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In this study, the cyclic natural convection problem in a square enclosure is modeled 
using the Lattice Boltzmann Method (LBM) under laminar flow conditions. Four 
different combinations of boundary conditions are employed to create cases. These 
cases are denoted as HHHC (Horizontal Hot Horizontal Cold), HHVC (Horizontal 
Hot Vertical Cold), VHHC (Vertical Hot Horizontal Cold), and VHVC (Vertical Hot 
Vertical Cold). Four Rayleigh numbers have been utilized to represent laminar flow 
conditions, namely 𝑅𝑅𝑅𝑅=104, 105, 106, and 107. For validation purposes, the well-
validated finite volume method-based commercial code Ansys-Fluent is employed. 
In the VHVC model and at the highest Rayleigh number, the results obtained with 
LBM were compared to and validated against the results obtained with the finite 
volume method. Nusselt numbers are compared for the four cases based on Rayleigh 
numbers, and the case with highest heat transfer identified. Cases of HHHC and 
VHVC have produced the lowest and highest Nusselt number, respectively. 

 
1. Introduction 
 
Numerical modeling of natural convection heat 
transfer for an enclosure has garnered significant 
attention. This modeling finds applications in 
various engineering fields such as building 
insulation, fire prevention systems, solar 
collectors, food preservation systems, compact 
heat exchangers, and cooling systems employed 
in electricity or nuclear power generation plants, 
among others [1, 2]. Our problem consists of 
three main subjects. Firstly, natural convection in 
a square enclosure; secondly, the Lattice 
Boltzmann Method; and finally, natural 
convection in a square enclosure with Lattice 
Boltzmann modeling; therefore, the literature 
review is divided into three parts. 
 
Lage and Bejan [3] explored the numerical and 
theoretical aspects of natural convection 
resonance within an enclosure subjected to 

periodic heating from the side. One side was cold 
(constant temperature), the other side was heated 
with pulsating heat flux in a two-dimensional 
square enclosure. In the numerical computations, 
Prandtl number varied between 0.01 and 0.7, the 
heat flux Rayleigh number range was 103-109, 
and nondimensional frequency range of 0-0.3 
was applied. Theoretical considerations revealed 
that the numerically determined critical 
frequencies could be predicted by aligning the 
period of the pulsating heat input with the 
rotation period of the enclosed fluid. Mahdavi et 
al. conducted both experimental and numerical 
studies to investigate the thermal and 
hydrodynamic characteristics of laminar natural 
convective flow within a rectangular cavity filled 
with water and air [4].  
 
The enclosure has a unique aspect ratio. Two 
vertical walls were applied to constant 
temperature boundary conditions with one wall 
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being hot, the other cold. All other walls were 
properly insulated. The finite volume-based 
commercial code Ansys-Fluent was used for 
numerical investigations. The numerical results 
were in good agreement with measured data. The 
distortion of air is much higher than water. 
Ugurbilek et al. conducted a numerical 
investigation of three-dimensional natural 
convection in an air-filled cubical enclosure with 
gradually changing partitions [5]. The steady-
state governing equations were resolved using 
the Boussinesq approximation and the finite 
volume method. Two scenarios were examined: 
one with partitions positioned perpendicularly 
(Case-1) and another with partitions positioned 
parallel (Case-2).  
 
The opposing lateral walls of the enclosure were 
subjected to heating and cooling, while the 
remaining walls were considered adiabatic. 
Case-2 played major roles for convective heat 
transfer. Pesso and Piva investigated steady free 
convection at low Prandtl numbers numerically, 
which was caused by large density differences in 
a square cavity [6]. The Nusselt number was 
derived at Rayleigh numbers ranges of 10 and 
108, Prandtl number ranges of 0.0071 and 7.1, 
and Gay-Lussac number ranges of 0 and 2. 
Consequently, a Nusselt number correlation was 
proposed based on physical arguments. 
Numerical analysis of the natural convection 
phenomenon resulting from nonuniform wall 
heating in a square cavity was investigated at 
laminar Rayleigh numbers by Turkyilmazoglu 
[7]. A finite element technique was employed for 
the numerical simulation of thermally driven 
flow.  
 
The best heat transfer rate was acquired as the 
heating took place near the top wall of the heated 
boundary. Turkyilmazoglu investigated a 
different type of lid-driven cavity flow in which 
the single lid is separated into two joint 
active/passive walls representing potential 
stirrers during a chemical mixing process [8]. 
The right portion of the wall is allowed to move 
freely to the right at a uniform velocity, while the 
left portion, attached to the adjacent wall at a 
point of dislocation, is regarded as stationary or 
able to move freely at a constant speed. A finite 
element approach was used to solve numerically. 
 

The Lattice Boltzmann Method (LBM) offers an 
innovative numerical strategy for modeling 
viscous, incompressible flows within the 
subsonic range [9-14]. Instead of directly 
addressing the traditional continuum 
hydrodynamic equations, LBM aims to replicate 
fluid flow by monitoring the evolution of 
distribution functions of microscopic fluid 
particles. This kinetic characteristic of LBM 
introduces unique attributes that distinguish it 
from other numerical methods, including 
simplified modeling of fluid interactions and 
complete parallelism. In the last twenty years, 
LBM has garnered significant attention and 
interest, witnessed rapid progress in developing 
novel models and applications across diverse 
fields [9-11]. Although LBM has proven 
successful in simulating isothermal flow 
problems, its application in heat transfer systems 
has encountered challenges, primarily due to 
severe numerical instability in thermal models. 
 
Karki et al. studied natural convection cavity 
numerically with different aspect ratios and using 
the lattice Boltzmann method [15]. The right side 
and left side walls were hot and cold, 
respectively, the other sides were adiabatic. 
Prandtl number kept constant at 0.71 and 
Rayleigh numbers varied between 103 and 106. 
The Nusselt number, streamlines and isotherms 
were observed to understand the physics of the 
problem. It was found that Nusselt number 
increases with Rayleigh number, and high aspect 
ratios have a negative effect on Nusselt number. 
Feng et al. introduced a novel thermal lattice 
Boltzmann (LB) model designed for numerically 
simulating natural convection under conditions 
characterized by significant temperature 
disparities and elevated Rayleigh numbers [16].  
 
A regularization method was devised for the 
lattice Boltzmann equation, incorporating a 
third-order expansion of equilibrium distribution 
functions and introducing a temperature term to 
restore the equation of state for an ideal gas. Wei 
et al. developed a novel two-dimensional coupled 
lattice Boltzmann model via modified thermal 
equilibrium function for thermal incompressible 
fluid flows [17].  
This novel numerical model gave more stability 
than standard lattice Boltzmann method. Present 
model was successfully assessed in free 
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convection cavity problem at laminar flow. 
Lattice Boltzmann analysis on natural convection 
heat transfer and fluid flow in a two-dimensional 
square enclosure with sinusoidal wave and 
different convection mechanism was 
investigated by Pichandi and Anbalagan [18].  
 
In LBM analysis, single relaxation time (SRT) 
and D2Q9 lattice links was used. The working 
fluid was air (𝑃𝑃𝑃𝑃=0.71). Nusselt number, 
isotherms and streamlines were observed to 
comprehend the physics of the problem. In recent 
years, the use of machine learning in natural 
convection problems within enclosed domain 
using LBM has been present [19]. Additionally, 
GPU parallel computing approaches [20] have 
also been employed for such problems 
 
This study employs the Lattice Boltzmann 
Method (LBM) to model the cyclic natural 
convection problem within a square enclosure 
under laminar flow conditions. Four distinct 
combinations of boundary conditions, which are 
Horizontal Hot Horizontal Cold (HHHC), 
Horizontal Hot Vertical Cold (HHVC), Vertical 
Hot Horizontal Cold (VHHC) and Vertical Hot 
Vertical Cold (VHVC), are utilized to establish 
different cases. These cases are assessed with 
four Rayleigh numbers (Ra=104, 105, 106, and 
107) representing laminar flow conditions. 
Investigating natural convection heat transfer 
with four different Rayleigh numbers in laminar 
flow under four different boundary condition 
combinations and writing an in-house LBM code 
constitutes the originality of this study.  
 
In order to validate our code and results, the well-
validated finite volume method-based 
commercial code, Ansys-Fluent, is employed 
[21]. In the VHVC model, particularly, at the 
highest Rayleigh number, LBM results are 
compared and validated against those obtained 
using the finite volume method. Nusselt numbers 
are then compared across the four cases based on 
their respective Rayleigh numbers, enabling the 
identification of cases exhibiting the highest heat 
transfer. 
 
1.1. Problem definition 
 
Figure 1 shows the physical model of the present 
study. A two-dimensional natural convection 

within a square enclosure filled with air 
(𝑃𝑃𝑃𝑃=0.71). Length and width of the domain are 
same. Four different Rayleigh numbers which 
includes laminar flow conditions have been 
considered, and these values are 𝑅𝑅𝑅𝑅=104, 105, 106 
and 107. Rayleigh number is based on length of 
domain. Gravitational acceleration (𝑔𝑔) is 
imposed in negative y direction. 
 

 
Figure 1. Physical model 

 
In Table 1, four different cases with thermal 
boundary conditions are represented. The 
nondimensional temperature 𝜃𝜃 can range 
between zero and one, where 𝜃𝜃 equals 0 
representing cold, and 𝜃𝜃 equals 1 representing 
hot. The first case is named HHHC, where the top 
wall and bottom wall are cold and hot, 
respectively, and the other walls are adiabatic 
(𝑞𝑞" = 0). The second case, HHVC, features a hot 
bottom wall and a cold left wall, with the other 
walls being adiabatic. In the third case, VHHC, 
the top wall and left walls are cold and hot, 
respectively, while the other walls remain 
adiabatic. Finally, the last case is VHVC, where 
the left wall is cold, the right wall is hot, and the 
other walls are adiabatic. All walls are stationary, 
and no-slip boundary conditions are applied for 
the momentum equation. 
 

Table 1. Thermal boundary conditions 
Model top bottom left right 
HHHC 𝜃𝜃 = 0 𝜃𝜃 = 1 𝑞𝑞" = 0 𝑞𝑞" = 0 
HHVC 𝑞𝑞" = 0 𝜃𝜃 = 1 𝜃𝜃 = 0 𝑞𝑞" = 0 
VHHC 𝜃𝜃 = 0 𝑞𝑞" = 0 𝜃𝜃 = 1 𝑞𝑞" = 0 
VHVC 𝑞𝑞" = 0 𝑞𝑞" = 0 𝜃𝜃 = 0 𝜃𝜃 = 1 

 
1.2. LBM formulation 
 
The LBM formulations most commonly utilizes 
rely on the single relaxation time approximation 
by Bhatnagar-Groos-Krook (BGK) [22]. In the 
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present work, incompressible LBM formulation 
is adopted [23]. The two-dimensional and nine-
velocity lattice model (D2Q9) shown in Figure 2 
is used.  
 
Based on current modeling, two distinct 
distribution functions are employed—one for 
density (momentum) and another for temperature 

 

 
Figure 2. D2Q9 lattice model  

 
(energy). The lattice Boltzmann evaluation 
equations for momentum and energy transport, 
discretized on a lattice, are typically addressed in 
two sequential steps: first, the "collision" step, 
followed by the subsequent "streaming" step. 
 
 Collision 

 
𝑓𝑓𝑘𝑘(𝑥⃗𝑥, 𝑡𝑡 + 𝛿𝛿𝛿𝛿) = 𝑓𝑓𝑘𝑘(𝑥⃗𝑥, 𝑡𝑡) −𝜔𝜔�𝑓𝑓𝑘𝑘(𝑥⃗𝑥, 𝑡𝑡) −
𝑓𝑓𝑘𝑘
𝑒𝑒𝑒𝑒(𝑥⃗𝑥, 𝑡𝑡)� + 𝐹𝐹𝐹𝐹𝐹𝐹                (1a) 

 
𝑔𝑔�𝑘𝑘(𝑥⃗𝑥, 𝑡𝑡 + 𝛿𝛿𝛿𝛿) = 𝑔𝑔𝑘𝑘(𝑥⃗𝑥, 𝑡𝑡) − 𝜔𝜔𝑇𝑇�𝑔𝑔𝑘𝑘(𝑥⃗𝑥, 𝑡𝑡) −
𝑔𝑔𝑘𝑘
𝑒𝑒𝑒𝑒(𝑥⃗𝑥, 𝑡𝑡)�                                                                         (1b) 

  
 Streaming 

 
𝑓𝑓𝑘𝑘(𝑥⃗𝑥 + 𝑐𝑐𝑘𝑘𝛿𝛿𝛿𝛿, 𝑡𝑡 + 𝛿𝛿𝛿𝛿) = 𝑓𝑓𝑘𝑘(𝑥⃗𝑥, 𝑡𝑡 + 𝛿𝛿𝛿𝛿)                (2a) 
 
𝑔𝑔𝑘𝑘(𝑥⃗𝑥 + 𝑐𝑐𝑘𝑘𝛿𝛿𝛿𝛿, 𝑡𝑡 + 𝛿𝛿𝛿𝛿) = 𝑔𝑔�𝑘𝑘(𝑥⃗𝑥, 𝑡𝑡 + 𝛿𝛿𝛿𝛿)              (2b) 

 
For natural convetion, external force (𝐹𝐹) is 
defined via Boussinesq approximation.  It is only 
applied in negative y direction due to gravitional 
accelaration.  
 
𝐹𝐹 = 𝜌𝜌𝜌𝜌𝜌𝜌[𝑇𝑇 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]                           (3) 

 
where 𝜌𝜌 and 𝛽𝛽 are density and thermal expansion 
cofficient, respectively. 𝑇𝑇 represents the local air 
temperature at square domain, while 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
indicates the mean temperature of air.  The 

collision frequencies are defined for momentum 
and energy equations as follows; 
 

𝜔𝜔 = 1 �� 𝜈𝜈
𝑐𝑐𝑠𝑠2
𝛿𝛿𝛿𝛿� + 0.5��                          (4a) 

𝜔𝜔𝑇𝑇 = 1 ��𝛼𝛼
𝑐𝑐𝑠𝑠2
𝛿𝛿𝛿𝛿� + 0.5��               (4b) 

 
Here, 𝜈𝜈 and 𝛼𝛼 represents the kinematic viscosity 
and thermal diffusivity. And the lattice sound of 
speed 𝑐𝑐𝑠𝑠 and lattice speed 𝑐𝑐 are defined as: 
 
𝑐𝑐𝑠𝑠 = 𝑐𝑐 √3⁄                    (5) 
 
𝑐𝑐 = 𝛿𝛿 𝛿𝛿𝛿𝛿⁄                   (6) 
 
The nine discrete velocities based on D2Q9 
lattice model are: 
 
𝑐𝑐𝑘𝑘 = 𝑐𝑐 �0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1�     
                           (17) 
 
The equilibrium distribution functions are for 
momentum and energy equations: 

 
𝑓𝑓𝑘𝑘
𝑒𝑒𝑒𝑒 = 𝑤𝑤𝑘𝑘𝜌𝜌 �1 + 3

𝑐𝑐2
𝑐𝑐𝑘𝑘𝑢𝑢�⃗ + 9

2𝑐𝑐4
(𝑐𝑐𝑘𝑘𝑢𝑢�⃗ )2 − 3

2𝑐𝑐2
𝑢𝑢�⃗ 𝑢𝑢�⃗ �   (8a) 

 
𝑔𝑔𝑘𝑘
𝑒𝑒𝑒𝑒 = 𝑤𝑤𝑘𝑘𝑇𝑇 �1 + 3

𝑐𝑐2
𝑐𝑐𝑘𝑘𝑢𝑢�⃗ �                         (8b) 

 
with weighting foctors of D2Q9 lattice. 
 
𝑤𝑤𝑘𝑘 = �4

9
1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36
�    (9) 

 
The macroscopic (density, pressure, velocity and 
temperature) fields are obtained from: 
 
𝜌𝜌 = ∑ 𝑓𝑓𝑘𝑘 =8

𝑘𝑘=0 ∑ 𝑓𝑓𝑘𝑘
𝑒𝑒𝑒𝑒8

𝑘𝑘=0             (10a) 
 
𝑝𝑝 = 𝜌𝜌𝑐𝑐𝑠𝑠2                                              (10b) 
 
𝑢𝑢�⃗ = 1

𝜌𝜌
∑ 𝑐𝑐𝑘𝑘𝑓𝑓𝑘𝑘 =8
𝑘𝑘=0

1
𝜌𝜌
∑ 𝑐𝑐𝑘𝑘𝑓𝑓𝑘𝑘

𝑒𝑒𝑒𝑒8
𝑘𝑘=0            (10c) 

 
𝑇𝑇 = ∑ 𝑔𝑔𝑘𝑘 =8

𝑘𝑘=0 ∑ 𝑔𝑔𝑘𝑘
𝑒𝑒𝑒𝑒8

𝑘𝑘=0             (10d) 
 
The time step size (δt) is same with lattice length 
(δ), therefore, lattice speed (Eq. 6) is taken as an 
unity. Lattice sound speed (Eq. 5) is  1 √3⁄  
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Detailed presentation of boundary condition 
implementations is omitted here for conciseness; 
however, it is available in A.A. Mohammad's 
work [21]. In LBM, boundary conditions can be 
implemented via distribution functions for the 
momentum and the energy equations. Owing to 
the streaming step of the LBM, there are 
unknown and known distribution functions, and 
unknown distribution functions are established 
using known distribution functions to apply all 
boundary conditions. In the momentum 
equations, no-slip boundary conditions are 
enforced at walls using the bounce-back rule, 
with the physical boundaries of the solution 
domain aligned with lattice grid lines. For the 
energy equation, constant temperature and zero 
heat flux boundary conditions are applied 
according to the determined four cases (Table 1). 
The LBM formulations described above are 
implemented in-house LBM code via 
FORTRAN programming. 
 
1.3. Validation 
 
To validate our LBM code, we extensively 
employ the validated finite-volume-based 
commercial CFD code Ansys-Fluent [19]. The 
Boussinesq approximation is utilized in the 
reference calculation, similar to LBM. The 
QUICK scheme is employed to discretize all 
convective terms. For pressure-velocity 
coupling, the SIMPLEC algorithm is utilized. 
The default under-relaxation parameters are set 
at 1.0 for pressure, 0.7 for momentum, and 1.0 
for energy, respectively. Convergence criteria 
include a threshold of 10-6 for continuity, x-
velocity, and y-velocity. In the case of the energy 
equation, a residual value of 10-8 is employed. 
 
Validation is employed for the case of VHVC at 
the highest Rayleigh number (𝑅𝑅𝑅𝑅=107). The 
same mesh numbers (200 lattices/finite volumes 
in the x-direction and 200 lattices/finite volumes 
in the y-direction) are used; therefore, a total of 
40000 lattices/finite volumes are used for 
validation. These mesh numbers support the 
stability of LBM. Since the used lattice numbers 
are suitable for LBM stability, a grid 
independence study is not conducted.  The 
dimensionless temperature gradient distribution, 
Nusselt number, along the hot and cold walls is 
calculated using the numerical grid adjacent to 

the wall for LBM and FVM. Then, the Nusselt 
number for each wall is determined by 
integrating the Nusselt numbers over the wall and 
dividing by the wall length. Table 2 represents 
the Nusselt number comparison for the case of 
VHVC at 𝑅𝑅𝑅𝑅=107. The Nusselt number is 
computed for both the cold and hot walls. The 
differences between LBM and FVM are 0.64% 
and 0.72% for the cold wall and hot wall, 
respectively. These difference values are 
acceptable; therefore, we validate our LBM code. 
 

Table 2. Nusselt number comparison for VHVC 
at 𝑅𝑅𝑅𝑅=107 

𝑁𝑁𝑁𝑁 LBM FVM Difference 
(%) 

Cold 
wall 17.8587 17.7434 0.64 

Hot wall 18.0579 17.7345 2.40 
 
2. Conclusions and Discussion 

 
Figure 3 shows the nondimensional streamlines 
at the highest Rayleigh number (𝑅𝑅𝑅𝑅=107). A total  
 

  
HHHC HHVC 

  
VHHC VHVC 

Figure 3. Nondimensional streamlines for four 
cases at 𝑅𝑅𝑅𝑅=107  

 
of 51 streamlines are used in the all cases for 
better comparison, therefore step size between 
streamlines is 0.01960. In the symmetric cases, 
such as HHHC and VHVC, the streamlines 
exhibit greater symmetry. At lower Rayleigh 
number, which are not shown here, the degree of 
symmetry becomes even more evident. In 
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HHHC, the streamlines are less dense near the 
wall, whereas in the other cases, the streamlines 
near the wall are denser. Streamlines on heated 
and cooled surfaces exhibit higher density 
compared to adiabatic surfaces.  
 

  
HHHC HHVC 

  
VHHC VHVC 

Figure 4. Isotherm for four cases at 𝑅𝑅𝑅𝑅=107 

 
Isotherms are represented at the highest Rayleigh 
number (𝑅𝑅𝑅𝑅=107) in Figure 4. Here, again a total 
51 isotherms are used in the all cases for better 
comparison. The step size between isotherms is 
0.01960. Streamlines characteristics effect the 
isotherms, therefore the same comments can be 
done for isotherms. In the symmetry cases, like 
HHHC and VHVC, the isotherms display greater 
symmetry. As we move to lower Rayleigh 
numbers, although not depicted here, the level of 
symmetry becomes even more pronounced. In 
the case of HHHC, the streamlines are less 
concentrated near the walls, whereas in other 
cases, the isotherms near the wall become denser. 
Isotherms on heated and cooled surfaces 
demonstrate a higher concentration when 
compared to adiabatic surfaces. Cases 
characterized by dense isothermals at the walls 
produce higher Nusselt numbers. Consequently, 
at Ra=107, VHVC yields the highest Nusselt 
number. Subsequently, cases of VHVC and 
HHHC produces equivalet Nusselt numbers. On 
the other hand, HHHC produces lowest Nusselt 
number. 
 
Figure 5 exhibits the Nusselt number variation 
with Rayleigh numbers for (a) cold wall and (b) 

 
cold wall 

 

 
hot wall 

Figure 5. Nusselt number variation with 
Rayleigh numbers for (a) cold wall and (b) hot 

wall 
 

 hot wall. The Rayleigh number is presented in 
Figure 5 on a logarithmic scale. Nusselt number 
increases with Rayleigh numbers as expected. At 
Ra=107, the Nusselt number interpretations 
based on isotherms contours align with Figure 5. 
In most cases, both cold and hot wall generally 
produced nearly equal Nusselt numbers, with 
exception occurring in nonsymmetric cases 
(HHVC and VHHC) for Rayleigh numbers of 
104, 105 and 106. At lowest Rayleigh number, 
HHHC and VHVC yields lowest Nusselt 
number. At the VHVC case, the Nusselt number 
increases rapidly with Rayleigh numbers, 
reaching its peak at the highest Rayleigh number. 
 
Flow and heat characteristics are examined under 
four different cases and in laminar natural 
convection. The LBM requires more lattices due 
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to stability issues at higher Rayleigh or Reynolds 
number. This is a limitation of the LBM. This 
study will involve turbulent flows, meaning it 
will work at higher Rayleigh numbers. For this 
purpose, turbulence model will be added or 
implemented to our in-house code. 
dips 
3. Conclusion 

 
In this paper, the lattice Boltzmann method 
(LBM) is utilized to model the cyclic natural 
convection phenomenon inside a square 
enclosure under laminar flow conditions. 
Various combinations of boundary conditions are 
applied to create different cases which are 
HHHC, HHVC, VHHC and VHVC. These cases 
are evaluated using four Rayleigh numbers 
(𝑅𝑅𝑅𝑅=104, 105, 106, and 107) to represent laminar 
flow conditions. In order to validate the results, 
the well-validated finite volume method-based 
commercial code, Ansys-Fluent, is employed 
[19]. Streamlines, isotherms and variation of 
Nusselt number with Rayleigh numbers are 
examined. The following conclusions can be 
obtained as below: 
 

• Nusselt number increases with Rayleigh 
numbers. 

• The characteristics of streamlines 
characteristics effect the isotherms, and 
since the isotherms are produced from 
nondimensional temperature contours, 
observations about the Nusselt number 
can be made by examining the isotherms. 

• The case of HHHC has produces the 
lowest Nusselt number compared to the 
other cases. 

• Symmetric cases (HHHC, VHVC) 
produce symmetric streamlines and 
isotherms, with the same manner, 
asymmetric cases (HHVC, VHHC) 
generate asymmetric streamlined and 
isotherms.    

• At high Rayleigh numbers, the Nusselt 
numbers formed by the VHVC case are 
high, while at low Rayleigh numbers, the 
Nusselt numbers are low.  

• Generally, asymmetric cases (HHVC, 
VHHC) produce same Nusselt numbers. 

• The Nusselt numbers calculated from the 
cold wall and the hot wall are very close 

to each other especially at symmetry 
cases. 
 

 Nomenclature 
𝑐𝑐 lattice speed, [ms-1] 
𝑐𝑐𝑘𝑘 discrete lattice velocity set, [ms-1] 
𝑐𝑐𝑠𝑠 lattice speed of sound, [ms-1] 
𝑐𝑐𝑝𝑝 isobaric spesicif heat, [Jkg-1K-1]  
𝐹𝐹 External force (=𝜌𝜌𝜌𝜌𝜌𝜌[𝑇𝑇 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]) 
𝑓𝑓𝑘𝑘 discrete density distribution function, 

[kgm-3] 
𝑔𝑔 gravitational acceleration, [ms-2]  
𝑔𝑔𝑘𝑘 discrete temperature distribution function, 

[K] 
ℎ Convective heat transfer coefficient, [K] 
𝑘𝑘 Thermal conductivity, [Wm-1K-1] 
L length of domain, [m] 
Nu Nusselt number (=ℎ𝐿𝐿 𝑘𝑘⁄ ) 
p Pressure, [Pa] 
Pr Prandtl number (=𝜇𝜇𝑐𝑐𝑝𝑝 𝑘𝑘⁄ ) 
Ra Rayleigh number (=𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐿𝐿3 𝜈𝜈𝛼𝛼⁄ ) 
𝑞𝑞" heat flux, [Wm-2] 
𝑇𝑇 temperature, [K] 
𝑡𝑡 time, [s] 
𝑢𝑢�⃗  velocity vector 
𝑊𝑊 width of domain, [m] 
𝑤𝑤𝑘𝑘 weighting factors 
𝑥⃗𝑥 position vector 
𝑥𝑥,𝑦𝑦 2D Cartesian coordinates 
 Greek Symbol 
𝛼𝛼 thermal diffusivity, [m2s-1] 
𝛽𝛽 thermal expansion coefficient, [K-1] 
∆𝑇𝑇 temperature differences between hot and  

cold walls, [K] 
𝛿𝛿 lattice unit (distance between to 

neighboring 
lattice nodes), [m] 

𝛿𝛿𝑡𝑡 time step, [s] 
𝜃𝜃 Nondimensonal temperature               

=(𝑇𝑇 − 𝑇𝑇𝐹𝐹 𝑇𝑇𝑊𝑊 − 𝑇𝑇𝐹𝐹⁄ ) 
𝜇𝜇 dynamic viscosity, [kgms-1] 
𝜈𝜈 kinematic viscosity, [m2s-1] 
𝜌𝜌 density, [kgm-3] 
𝜔𝜔 Collision for momentum transfer [s-1]  
𝜔𝜔𝑇𝑇 Collision for energy transfer [s-1]  
 Acronyms 
HHHC Horizontal hot horizontal cold 
HHVC Horizontal hot vertical cold 
VHHC Vertical hot horizontal cold 
VHVC Vertical hot vertical cold 
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