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 The increasing complexity of urban traffic networks in metropolitan areas demands innovative 

solutions for efficient traffic management. Greenwave synchronization, which aims to 

optimize traffic signal coordination to reduce stops and delays, has shown promise in 

improving traffic flow and reducing environmental impacts. However, existing solutions often 

fail to scale effectively in dense and large-scale networks. This paper proposes a scalable Deep 

Reinforcement Learning (DRL) framework designed to synchronize traffic signals across 

extensive urban traffic networks. By leveraging multi-agent DRL architectures and advanced 

spatio-temporal data integration, the system adapts dynamically to fluctuating traffic 

conditions while maintaining computational efficiency. The proposed framework 

demonstrates its scalability by managing thousands of intersections, achieving significant 

reductions in travel times, vehicle stops, and emissions. This study provides a foundation for 

implementing scalable greenwave synchronization systems, addressing the challenges posed 

by dense urban traffic and paving the way for sustainable metropolitan mobility. 
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1. INTRODUCTION 

 
raffic signal synchronization has been a fundamental 

aspect of urban traffic management since the mid-20th 

century. Early systems relied on pre-timed 

synchronization, where signals were programmed to follow a 

fixed schedule. These schedules were based on historical 

traffic patterns and worked well for predictable traffic 

volumes. However, as urban areas grew and traffic patterns 

became more variable, fixed-timing systems showed 

significant inefficiencies, leading to increased delays, 

congestion, and fuel consumption. The advent of actuated 

signal control in the 1970s introduced more flexibility by 

using sensors to detect traffic volumes and adjust signal 

timings dynamically. Yet, these systems were limited to 

individual intersections or small networks, failing to optimize 

traffic flow on a larger scale [1]. The need for broader 

coordination led to the development of centralized systems 

like SCATS and SCOOT, which managed traffic signals 

across entire cities. While effective in their time, these 

systems faced scalability issues and struggled with real-time 

adaptability in the face of increasingly complex traffic 

networks [2]. 

Greenwave synchronization, a specialized form of traffic 

signal coordination, aims to create a series of green lights 

along a corridor to minimize vehicle stops and delays. 

Traditional methods typically rely on static timing plans, 

where signals are pre-synchronized for optimal speeds based 

on historical data. For example, a corridor might be 

configured to allow vehicles traveling at 40 km/h to encounter 

consecutive green lights. However, static greenwave systems 

are inherently inflexible and fail to account for real-time 

changes in traffic conditions, such as fluctuations during peak 

hours or unexpected disruptions. Moreover, their 

effectiveness diminishes in large and complex urban networks 

due to variations in traffic flow and intersection geometry 

[3].While adaptive traffic control systems have introduced 

some level of dynamism, they often lack the computational 

power and scalability to maintain greenwave synchronization 

across extensive networks, particularly in metropolitan areas. 

Importance of Traffic Flow Optimization for Urban Mobility 
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Efficient traffic flow is critical for urban mobility, particularly 

in densely populated metropolitan areas. Traffic congestion 

not only increases travel times but also contributes to higher 

fuel consumption, greenhouse gas emissions, and economic 

losses. A study by the Texas A&M Transportation Institute 

estimated that urban congestion in the United States alone 

results in an annual cost of $166 billion due to wasted time 

and fuel [4]. Traffic signal synchronization, especially 

greenwave techniques, plays a pivotal role in mitigating these 

challenges by enabling smoother traffic flow, reducing stop-

and-go driving, and improving fuel efficiency. Beyond direct 

benefits to vehicles, optimized traffic flow also enhances 

pedestrian and cyclist safety by reducing the likelihood of 

intersection-related conflicts. As cities continue to grow, the 

demand for intelligent and scalable traffic management 

solutions that can adapt to dynamic urban environments 

becomes increasingly urgent. 

Greenwave synchronization systems face significant 

computational challenges when applied to large-scale urban 

traffic networks. Traditional methods rely on centralized 

systems that require extensive data collection and processing 

from multiple intersections. As the number of intersections 

increases, the computational load grows exponentially, 

creating bottlenecks that hinder real-time decision-making 

[2]. Additionally, optimizing traffic flow across numerous 

interconnected intersections necessitates solving large-scale 

optimization problems, which often exceed the capabilities of 

conventional algorithms. For instance, linear programming 

and heuristic methods, commonly used in traffic management, 

struggle to accommodate the high-dimensional and dynamic 

nature of urban networks [3]. These computational constraints 

make it challenging to maintain synchronization in rapidly 

changing traffic conditions, such as peak-hour surges or 

incident-induced disruptions, leading to suboptimal 

performance and increased congestion. 

Traditional greenwave synchronization techniques are 

inherently limited in their ability to adapt to real-time 

variability in traffic conditions. Static systems, which rely on 

pre-defined timing plans, are designed based on historical 

traffic data and assume predictable patterns. However, urban 

traffic is highly dynamic, influenced by factors such as 

weather, road incidents, and special events, which can cause 

sudden fluctuations in vehicle flow [2]. Even adaptive 

systems, such as SCATS and SCOOT, face limitations in their 

responsiveness, as they often rely on predefined thresholds 

and rule-based adjustments that fail to capture complex 

interactions between intersections [2]. This lack of 

adaptability results in inefficiencies, including increased stop-

and-go driving, higher fuel consumption, and longer travel 

times. Furthermore, these systems are not designed to 

integrate seamlessly with emerging technologies such as V2I 

communication or real-time data analytics, which are crucial 

for addressing modern urban traffic challenges [5]. 

The primary objective of this research is to develop a scalable, 

decentralized DRL-based framework for greenwave 

synchronization in large and complex urban traffic networks. 

Unlike traditional centralized systems, which suffer from 

computational bottlenecks and single points of failure, the 

proposed framework distributes decision-making across 

multiple autonomous agents. Each intersection is equipped 

with a DRL agent capable of optimizing its traffic signals 

while coordinating with neighboring intersections. This 

decentralized approach reduces computational overhead and 

enhances scalability, allowing the framework to efficiently 

manage thousands of intersections simultaneously [6]. By 

leveraging multi-agent DRL, the framework ensures that 

intersections learn to collaborate and align their decisions to 

create seamless greenwaves, even in dynamic and 

unpredictable traffic conditions. The novelty of this approach 

lies in its ability to balance localized decision-making with 

network-wide optimization, providing a robust solution for 

metropolitan traffic challenges [7]. 

A key contribution of this study is the integration of spatio-

temporal data fusion and reward engineering to enhance the 

performance of greenwave synchronization systems. Spatio-

temporal data fusion allows the DRL agents to consider both 

spatial dependencies—such as interactions between 

neighboring intersections—and temporal patterns, including 

peak traffic hours and recurring congestion [8]. This holistic 

understanding of traffic dynamics enables agents to make 

more informed decisions, improving the overall efficiency of 

the system. Additionally, the proposed framework 

incorporates a multi-objective reward function that optimizes 

not only traffic flow but also environmental and equity-related 

metrics, such as emission reductions and equitable access for 

pedestrians and cyclists [9]. The combination of advanced 

data integration and reward engineering ensures that the 

framework addresses both short-term performance and long-

term sustainability goals, setting it apart from existing 

approaches. 

The proposed framework is rigorously evaluated through 

extensive simulations in realistic urban traffic environments. 

These simulations demonstrate significant improvements in 

critical metrics, including a 25% reduction in vehicle stops, a 

20% decrease in average travel times, and a 30% decline in 

fuel consumption and emissions [10]. Furthermore, the 

framework's scalability is validated by its ability to efficiently 

manage traffic across thousands of intersections without 

compromising computational performance. These results 

highlight the transformative potential of the proposed DRL-

based greenwave synchronization system in reshaping urban 

traffic management. By addressing the limitations of 

traditional methods, this study contributes to the advancement 

of intelligent transportation systems and provides actionable 

insights for policymakers and urban planners seeking 

sustainable traffic solutions [11]. 

The methodology section outlines the development and 

implementation of the proposed scalable DRL-based 

greenwave synchronization framework. This begins with a 

detailed description of the system architecture, including the 

design of multi-agent DRL models where each traffic 

intersection operates as an autonomous agent. The section 

then elaborates on the integration of spatio-temporal data 

fusion to capture dynamic interdependencies between 

intersections and reward engineering techniques to optimize 

traffic flow, emissions, and equitable access. Furthermore, the 

simulation environment is explained, detailing the tools (e.g., 

SUMO, CityFlow) and configurations used to model realistic 

urban traffic scenarios. This section also discusses the 

evaluation metrics, such as vehicle stops, travel times, and 

emissions, that are used to measure the system's performance. 

By presenting a comprehensive and systematic approach, the 

methodology serves as the foundation for replicating and 

validating the study’s findings [7,8].  

The experimental setup focuses on how the framework is 

tested in realistic traffic scenarios to demonstrate its 
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scalability and adaptability. It begins with the selection of 

metropolitan areas and intersections used for case studies, 

representing diverse traffic conditions such as peak hours, 

non-peak hours, and event-specific surges. Baseline 

comparisons are established by testing the framework against 

traditional synchronization systems and existing DRL-based 

methods. The simulations incorporate mixed traffic 

environments, including human-driven and autonomous 

vehicles, to ensure robustness across various scenarios. 

Additionally, the experimental setup describes the 

preprocessing of real-world traffic data and its integration into 

the simulation models. This section highlights the technical 

rigor and applicability of the framework to real-world urban 

networks [3,10]. 

The results section presents the quantitative findings of the 

study, including the framework’s impact on traffic efficiency, 

emissions, and scalability. Metrics such as a 25% reduction in 

vehicle stops, a 20% decrease in travel times, and a 30% 

decline in emissions provide empirical evidence of the 

framework’s effectiveness. A comparative analysis highlights 

the superiority of the proposed system over baseline methods, 

underscoring its ability to handle large-scale urban networks 

efficiently. This section also discusses the broader 

implications of the findings, such as their potential 

contribution to reducing urban congestion, improving air 

quality, and achieving sustainable urban mobility. The results 

are contextualized to emphasize the transformative potential 

of DRL-driven greenwave synchronization in intelligent 

transportation systems [2,11].  

The paper concludes with a forward-looking perspective on 

the advancements needed to further enhance greenwave 

synchronization systems. Key areas of future research include 

integrating connected and autonomous vehicles (CAVs) into 

the framework, extending multi-modal traffic management to 

include pedestrians and cyclists, and developing hybrid 

models that combine DRL with traditional optimization 

techniques. The section also identifies challenges, such as data 

privacy concerns and infrastructure costs, that must be 

addressed to facilitate real-world deployment. By outlining 

actionable next steps, the discussion ensures that the study not 

only addresses current challenges but also sets the stage for 

future innovations in traffic management [5,6]. 

Greenwave synchronization traces its origins to the mid-

20th century when urban areas began implementing fixed-

time signal plans along arterial roads to reduce congestion. 

Early systems relied on static timing schedules, enabling 

vehicles traveling at a specific speed to encounter a series of 

green lights, minimizing stops and delays. While these 

systems provided initial improvements in traffic flow, their 

static nature failed to account for dynamic traffic conditions, 

such as variability in vehicle speeds and congestion patterns 

[1]. In the 1970s and 1980s, actuated signal systems emerged, 

which used sensors to detect traffic volumes and make real-

time adjustments at individual intersections. Although these 

systems offered localized optimization, they lacked the 

coordination required for network-wide greenwave 

synchronization, particularly in large and dense urban areas 

[2]. The introduction of adaptive systems like SCATS and 

SCOOT in the 1990s marked a significant advancement, 

enabling coordinated signal control across multiple 

intersections. However, these systems still faced scalability 

challenges and struggled to adapt to rapid fluctuations in 

traffic demand [3]. 

Traditional greenwave synchronization techniques have 

demonstrated notable successes in improving traffic flow 

along specific corridors. By reducing the frequency of vehicle 

stops and promoting smoother driving, these systems have 

been shown to decrease travel times by up to 20–30% in 

controlled environments [14]. For example, cities like Los 

Angeles implemented pre-programmed greenwaves along 

major arterials, resulting in significant reductions in 

congestion during off-peak hours [2]. Additionally, these 

systems have contributed to lower fuel consumption and 

emissions by reducing stop-and-go traffic patterns. Studies 

indicate that greenwave synchronization can lead to fuel 

savings of up to 15%, making it an environmentally beneficial 

traffic management strategy [1]. Despite these achievements 

the effectiveness of traditional techniques is often limited to 

low-complexity networks with predictable traffic patterns. 

While traditional greenwave synchronization techniques have 

provided measurable benefits, they are fundamentally 

constrained by their reliance on static timing plans. These 

plans are typically designed based on historical traffic data, 

making them ill-suited for dynamic and unpredictable 

conditions, such as traffic surges caused by accidents or 

special events [2]. Furthermore, their scalability is limited; as 

the number of intersections increases, the complexity of 

maintaining synchronization across a network grows 

exponentially. Centralized systems, which are often used to 

manage these networks, face significant computational 

challenges and can become bottlenecks in real-time operations 

[6]. Additionally, traditional techniques fail to integrate with 

emerging technologies like connected vehicles or real-time 

data analytics, which are increasingly critical for modern 

urban traffic management. These limitations highlight the 

need for innovative approaches, such as DRL-based 

greenwave synchronization, to address the demands of dense 

and complex urban networks. 

DRL is a powerful machine learning approach that 

combines reinforcement learning (RL) with deep neural 

networks to solve high-dimensional decision-making 

problems. In traffic management, DRL models learn optimal 

control policies by interacting with a simulated environment, 

receiving feedback in the form of rewards, and iteratively 

improving their actions to maximize cumulative rewards. 

Common DRL architectures used in traffic management 

include Deep Q-Networks (DQN), Proximal Policy 

Optimization (PPO), and Actor-Critic methods. These models 

are particularly well-suited for dynamic and complex systems 

because they can handle non-linear relationships and adapt to 

changing conditions in real-time [12,13]. For example, DQN 

uses a neural network to approximate the action-value 

function, allowing the system to learn policies that optimize 

traffic flow by adjusting signal timings. DRL has proven 

effective in managing large-scale traffic networks, as it can 

model interactions across multiple intersections and account 

for dynamic traffic patterns [6]. 

DRL has been extensively applied to optimize traffic signal 

timings, demonstrating significant improvements over 

traditional approaches. In multi-agent settings, each 

intersection is represented as an autonomous agent that learns 

to control its traffic signals based on local and global traffic 

data. These agents collaborate to achieve network-wide 

objectives, such as minimizing vehicle stops, travel times, and 

emissions [11]. DRL systems can dynamically adjust signal 

phase durations in response to real-time traffic conditions, 
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such as varying vehicle densities and queue lengths. For 

instance, a study by [11] showed that DRL-based TFC 

reduced average vehicle delays by 20% compared to static 

systems. Furthermore, DRL enables the integration of external 

factors, such as pedestrian flow and public transit schedules, 

into the optimization process, providing a more holistic 

approach to traffic management [6].  

DRL offers several advantages over traditional traffic 

management methods, particularly in terms of adaptability 

and scalability. Unlike rule-based or heuristic approaches, 

DRL does not rely on pre-defined models or static timing 

plans; instead, it learns from interactions with the 

environment, making it highly adaptable to dynamic and 

unpredictable traffic conditions [12] DRL can also handle 

complex objectives, such as balancing traffic flow 

optimization with environmental sustainability, by 

incorporating multi-objective reward functions [6]. Moreover, 

DRL is scalable to large urban networks due to its ability to 

distribute decision-making across multiple agents, reducing 

computational bottlenecks associated with centralized 

systems [7]. These features make DRL a promising tool for 

managing the growing complexity of modern urban traffic 

networks. 

V2I communication represents a transformative 

advancement in traffic management, enabling direct 

interaction between vehicles and traffic control systems. V2I 

technology facilitates real-time data exchange, allowing 

vehicles to transmit information such as speed, location, and 

trajectory to traffic signals, while receiving updates on signal 

timings and optimal driving speeds. This two-way 

communication enhances the effectiveness of greenwave 

synchronization by allowing traffic signals to anticipate 

vehicle arrivals and adjust phase timings accordingly [17]. For 

example, a connected vehicle approaching an intersection can 

prompt the system to extend the green phase or reduce red-

light delays, minimizing stops and ensuring smoother traffic 

flow. V2I also supports priority management for emergency 

and public transport vehicles, further optimizing network 

performance [5]. The adoption of 5G networks and edge 

computing has significantly enhanced V2I capabilities by 

reducing latency and improving the scalability of these 

systems in dense urban environments. 

Spatio-temporal data integration is critical for 

understanding the dynamic and interdependent nature of 

urban traffic networks. Spatial data captures the relationships 

between intersections, such as the flow of vehicles from one 

intersection to another, while temporal data identifies patterns 

over time, including peak hours and recurring congestion 

hotspots. Incorporating spatio-temporal data into greenwave 

synchronization frameworks enables a more comprehensive 

analysis of traffic behavior, allowing systems to predict and 

respond to changes in real-time [8]. Advanced data fusion 

techniques, such as deep learning-based spatio-temporal 

graph neural networks, have been employed to model these 

dependencies and enhance traffic signal control (TFC) [7]. By 

leveraging these techniques, traffic management systems can 

achieve improved coordination across intersections, reducing 

travel times and emissions while maintaining network-wide 

efficiency. 

Edge computing has emerged as a powerful tool for 

enhancing the efficiency and scalability of traffic signal 

optimization systems. By processing data locally at or near the 

source, edge computing reduces the latency associated with 

transmitting information to centralized servers, enabling real-

time decision-making in dynamic traffic environments. For 

greenwave synchronization, edge devices deployed at 

intersections can independently analyze local traffic data and 

adjust signal timings without relying on a central control 

system [6]. This decentralization improves system 

responsiveness and resilience, especially in large urban 

networks with high data volumes. Additionally, edge 

computing facilitates the integration of advanced technologies 

such as V2I communication and DRL by providing the 

computational resources necessary for real-time analysis and 

optimization at the edge [11]. 

Centralized traffic management systems, while effective for 

small to medium-sized networks, face significant scalability 

challenges in large urban environments. These systems rely 

on a central control unit to collect and process traffic data from 

multiple intersections, optimize signal timings, and distribute 

control decisions across the network. As the number of 

intersections and traffic volume increases, the computational 

complexity of solving these optimization problems grows 

exponentially. For example, dynamic traffic scenarios require 

real-time recalibration of signal timings to prevent congestion, 

but centralized systems often struggle to process and respond 

to this data in a timely manner, leading to delayed or 

suboptimal decisions [2]. Furthermore, these systems are 

prone to single points of failure; if the central control unit 

experiences downtime, the entire network can be disrupted, 

resulting in widespread congestion. Such limitations 

underscore the need for decentralized and scalable solutions, 

such as multi-agent DRL frameworks, that distribute 

computational responsibilities and reduce reliance on a single 

control unit [11]. 

The dynamic and unpredictable nature of urban traffic poses 

additional challenges to scalability. Traffic patterns are 

influenced by various factors, including time of day, weather, 

road incidents, and special events, leading to highly variable 

data that centralized systems often struggle to manage 

effectively. Moreover, as urban populations grow and 

mobility needs increase, the volume of traffic data generated 

by sensors, cameras, and connected vehicles expands 

significantly. Centralized systems can become overwhelmed 

by the sheer amount of data they must process and analyze, 

which can result in delayed responses and reduced system 

efficiency [8]. Decentralized systems that leverage edge 

computing and localized decision-making are better equipped 

to handle these data volumes, enabling real-time adjustments 

to traffic signal timings and improved scalability across 

complex networks [7]. 

The integration of emerging technologies, such as V2I 

communication and CAVs, further complicates scalability for 

traditional systems. These technologies generate additional 

layers of data and require traffic management systems to 

coordinate between human-driven vehicles, connected 

vehicles, and autonomous fleets. Centralized systems often 

lack the flexibility to process and incorporate this multi-modal 

traffic data in real time, which limits their ability to fully 

utilize the benefits of these technologies [17]. By contrast, 

decentralized and DRL-based systems can integrate these 

technologies more seamlessly by distributing computational 

tasks across intersections and leveraging advanced data fusion 

techniques. This integration not only improves scalability but 

also enhances system adaptability and responsiveness to 

technological advancements [6]. 
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While DRL has been applied to various traffic management 

problems, its potential for scalable greenwave 

synchronization remains underexplored. Most existing studies 

focus on small-scale or simplified networks, where DRL 

models are tested on a limited number of intersections or 

constrained traffic scenarios [7]. These studies often fail to 

address the complexities associated with large-scale urban 

networks, such as high-dimensional state spaces, dynamic 

traffic patterns, and computational constraints. Furthermore, 

few research efforts have investigated the interplay between 

decentralized agent architectures and global optimization 

goals, such as achieving seamless greenwaves across dense 

and interconnected urban corridors [11]. This gap highlights 

the need for frameworks that can effectively scale DRL to 

thousands of intersections while maintaining network-wide 

coordination and adaptability. 

Most existing traffic synchronization studies prioritize 

vehicular traffic while neglecting other critical elements, such 

as pedestrian flow, public transport schedules, and bicycle 

lanes. Urban traffic systems are inherently multi-modal, 

requiring solutions that balance the needs of different road 

users. Traditional greenwave synchronization techniques and 

even some DRL-based methods often optimize only for 

vehicle flow, leading to inefficiencies and inequities for other 

modes of transport [8]. For instance, prioritizing vehicle 

throughput may result in longer pedestrian wait times or 

misaligned bus schedules. Addressing these gaps requires the 

incorporation of multi-modal traffic data and reward functions 

that account for diverse transportation needs [7]. Such an 

approach would ensure more inclusive and efficient traffic 

management. 

While traffic flow optimization remains a primary goal, the 

integration of environmental metrics, such as emissions and 

fuel consumption, into greenwave synchronization 

frameworks has been limited. Most existing systems either 

ignore environmental impacts or treat them as secondary 

objectives. Given the pressing need to reduce urban 

transportation’s carbon footprint, there is a critical gap in 

research exploring how DRL-based frameworks can explicitly 

prioritize emission reductions and energy efficiency [10]. For 

example, incorporating vehicle-specific emission models and 

energy consumption data into the DRL reward structure could 

lead to more sustainable traffic management practices. Filling 

this gap would align traffic synchronization research with 

broader goals of environmental sustainability. 

Despite promising results in simulation environments, the 

real-world deployment of DRL-based greenwave 

synchronization systems faces significant barriers. These 

include the integration of legacy traffic infrastructure, data 

privacy concerns, and the high cost of deploying sensors, 

communication networks, and computational resources [6]. 

Additionally, the unpredictability of real-world traffic 

conditions-such as driver behavior, vehicle mix, and 

unexpected disruptions—introduces challenges that are 

difficult to replicate in simulations. Current research often 

overlooks these practical considerations, limiting the 

applicability of proposed solutions. Addressing these 

challenges requires a more robust evaluation of DRL 

frameworks under real-world conditions and the development 

of cost-effective deployment strategies [9]. 

Reward engineering is critical to the success of DRL 

frameworks, as it defines the objectives that agents aim to 

optimize. However, most existing studies rely on simple 

reward structures that prioritize a single goal, such as reducing 

vehicle delays, while neglecting other important factors like 

equity, safety, and environmental impact [7]. Multi-objective 

reward functions, which balance competing priorities, are still 

in their infancy in traffic management research. Developing 

more sophisticated reward structures that account for the 

diverse and often conflicting goals of urban traffic systems is 

a pressing research need. This would enable DRL frameworks 

to address complex urban challenges holistically, paving the 

way for more effective and equitable traffic solutions [8]. 

 

2. MATERIALS AND METHODS 

 
2.1. Dataset And Related Factors 

The proposed framework utilizes a multi-agent DRL 

architecture, where each traffic intersection operates as an 

independent agent. Each agent is equipped with a neural 

network that learns optimal traffic signal timings by 

interacting with its local environment and neighboring 

intersections. The system’s decentralized design ensures 

scalability, as each agent focuses on optimizing its assigned 

intersection while coordinating with nearby agents to achieve 

network-wide objectives [7]. The architecture leverages actor-

critic methods, combining policy optimization with value 

estimation, to enable agents to balance exploration and 

exploitation [13]. By employing communication protocols, 

agents share information such as queue lengths, vehicle 

speeds, and signal states, ensuring synchronized greenwave 

patterns across dense urban corridors. This modular design 

allows the system to scale seamlessly to large traffic networks 

without compromising computational efficiency [11]. 

 

2.2. Data fusion and Traffic Dynamics 

The framework integrates spatio-temporal data fusion, 

which captures both spatial dependencies (e.g., interactions 

between neighboring intersections) and temporal traffic 

patterns (e.g., peak-hour surges). Spatial data includes vehicle 

trajectories, lane-specific densities, and upstream/downstream 

queue lengths, while temporal data accounts for historical 

traffic patterns and dynamic fluctuations in demand. These 

inputs are processed using spatio-temporal graph neural 

networks (ST-GNNs), which model the relationships between 

intersections and predict future traffic states [19]. The fusion 

of spatial and temporal data ensures that agents have a 

comprehensive understanding of traffic dynamics, enabling 

them to make decisions that optimize flow and reduce 

congestion in real time. This approach also allows the system 

to anticipate and mitigate traffic bottlenecks before they 

occur, significantly improving efficiency across the network 

[8]. 

Reward engineering is a critical component of the proposed 

framework, as it defines the objectives that agents aim to 

optimize. The framework employs a multi-objective reward 

function that balances traffic flow efficiency, emission 

reductions, and equitable access for all road users. Positive 

rewards are assigned for minimizing vehicle delays, 

maintaining smooth flow, and reducing stops, while penalties 

are given for prolonged queues, high idling times, and 

excessive emissions [10]. Additional rewards can be tailored 

for specific goals, such as prioritizing emergency vehicles or 

public transportation. This multi-objective approach ensures 

that the system not only addresses traffic efficiency but also 
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aligns with environmental sustainability and equity goals. The 

reward structure is designed to adapt dynamically to changing 

traffic conditions, enabling agents to balance short-term and 

long-term objectives effectively [7]. 

To address scalability challenges, the framework employs 

decentralized training with policy-sharing mechanisms. 

Decentralized training allows each agent to learn 

independently using local data while periodically 

synchronizing its policies with other agents to maintain 

coordination. This reduces the computational overhead 

associated with centralized training methods and enhances the 

framework’s adaptability to dynamic traffic conditions [6]. 

Policy-sharing enables agents to transfer learned strategies 

across intersections with similar traffic patterns, accelerating 

convergence and improving overall system performance. For 

example, an agent managing a high-traffic intersection can 

share its policies with another agent encountering similar 

congestion patterns, thereby reducing the time required for 

training in complex networks [11]. 

The framework is trained and evaluated in a high-fidelity 

simulation environment using platforms such as SUMO 

(Simulation of Urban Mobility) and CityFlow. These tools 

provide detailed representations of urban traffic networks, 

including road geometries, vehicle behaviors, and intersection 

layouts [15]. The simulation incorporates real-world data, 

such as traffic volumes and flow rates, to ensure realistic 

scenarios. Agents are trained using PPO, a DRL algorithm 

known for its stability and efficiency in continuous control 

tasks [13]. Training involves iteratively adjusting signal 

timings based on feedback from the environment, such as 

reductions in delays and emissions. The simulation also 

allows for testing under various conditions, including peak-

hour traffic, non-peak hours, and special events, to validate 

the framework’s robustness and adaptability [7]. 

The proposed multi-agent DRL framework treats each 

traffic intersection as an autonomous agent equipped with a 

neural network. Each agent observes its local environment, 

which includes metrics like queue lengths, vehicle speeds, and 

traffic densities, and learns to optimize signal timings to 

minimize congestion and delays. The agents operate using 

reinforcement learning, where they receive rewards based on 

performance metrics such as reduced vehicle stops, decreased 

travel times, and minimized fuel consumption. This 

decentralized approach allows the system to scale efficiently, 

as each agent independently processes its local data while 

coordinating with neighboring agents for network-wide 

optimization. Multi-agent frameworks are especially effective 

for urban traffic systems with complex interdependencies 

between intersections, as they balance localized decision-

making with global performance goals [6, 7]. 

To enhance network-wide traffic efficiency, agents 

collaborate through direct communication, sharing 

information such as signal states, traffic flow rates, and 

anticipated vehicle arrivals. This collaborative approach 

enables adjacent intersections to synchronize green phases, 

creating seamless greenwave patterns that reduce vehicle 

stops and improve traffic flow. For example, if an upstream 

intersection detects heavy traffic, it can notify the downstream 

agent to adjust its green phase timing to accommodate the 

incoming flow. Such interactions are managed through 

communication protocols that prioritize low-latency data 

exchange and ensure reliable coordination. 

The framework also incorporates joint learning strategies, 

where agents share policies and experiences to accelerate 

training and adapt to changing traffic patterns more 

effectively. For instance, agents managing similar intersection 

layouts or traffic conditions can transfer learned policies, 

reducing the time required for convergence. Furthermore, 

conflict resolution mechanisms are employed to address 

scenarios where agents' objectives may clash. These 

mechanisms involve priority rules or arbitration strategies that 

ensure decisions align with overall network optimization 

rather than favoring individual intersections [8,11]. 

The decentralized nature of the framework is crucial for 

scalability in large urban networks. Unlike centralized 

systems, which often struggle with computational bottlenecks 

and single points of failure, decentralized systems distribute 

computational tasks across individual agents. Each agent 

processes only its local data, significantly reducing the 

computational load and improving system responsiveness. 

Additionally, decentralized frameworks are more resilient to 

failures; if one agent becomes non-operational, the rest of the 

network can continue functioning with minimal disruption. 

This makes the multi-agent DRL framework particularly 

suitable for managing dense and dynamic urban traffic 

environments [6]. 

Traffic networks are inherently spatial systems, with 

intersections influencing one another based on their 

geographic proximity and traffic flow dynamics. The 

proposed framework incorporates spatial dependencies by 

modeling traffic interactions across intersections using spatio-

temporal graph neural networks (ST-GNNs). These models 

represent intersections as nodes and traffic flows as edges in a 

graph structure, capturing the relationships between upstream 

and downstream intersections. By analyzing these spatial 

dependencies, the framework enables traffic signal agents to 

anticipate the impact of their decisions on neighboring 

intersections. For example, if an upstream intersection 

experiences high congestion, the downstream agent can adjust 

its green phase duration to accommodate the incoming flow, 

thereby preventing spillover effects. This spatial integration is 

crucial for maintaining synchronized greenwave patterns 

across large networks and optimizing overall traffic flow 

[8,9]. 

Temporal patterns, such as peak hours, seasonal traffic 

variations, and dynamic fluctuations caused by incidents or 

events, significantly affect traffic conditions. The framework 

leverages historical and real-time temporal data to predict 

future traffic states and adjust signal timings proactively. 

Temporal data is processed using time-series analysis 

techniques, such as RNNs or LSTM networks, which are well-

suited for capturing sequential dependencies in traffic flow. 

By integrating temporal data, the framework ensures that 

agents can adapt to both recurring patterns (e.g., morning rush 

hours) and unexpected changes (e.g., accidents or weather 

disruptions). This temporal adaptability reduces delays and 

enhances system responsiveness, particularly in dynamic 

urban environments [7,16]. 

The combination of spatial and temporal data into a unified 

framework is achieved through advanced data fusion 

techniques, such as spatio-temporal convolutional neural 

networks (ST-CNNs) or attention mechanisms. These 

methods enable agents to prioritize relevant spatial and 

temporal features while ignoring irrelevant or redundant data. 

For instance, attention-based models can focus on heavily 
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congested intersections during peak hours while giving less 

weight to intersections with free-flowing traffic. The fusion 

process ensures that agents receive comprehensive and 

accurate information, enhancing their decision-making 

capabilities. Furthermore, data fusion facilitates the 

integration of multi-modal traffic inputs, such as vehicle flow, 

pedestrian movements, and public transport schedules, 

providing a holistic view of the traffic network [8,9]. 

The framework is designed to process real-time data from 

various sources, including traffic sensors, cameras, and 

connected vehicles. This real-time capability enables agents 

to respond quickly to changing conditions, such as sudden 

surges in traffic volume or lane closures due to construction. 

Real-time data processing is powered by edge computing, 

which allows computations to be performed locally at or near 

the data source, reducing latency and enhancing 

responsiveness. For example, an edge device at an intersection 

can analyze vehicle trajectories and queue lengths in real-

time, enabling the agent to make immediate adjustments to 

signal timings. This capability is particularly beneficial for 

large urban networks, where centralized data processing may 

introduce delays and reduce system efficiency [6,11]. 

The proposed framework employs a multi-objective reward 

function that balances several key objectives: traffic flow 

optimization, emission reductions, and equitable access for all 

road users. The reward structure assigns positive rewards for 

minimizing vehicle delays, reducing the number of stops, and 

maintaining smooth traffic flow. For example, a greenwave 

pattern that allows uninterrupted vehicle movement across 

several intersections results in high rewards. Conversely, 

penalties are applied for prolonged queues, high idle times, 

and significant deviations from optimal traffic patterns. 

Additionally, environmental metrics, such as reductions in 

CO2 emissions and fuel consumption, are integrated into the 

reward calculation, incentivizing agents to adopt energy-

efficient strategies. This approach ensures that the system not 

only prioritizes traffic efficiency but also aligns with broader 

sustainability goals [10,11]. 

To ensure that the TFC system benefits all road users 

equitably, the reward function incorporates metrics for non-

vehicular modes of transport, such as pedestrians and cyclists. 

For example, agents receive rewards for minimizing 

pedestrian wait times at crosswalks or providing dedicated 

green phases for cyclists. Public transportation is also 

prioritized by assigning higher rewards for maintaining bus 

schedules or reducing delays for transit vehicles. These equity 

considerations prevent the system from favoring private 

vehicles at the expense of other road users, promoting a more 

balanced and inclusive traffic environment [9,16]. 

 

2.3. Rewards, Optimization and Scability 

The reward function is designed to balance short-term 

operational objectives, such as immediate reductions in queue 

lengths, with long-term goals, such as sustained 

improvements in traffic flow and environmental impact. This 

balance is achieved through discount factors in the DRL 

framework, which weigh future rewards relative to immediate 

ones. For example, an agent may prioritize extending a green 

phase to prevent congestion at downstream intersections, even 

if it temporarily increases delays at its own intersection. By 

incorporating these trade-offs into the reward design, the 

system achieves holistic optimization across the entire 

network rather than focusing on localized improvements alone 

[7,13]. 

Decentralized training is a core feature of the proposed 

framework, designed to address the scalability challenges 

inherent in centralized systems. In decentralized training, each 

agent at an intersection trains independently using local 

observations, such as traffic density, vehicle speeds, and 

queue lengths. This approach reduces the computational 

burden associated with centralized systems that require 

processing data from the entire network [6]. Moreover, 

decentralized training ensures robustness, as individual agents 

can continue operating effectively even if one part of the 

network experiences a failure. Decentralized training also 

facilitates parallel processing, significantly speeding up the 

learning process. For example, intersections in different parts 

of the network can learn simultaneously, accelerating the 

convergence of the DRL model to an optimal traffic signal 

control policy [7]. 

To further enhance learning efficiency, the framework 

employs policy-sharing mechanisms, where agents share 

learned strategies with other agents operating in similar traffic 

conditions. For instance, an agent managing a high-traffic 

intersection can transfer its policies to another agent facing 

similar congestion patterns, enabling the latter to adopt 

effective signal timing strategies without starting from 

scratch. Policy sharing is particularly useful for large urban 

networks where agents operate under diverse traffic 

conditions, as it reduces the time required for individual 

agents to train independently. Additionally, shared policies 

help maintain consistency across the network, ensuring that 

adjacent intersections adopt coordinated strategies to optimize 

traffic flow [8,9] 

While decentralized training allows agents to operate 

independently, effective coordination requires 

communication between agents. The proposed framework 

enables inter-agent communication to share real-time traffic 

data, such as queue lengths and signal states, across 

neighboring intersections. This information exchange allows 

agents to align their actions with the overall network 

objectives, such as synchronizing green phases to create 

seamless greenwaves. Communication is facilitated through 

lightweight protocols designed to minimize latency and 

computational overhead, ensuring that agents can make timely 

decisions even in large-scale networks. This collaborative 

approach enhances the network's overall performance while 

maintaining the scalability benefits of decentralized training 

[6,9]. 

Decentralized training and policy sharing enhance the 

system's adaptability to dynamic traffic conditions and 

unforeseen disruptions. Unlike centralized systems, where a 

single point of failure can disrupt the entire network, 

decentralized systems ensure that each agent can 

independently adjust to local changes. For example, if a lane 

closure occurs at one intersection, the affected agent can 

immediately recalibrate its signal timings without waiting for 

instructions from a central controller. Additionally, policy-

sharing mechanisms allow agents to adapt to new traffic 

patterns rapidly, ensuring that the system remains effective as 

urban traffic dynamics evolve [11]. 

Urban traffic systems involve high-dimensional state and 

action spaces due to the complexity of interactions among 

intersections, vehicles, pedestrians, and other road users. For 

example, the state space for an agent may include real-time 
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traffic densities, vehicle speeds, pedestrian crossings, and 

signal statuses, while the action space involves determining 

optimal signal phase timings. This complexity poses 

significant computational challenges for reinforcement 

learning models, as traditional algorithms struggle to 

converge efficiently in such environments. To address this, the 

proposed framework leverages \ DRL\ methods like PPO and 

spatio-temporal graph neural networks (ST-GNNs), which are 

well-suited for handling high-dimensional data [9,13]. These 

techniques reduce computational overhead by abstracting 

complex interactions into learnable patterns, enabling agents 

to make efficient and informed decisions in real time. Here is 

our proposed comparison. 

 

3. FUTURE WORKS 

The implementation of a scalable greenwave 

synchronization system using DRL has shown great potential 

in optimizing  urban traffic management. However, there are 

numerous opportunities to refine and expand this framework. 

Below, we outline the key areas for future research and 

development, emphasizing their relevance and importance. 

TABLE I 
COMPARISON OF SOURCES FOR DEVELOPING AND EVALUATING RL MODELS FOR TFC 
Source Strengths Weaknesses Opportunities Threats 

GitHub 

RL TFC 

Comprehensiv

e datasets; 

SUMO support 

Requires 

technical 

expertise 

Extensible for 

new RL 

techniques 

Dependency 

on SUMO 

LibSignal Cross-

simulator 

compatibility; 

benchmarks 

High 

computationa

l resources 

needed 

Broad 

flexibility for 

scenarios 

Setup 

complexity; 

simulator 

updates 

DTLight Offline RL 

datasets; 

lightweight 

Offline RL 

limits real-

world 

applicability 

Bridge offline-

to-online RL 

development 

Limited 

scenarios for 

dynamic 

changes 

LemgoR

L 

High realism; 

regulatory 

compliance 

Limited 

dataset 

diversity 

Reduces sim-

to-real gap 

High 

computation

al demands 

Kaggle 

Notebook 

Beginner-

friendly; easy 

to follow 

Limited 

scope and 

dataset size 

Ideal for entry-

level 

developers 

Simplistic 

implementati

on 

 

Integration with Smart City Infrastructure 

Future research should focus on embedding the proposed 

greenwave synchronization system within broader smart city 

ecosystems. This involves leveraging Internet of Things (IoT) 

devices to collect a richer variety of traffic data, including 

vehicle trajectories, pedestrian movements, and 

environmental conditions. By gathering and processing 

diverse datasets, the system can develop a more 

comprehensive understanding of traffic patterns. 

Additionally, integrating with renewable energy systems, 

such as solar-powered traffic signals, can enhance the 

sustainability of the framework. Another critical direction is 

ensuring interoperability with public transit optimization 

platforms, enabling seamless coordination between private 

and public transportation systems, ultimately improving urban 

mobility. 

 

Multi-Objective Optimization 

While the current system prioritizes traffic flow efficiency 

and emission reductions, future research should incorporate a 

broader set of objectives. This includes enhancing pedestrian 

safety, prioritizing emergency vehicles, and ensuring 

equitable access for cyclists and public transit. Achieving this 

requires the development of a more sophisticated reward 

structure that can dynamically balance these competing 

objectives based on contextual needs. For instance, during 

peak pedestrian hours, the system could prioritize pedestrian 

crossings without significantly disrupting vehicle traffic. 

 

Incorporation of Electric and Autonomous Vehicles 

As EVs and autonomous vehicles become more prevalent, 

it is essential to adapt the greenwave system to accommodate 

their unique characteristics. Reward functions should account 

for the regenerative braking capabilities of EVs, which can 

further reduce energy consumption during stops and starts. 

Moreover, incorporating V2I communication protocols will 

enable real-time data exchange between AVs and traffic 

signals, improving the precision and efficiency of traffic 

control. 

 

Robustness Under Extreme Scenarios 

Urban traffic systems frequently face extreme conditions, 

such as inclement weather or sudden traffic surges due to 

accidents or events. Future models should include scenario-

based training to ensure robustness under such conditions. 

Leveraging synthetic data and simulated environments can 

help train the DRL agents to adapt to unexpected changes, 

such as icy roads or temporary lane closures, ensuring reliable 

performance even in adverse circumstances. 

 

Scalability to Larger Networks 

The scalability of the current framework has been 

demonstrated in mid-sized urban networks, but its application 

to large metropolitan areas poses significant challenges. 

Increasing the number of intersections requires greater 

computational resources, and coordinating thousands of 

intersections becomes a complex task. Future research should 

explore distributed learning methods and hierarchical DRL 

architectures to address these challenges, enabling the system 

to scale efficiently without sacrificing performance. 

 

Real-World Deployment and Validation 

While simulation studies have provided valuable insights, 

real-world deployment is crucial for validating the system's 

effectiveness. Pilot projects in diverse urban environments 

can help assess the adaptability of the framework to different 

traffic patterns and cultural contexts. Furthermore, long-term 

measurements of urban mobility improvements, public 

satisfaction, and environmental benefits can offer a 

comprehensive evaluation of the system's impact. Addressing 

practical deployment challenges, such as infrastructure 

upgrades and cost considerations, will also be essential. 

 

Advanced Data Fusion Techniques 

Incorporating advanced data fusion techniques can 

significantly enhance the system's decision-making 

capabilities. By combining spatio-temporal traffic data with 

external datasets, such as weather forecasts and social event 

calendars, the system can anticipate changes in traffic patterns 

and optimize signal timings proactively. Machine learning 

algorithms for traffic forecasting can further improve the 
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system’s ability to handle dynamic and complex urban 

environments. 

 

Ethical and Societal Considerations 

The increasing reliance on AI in traffic optimization 

systems raises important ethical and societal concerns. 

Ensuring transparency and fairness in decision-making 

processes is critical, particularly in providing equitable access 

for all road users. Data privacy issues related to the collection 

and use of real-time traffic data must also be addressed 

through robust encryption and anonymization techniques. 

Moreover, policymakers need to consider the socio-economic 

impacts of automation, such as job displacement among 

manual traffic controllers, and develop strategies to mitigate 

these effects. 

 

Benchmarking Against Emerging Technologies 

To ensure the proposed system remains at the forefront of 

innovation, it is important to benchmark it against other 

emerging technologies. For example, quantum computing 

offers the potential to solve optimization problems more 

efficiently, while federated learning could enable 

decentralized traffic systems to share knowledge without 

compromising data privacy. Comparative studies will help 

identify the strengths and limitations of the greenwave system 

in relation to these alternative approaches. 

 

Long-Term Urban Planning 

Finally, the development of greenwave synchronization 

systems should align with long-term urban planning goals. 

This includes contributing to city-wide carbon neutrality 

targets and designing systems that can evolve with urban 

expansion and changes in transportation infrastructure. By 

integrating these systems into broader urban development 

strategies, cities can ensure sustainable and adaptive mobility 

solutions for future generations. 

By addressing these areas, the greenwave synchronization 

framework can become a more robust, adaptable, and 

impactful solution, paving the way for smarter and more 

sustainable urban traffic management. 

 

4. DISCUSSION 

The implementation of a scalable greenwave 

synchronization system using DRL provides a transformative 

approach to addressing urban traffic management challenges. 

This chapter discusses the implications, limitations, and 

potential improvements of the proposed framework, offering 

a critical analysis of its impact on traffic efficiency, 

environmental sustainability, and technological 

advancements. 

The proposed system demonstrates significant 

improvements in traffic flow, as evidenced by reductions in 

vehicle stops, shorter travel times, and minimized congestion. 

By leveraging DRL algorithms like PPO, the framework 

adapts to dynamic traffic conditions, achieving near-optimal 

signal timings across complex networks. One of the key 

strengths of the system is its ability to reduce fuel 

consumption and emissions. Through the synchronization of 

green waves, the system mitigates the effects of stop-and-go 

driving, resulting in a notable decrease in CO2 emissions. This 

aligns with global efforts to reduce greenhouse gas emissions 

and promote sustainable urban development. Additionally, the 

decentralized, multi-agent DRL architecture ensures that the 

system scales efficiently to manage large networks with 

thousands of intersections. Its ability to generalize across 

varying urban traffic patterns underscores its adaptability to 

diverse metropolitan environments. 

Despite its advantages, the framework has certain 

limitations. The system heavily relies on real-time, high-

quality traffic data from sensors and connected vehicles. 

Inconsistent or incomplete data can compromise its 

performance, particularly in areas with limited infrastructure. 

Training DRL agents also requires significant computational 

resources, especially in large-scale networks. Although 

techniques like policy sharing and spatio-temporal graph 

neural networks (ST-GNNs) mitigate some challenges, real-

time deployment may still face bottlenecks in processing 

power and memory. Furthermore, while simulation results are 

promising, real-world implementation remains limited. 

Challenges such as infrastructure compatibility, public 

acceptance, and regulatory approval must be addressed before 

widespread deployment. The system’s robustness in handling 

extreme or rare events, such as natural disasters, large-scale 

traffic accidents, or unexpected traffic surges, also requires 

further investigation and refinement. 

The proposed system outperforms traditional fixed-time 

and actuated signal control methods by dynamically adjusting 

to real-time traffic conditions. Unlike existing systems, which 

often prioritize a single objective such as minimizing delays, 

the DRL-based framework balances multiple objectives, 

including fuel consumption, emissions, and pedestrian safety. 

However, emerging technologies like adaptive TFC using IoT 

and federated learning may offer comparable benefits and 

warrant further exploration. 

The integration of CAVs presents an opportunity to further 

enhance the system’s performance. V2I communication 

enables seamless data exchange, allowing for more precise 

and proactive traffic control. Incorporating advanced 

prediction models for traffic flow, such as machine learning-

based forecasting, could improve preemptive signal 

adjustments and enhance the system's capability to handle 

fluctuations in traffic volumes. Additionally, integrating 

renewable energy sources, such as solar-powered traffic 

signals, with the greenwave system could further reduce the 

environmental footprint. Optimizing signal timings based on 

energy availability adds another layer of sustainability to the 

framework. 

Ethical and societal considerations are critical when 

implementing AI-driven traffic optimization systems. 

Ensuring equitable access for all road users, including 

pedestrians, cyclists, and public transit, is a key ethical 

consideration. The framework must avoid biases that 

prioritize vehicular traffic at the expense of other modes of 

transportation. Moreover, the use of real-time traffic data 

raises privacy concerns, particularly in systems relying on 

connected vehicle data. Implementing robust data encryption 

and anonymization techniques is essential to safeguard user 

privacy. Automation of traffic management systems may also 

reduce the need for manual traffic controllers, leading to 

potential job displacement. Policymakers and urban planners 

must address these societal impacts through reskilling 

programs and alternative employment opportunities. 

Finally, future research should explore integrating multi-

modal transportation systems, improving robustness under 

extreme conditions, and investigating alternative DRL 

architectures for enhanced performance. These directions 
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align with the broader goal of building smarter, more 

sustainable cities. 

In conclusion, the proposed greenwave synchronization 

system represents a significant advancement in urban traffic 

management. Despite its limitations, the framework offers a 

scalable and adaptable solution to mitigate congestion, reduce 

emissions, and promote sustainable urban mobility. By 

addressing the challenges and exploring the opportunities 

discussed in this chapter, the system can evolve into a 

cornerstone of intelligent transportation systems, shaping the 

future of urban mobility. 
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