorithm evaluated different feature 

subsets using a fitness function directly related to 

classification performance. The results of this evaluation 

showed that these six selected features have the highest 

discriminatory power for prostate cancer diagnosis. 

Inclusion of this optimal set of features in the diagnostic 

model significantly improved its performance. This is 

due to This was achieved by reducing the noise in the data 

and also reducing the computational complexity of the 

model, while preserving the vital diagnostic information 

necessary to distinguish healthy samples from those with 

prostate cancer. The intelligent selection of these features 

has played a significant role in increasing the efficiency 

and reliability of the proposed model. 

 
Table 3. Result of feature selection 

MSE Error 
No. of features 

selected 

No. of original 

features 

0.05 6 8 

 

Table 3 shows that out of the eight original features, six 

were selected to give the minimum error of MSE, which 

was only 0.05. 

Table 4 encapsulates the original features with the 

selected ones using the HHO algorithm. In the next step, 

the chosen features will act as input to the quantum 

learning model. 
 

Table 4. Original and Selected Features of the Prostate Cancer Dataset 

Orig. id radius texture perimeter area smoothness Compact. Symm. 
Fractal 

dimension 

S. F radius perimeter area Compact. Symm. 
Fractal 

dimension 
- - - 

In this work, the HHO algorithm has been used to adjust 

the hyper-parameters of the quantum learning model. 

While classic computers work with bits that carry either 

0 or 1, Quantum Computation (QC) works with a qubit—

a quantum bit, which may simultaneously involve the 

state of 0 and 1. The fundamental unit of quantum 

information is a qubit, and it exists in a superposition of 

two states: |0> and |1>. The Hilbert space in Quantum 

Computation (QC) provides an abstract vector space 

allowing quantum superposition, whereby the system 

occupies many states simultaneously. 



 

 

Deep learning and quantum computing have developed 

massively in the last few years. An explosion in the 

amount of data has ultimately led to researching the 

confluence of both fields, resulting in the development of 

quantum deep learning and quantum-inspired deep 

learning methodologies. The procedure was as follows: 

❖ A pre-trained network was loaded with all its 

layers frozen to act as a feature extractor, with 

only the weights of the classifier being updated 

while training. 

❖ During network initialization, the size of the 

input vector for Quantum Net was defined, and 

this network was added as the classifier layer to 

the model. 

❖  Cross-entropy was chosen as the loss function, 

the Adam optimizer was placed to update the 

model's weights at each training step, and the 

learning rate scheduler was set to decay the 

learning rate by a gamma factor at each step 

size. 

❖  The model was then trained against this new 

configuration. 

The key parameters of the quantum learning model used 

in this study, including learning rate (0.01), batch size 

(32), and step size (0.1), were selected and tuned based 

on a combination of experimental experiments and a 

careful review of the relevant scientific literature. In the 

initial phase, a grid search approach was used to identify 

the appropriate range for each parameter. Subsequently, 

fine-tuning of these parameters was performed to 

optimize the model performance on the validation set. 

The final parameters selected provided a favorable 

balance between the speed of the model training process 

and the classification accuracy obtained in our 

experiments. Table 5 presents the model quantum 

learning setup hyperparameters used in this work to 

diagnose prostate cancer. Hyperparameters help control 

the model learning process, thus essentially determining 

the general performance of the model. The settings are on 

how often the model shall be trained on the entire dataset, 

the number of samples used per update, how usually the 

learning rate shall be adjusted, and the optimization 

algorithm to be used. These conditions are vital to the 

successful training of the model to diagnose prostate 

cancer correctly. 

 
Table 5. The hyperparameters of the quantum learning model 

Step #Epochs #Batch 

size 

Step 

size 

Initial 

learning 

factor 

The 

solver 

0.4 40 32 15 0.00611 Adam 

 

Prostate cancer was detected satisfactorily using the 

quantum learning model after 800 training iterations. The 

quantum learning model returned an average root mean 

squared error of 0.1321, which is very little average error 

in prediction. The model had an accuracy rate of 97.84%, 

hence correctly classifying almost 98% of the cases as 

either having or not having prostate cancer. Symmetric 

Mean Absolute Percentage Error was measured at 

0.1398. It is a relative measure from a percentage point 

of view regarding how much of the model's predictions 

are from the fundamental values. A lower sMAPE value 

would mean higher predictive accuracy for the model. 

Table 6 shows excellent model performance regarding 

the accuracy, precision, recall, and F1-measure in 

diagnosing prostate cancer. 

 
Table 6. Evaluation of PC diagnosis using the proposed model 

Value (%) Metric 

97.84 Accuracy 

97.59 Precision 

87.50 Specificity 

96.43 Recall 

97.01 F1-measure 

 

4.3. Comparison of the Proposed Method with 

Established Machine Learning Techniques for 

Prostate Cancer Diagnosis 

In order to ensure a fair and comparable evaluation, all 

the comparison models listed in Table 7, including 

Multilayer Perceptron Neural Network (MLP), SVM, 

KNN, DT Decision Tree and NB, were re-implemented 

using the same prostate cancer dataset and consistent pre-

processing techniques. In this regard, the dataset used 

was initially normalized to equalize the scale of the 

variables and avoid their disproportionate impact on the 

performance of the models. In addition, the same feature 

selection method based on the HHO algorithm that was 

used in the development of the proposed HHO-QL model 

was also applied to all the comparison models. This 

uniform approach to feature selection ensures that all 

models are trained with the same optimal set of features 

and their performance is not affected by unnecessary or 

unimportant variables. Thus, the performance 

comparison between the proposed model and existing 

models is made on a level playing field. 

 This study compares the performance of the proposed 

method with several machine learning techniques 

referenced in [30] for the diagnosis of prostate cancer, 

including Multi-Layer Perceptron (MLP), Radial Basis 

Function Neural Network, Decision Tree, Support Vector 

Machine, and K-Nearest Neighbor. Table 7 summarizes 

the accuracy results of these comparisons. 

The table has shown that the Hybrid HHO-QL model has 

achieved an accuracy as high as 97.84%, outperforming 

all other methods tested in this research study, such as 

MLP, RBF, DT, SVM, and KNN. This model also 

outperformed some algorithms cited in reference [30]. 

Among these, the closest accuracy was obtained with 

Alshareef et al.'s approach using CIWO + DL, which had 

an accuracy of 97.19%. This places it as the nearest 

competitor to the Hybrid HHO-QL model. 

 

 

 



 

 

Table 7. Comparison of the accuracy of the different algorithms 

References Accuracy 

(%) 

Algorithm 

Present study 97.84 Hybrid HHO - 

QL 

Present study 91.36 MLP 

Present study 92.08 RBF 

Present study 89.67 DT 

Present study 84.16 SVM 

Present study 85.96 KNN 

Alshareef et al., [49] 94.60 PLR-MC 

Alshareef et al., [49] 91.20 SVM model 

Alshareef et al., [49] 85.71 GA-

KNN+SVM 

Alshareef et al., [49] 96.21 Optimal DNN 

Alshareef et al., [49] 97.19 CIWO1+ DL 

1Chaotic invasive weed optimization 

 

5. CONCLUSION 

In this paper, we have proposed a hybrid model for the 

estimation of prostate cancer using clinical data. We used 

an initial benchmark dataset from Kaggle. We applied the 

HHO algorithm to select the most relevant features 

among the nine initial ones, considering only six as 

significant ones with a minimal error rate of 0.05. These 

selected features were used to train a Quantum Learning 

model for the diagnosis of prostate cancer. The proposed 

approach revealed superior accuracy to other machine 

learning methods, with an accuracy of 97.84%. More 

particularly, the RBF, MLP, DT, KNN, and SVM 

algorithms performed at an accuracy of 92.08%, 91.36%, 

89.67%, 85.96%, and 84.16%, respectively. Notably, the 

hybrid method outperformed the accuracy of 97.17%, 

which the CIWO+DL Hybrid Algorithm achieved; 

therefore, it established the supremacy of our approach. 
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