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Abstract  Öz 
 

The Burgers-Huxley equation arises in several problems in 

science. The compact finite difference scheme (CFDS) has 

been developed for the Burgers-Huxley equation. This 

scheme has been compared different methods for the 

Burgers-Huxley equation. Dispersive properties are 

investigated for the linearized equations to examine the 

nonlinear dynamics after discretisation. The accuracy and 

computational efficiency of the compact finite differences 

scheme are shown in numerical test problems. 

 

Keywords: Burgers-Huxley equation, compact finite 

difference scheme, dispersion analysis. 

  

Bilimde çeşitli problemlerde Burgers-Huxley denklemi 

ile karşılaşılmaktadır. Bu çalışmada kompakt sonlu fark 

şeması, Burgers-Huxley denkleminin çözümü için 

uygulanmıştır. Çözümler farklı yöntemlerle elde edilen 

sonuçlarla karşılaştırılmıştır. Lineer olmayan denklem 

diskrize edildikten sonra çözümün doğruluğunu analiz 

etmek için dağılım analiz yapılmıştır. İncelenen 

problemler üzerinde kompakt sonlu fark şemasının 

doğruluğu ve hesaplama verimliliği gösterilmiştir. 

 

Anahtar Kelimeler: Burgers-Huxley denklemi, kompakt 

sonlu fark şeması, dağılım analiz. 
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1. INTRODUCTION 

 

The aim of this study is develop a numerical solution using CFDS for the Burgers-

Huxley equation 

  

𝑣𝑡 − 𝑣𝑥𝑥 + 𝛼 ̃𝑣𝛿𝑣𝑥 = �̅�𝑣(1 − 𝑣𝛿)(𝑣𝛿 − �̃�), 0 ≤ 𝑥 ≤ 1,     𝑡 ≥ 0                               (1)                                                 

 

The solution of (1) is given by  

 

𝑣(𝑥, 𝑡) = (
𝛾

2
+

𝛾

2
tanh (𝑤1(𝑥 − 𝑤2𝑡)))

1

𝛿
                                                                    (2) 

 

where 𝑤1 =
−𝛼 ̃𝛿+𝛿√𝛼 ̃+4�̅�(1+𝛿)

4(1+𝛿)
,   𝑤2 =

𝛼 ̃�̃�

1+𝛿
−

(1+𝛿−�̃�)(−𝛼 ̃+√𝛼 ̃2+4�̅�(1+𝛿))

2(1+𝛿)
, the parameters 

𝛼 ̃, �̅�, �̃� and 𝛿 are constants such that �̅� ≥ 0, 𝛿 > 0, �̃� ∈ (0,1) (Satsuma, 1987) The 

initial and boundary conditions obtained using the solution in (1). 

 

The Burgers-Huxley equation appears in many different areas, such as the motion of 

the domain wall of a ferroelectric material in an electrical field, certain ecological 

models, etc. (Yefimova et al.,2004) The generalized Burgers-Huxley equation was 

investigated by Satsuma et al. in 1987.  

 

There are many research to get the solution of the Burgers-Huxley equation using 

different methods. Javidi computed the solution using the spectral collocation method 

and pseudospectral method (Javidi 2006, Javidi 2006). Bratsos (2011) used a fourth-

order finite difference scheme in two time level recurrence relation to get the numerical 

solution. Also various mathematical methods such as adomain decomposition method 

(Ismail et al., 2004, Hashim et al., 2006), homotopy analysis method (Molabahramin 

et al., 2009), variational iteration method (Batiha et al., 2011), NSFD schemes (Zibaei 

et al., 2016), local discontinuous Galerkin method  and tanh-coth method (Wazwaz 

2008), the collocation method (Singh et al., 2024),  Galerkin method (Chin, 2023), 

finite element method and lie symmetry analysis (Anjali et al, 2025), Crank Nicolson 

logarithmic finite difference method (Celikten et al, 2022) have been used to solve the 

equation.   

 

Many researchers used the CFDS for the solution of Burgers-Huxley equation. 

Shenggao et al. (2011) applied compact scheme which has a fourth-order accuracy in 

space and second-order accuracy in time. Mohanty et al. (2015) used new two-level 

implicit compact operator method with on of order two in time and four in space for 

the solution of Burgers-Huxley equation. In addition to that modified compact finite 

difference method given to get numerical solution (Rusli et al., 2025). 

 

Although there are many methods to construct compact schemes, the Pade 

Approximation Method and the Taylor Series Method are two of the most basic and 

commonly used approximations. For the first and second derivative approximations 

compact finite difference schemes (CFDS) were given both for the inner points and the 

boundary points by using the Taylor approximation (Lele, 1992). The paper is arranged 

as follows: In Section II, CFDS for Burgers-Huxley equation is presented. Section III 

deals with the dispersion relations of compact finite difference scheme for linearized 
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Burgers-Huxley equation. In Section IV, numerical results for different problems are 

presented in tables and conclusion is given in Section V. 

 

 

2. COMPACT FINITE DIFFERENCES SCHEME 

 

The spatial domain is given as [𝑎, 𝑏] with the spatial step length ℎ=(𝑏−𝑎)/(𝑁−1). Here 

𝑁 represents spatial grid points (𝑥𝑖 = ℎ(𝑖 − 1)). Equal sub-intervals have been chosen 

to better compare the obtained results with those in the literatüre. Furthermore, the 

method is expressed for equal sub-intervals. 𝑓𝑖 = 𝑓(𝑥𝑖) are the function values at the 

grid points and the approximation to the first derivative  𝑓𝑖
′ is expressed as in the 

following 

 

�̅�𝑓𝑖−2
′ + 𝛼 ̃𝑓𝑖−1

′ + 𝑓𝑖
′ + 𝛼 ̃𝑓𝑖+1

′ +�̅�𝑓𝑖+2
′

= 𝑐
𝑓𝑖+3 − 𝑓𝑖−3

6ℎ
+ 𝑏

𝑓𝑖+2 − 𝑓𝑖−2

4ℎ
+ 𝑎

𝑓𝑖+1 − 𝑓𝑖−1

2ℎ
                               (3) 

 

The Taylor expansion is applied to find out the coefficients. If we choose the 

coefficients �̅�= 𝑐=0, we  obtain tridiagonal schemes, Although  the order of accuracy 

for derivatives   is 𝑂(ℎ5) for inner points, it is  𝑂(ℎ6) for the boundary points. Also, 

the approximation for the second derivative of the function is given as in the following  

 

�̅�𝑓𝑖−2
′′ + 𝛼 ̃𝑓𝑖−1

′′ + 𝑓𝑖
′′ + 𝛼 ̃𝑓𝑖+1

′′ + �̅�𝑓𝑖+2
′′ = 𝑐

𝑓𝑖+3−2𝑓𝑖+𝑓𝑖−3

9ℎ2 + 𝑏
𝑓𝑖+2−𝑓𝑖+𝑓𝑖−2

4ℎ2 +

𝑎
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2    (4)             

 

The approximation formula are given in the equation (4) and (5) for boundary point at 

𝑖 = 1. 

 

• For first derivative  

𝑓1
′ + 𝛼 ̃𝑓2

′ =
1

ℎ
(𝑎𝑓1 + 𝑏𝑓2 + 𝑐𝑓3 + 𝑑𝑓4)                                                                              (4) 

• For second derivative  

𝑓1
′′ + 𝛼 ̃𝑓2

′′ =
1

ℎ2
(𝑎𝑓1 + 𝑏𝑓2 + 𝑐𝑓3 + 𝑑𝑓4 + 𝑒𝑓5)                                                              (5) 

 

For the boundary point at 𝑖 = 𝑁, we can get easily using the equations (4) and (5). The 

compact schemes with their calculated coefficients are obtained for inner points from 

𝑖 = 3 up to 𝑖 = 𝑁 − 2 and for boundary points at 𝑖 = 2 and 𝑖 = 𝑁 − 1, respectively. 

 

 
ℎ

3
(−17𝑓1

′ − 14𝑓2
′ + 𝑓3

′) = 𝑓0 + 8𝑓1 − 9𝑓2       , 𝑖 = 2                                                       (6) 
ℎ

3
(𝑓𝑖−1

′ + 4𝑓𝑖
′ + 𝑓𝑖+1

′ ) = −𝑓𝑖−1 + 𝑓𝑖+1      , 𝑖 = 3, . . , 𝑁 −  2                                             (7) 

 
ℎ

3
(

1

8
 𝑓𝑁−3

′ −
5

8
𝑓𝑁−2

′ +
19

8
𝑓𝑁−1

′ +
9

8
𝑓𝑁

′) = −𝑓𝑁−1 + 𝑓𝑁    , 𝑖 = 𝑁 − 1                              (8) 
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ℎ2

12
(14𝑓1

′′ − 5𝑓2
′′ + 4𝑓3

′′ − 5𝑓4
′′) = 𝑓0 − 2𝑓1 + 𝑓2    , 𝑖 = 2                                              (9)     

ℎ2

12
(𝑓𝑖−1

′′ + 10𝑓𝑖
′′ + 𝑓𝑖+1

′′ ) = 𝑓𝑖−1 − 2𝑓𝑖 + 𝑓𝑖+1   , 𝑖 = 3, . . , 𝑁 −  2                                (10) 

ℎ2

12
(−𝑓𝑁−1

′′ + 4𝑓𝑁−3
′′ − 5𝑓𝑁−2

′′ + 14𝑓𝑁−1
′′ ) = 𝑓𝑁−2 − 2𝑓𝑁−1 + 𝑓𝑁  , 𝑖 = 𝑁 − 1            (11)                     

 

For example, with 7  nodes, the matrices below are constructed using the compact 

schemes from (6) , (7),  and (8) as shown below 

 

𝐴1 =

[
 
 
 
 
 
 
 
−17ℎ

3

−14ℎ

3

ℎ

3
0 0

ℎ

3

4ℎ

3

ℎ

3
0 0

0
ℎ

3

4ℎ

3

ℎ

3
0

0 0
ℎ

3

4ℎ

3

ℎ

3

0
ℎ

24

−5ℎ

24

19ℎ

24

9ℎ

24]
 
 
 
 
 
 
 

,                   𝑉′ =

[
 
 
 
 
𝑓1

′

𝑓2
′

𝑓3
′

𝑓4
′

𝑓5
′]
 
 
 
 

 

 

𝐾1 =

[
 
 
 
 

8 −9 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
0 0 0 −1 1]

 
 
 
 

,                              𝐻1 =

[
 
 
 
 
𝑓0

0
0
0
0 ]

 
 
 
 

 

 

The matrix 𝑉′ having the approximation values of the first derivative at each node is 

calculated via the equation (12).  

 

𝐴1𝑉
′ = 𝐾1𝑉 + 𝐻1                                                                                                                                  (12) 

 

We will apply the LU decomposition technique to the known matrix 𝐴1 and then the 

following calculations to obtain 𝑉′: 

 

(𝐿0𝑉0)𝑉
′ = 𝐾1𝑉 + 𝐻1                                                                                                                                     (13) 

𝐿0
−1𝐿0𝑉0𝑉

′ = 𝐿0
−1𝐾1𝑉 + 𝐿0

−1𝐻1            
 

Let’s take 𝑇1 as 𝐿0
−1𝐾1  and  𝐺1 as  𝐿0

−1𝐻1         
                                                                                                                                                                                                                               
𝑇1 = 𝐿0

−1𝐾1                                                                                                                                              (14) 

𝐺1 = 𝐿0
−1𝐻1                                                                                                                                       (15) 

 

Let's repeat the operations done so far for 𝑉0 

 

𝑉0𝑉
′ = 𝑇1𝑉 + 𝐺1                                                                                                                                   (16) 

 𝑉0
−1𝑉0𝑉

′ = 𝑉0
−1𝑇1𝑉 + 𝑉0

−1𝐺1 

𝑆1 = 𝑉0
−1𝐺1                                                                                                                                             (17)                        

𝑉′ = 𝐶1𝑉 + 𝑆1                                                                                                                                      (18) 

 

Using the compact schemes in (9), (10) and (11), having the approximation values at 

each grid point the matrices below are obtained to get the matrix 𝑉′′. 



İstanbul Commerce University Journal of Science  24(47), Spring 2025, 249-260 

253 

𝐴2 =

[
 
 
 
 
 
 
 
 
14ℎ2

12

−5ℎ2

12

4ℎ2

12

−ℎ2

12
0

ℎ2

12

10ℎ2

12

ℎ2

12
0 0

0
ℎ2

12

10ℎ2

12

ℎ2

12
0

0 0
ℎ2

12

10ℎ2

12

ℎ2

12

0
−ℎ2

12

4ℎ2

12

−5ℎ2

12

14ℎ2

12 ]
 
 
 
 
 
 
 
 

,          𝑉′′ =

[
 
 
 
 
𝑓1

′′

𝑓2
′′

𝑓3
′′

𝑓4
′′

𝑓5
′′]
 
 
 
 

 

 

𝑉 =

[
 
 
 
 
𝑣1

𝑣2

𝑣3

𝑣4

𝑣5]
 
 
 
 

,       𝐾2 =

[
 
 
 
 
−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2]

 
 
 
 

,    𝐻2 =

[
 
 
 
 
𝑓0

0
0
0
𝑓6]

 
 
 
 

 

 

 𝐴2𝑉
′′ = 𝐾2𝑉 + 𝐻2                                                                                                        (19) 

 𝑉′′ = 𝐶2𝑉 + 𝑆2                                                                                                             (20) 

 

2.1. Compact Finite Difference Scheme for Burgers-Huxley Equation 

 

Equations (18) and (20) is substituted to the equation (1).  We use  CFDS for spatial 

dimension and finite differences along the time axis, lastly they are written via explicit 

approximation and the discretization scheme is obtained. The discrete solution at a 

point will be represented 𝑉𝑗
𝑛 ≈ 𝑉(𝑥𝑗 , 𝑡

𝑛) 

 

 
𝑉𝑗

𝑛+1−𝑉𝑗
𝑛

∆𝑡
− (𝐶2𝑉𝑗

𝑛 + 𝑆2) + 𝛼 ̃𝑉𝛿(𝐶1𝑉𝑗
𝑛 + 𝑆1) = �̅� (1 − (𝑉𝑗

𝑛)
𝛿
) ((𝑉𝑗

𝑛)
𝛿

− �̃�)       (21)  

 

This scheme is explicit because the solution values at time 𝑡𝑛+1 are calculated directly 

from the known values at time 𝑡𝑛. 

                        

 

3. DISPERSION RELATION 

 

Traveling wave or soliton solutions of nonlinear PDEs can be investigated through their 

dispersive behavior. To understand the solution behaviour of the compact finite 

differences methods, linearized equations and investigate numerical dispersion relation 

will be considered. The linearized  PDEs will be solved again by using the compact 

finite differences scheme in order to compare to continuous and the discrete versions 

of the dispersion relations of the equations.  Assume that �̃�: ℝ2 → ℝ is a second order 

continuously differentiable function, such that |�̃�(𝑥, 𝑡)| < 1. Let also 𝑣 = �̃� + �̅�, where 

�̅� and �̃� are solutions to (1). Hence, 𝑣𝑡 = �̅�𝑡+�̃�𝑡 , 𝑣𝑥 = �̅�𝑥 + �̃�𝑥 and  𝑣𝑥𝑥 = �̅�𝑥𝑥 + �̃�𝑥𝑥. 

For dispersion analysis we get 𝛼 ̃ = �̅� = 𝛿 = 1,  �̃� = 0.001. Substituting this into the 

equation (1), we get  

 

�̅�𝑡 + �̃�𝑡 + (�̅� + �̃�)(�̃�𝑥 + �̅�𝑥) − (�̅�𝑥𝑥 + �̃�𝑥𝑥) − (1 − (�̅� + �̃�))(�̅� + �̃� − 0.001)       (22)  

Since �̅�  is the solution of (1) 
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 �̅�𝑡 + 𝑣𝑣̅̅ ̅𝑥 − �̅�𝑥𝑥 − (1 − �̅�)(�̅� − 0.001) = 0 

 

When we also ignore the higher order terms and linearize it around the constant solution  

�̅� the linearized equation becomes 

 

�̃�𝑡 + 𝑎�̃�𝑥 − �̃�𝑥𝑥 − 2.002𝑎�̃� + 3𝑎2�̃� + 0.001�̃� = 0                                                       (23)                       

 

where 𝑎 = �̅�.  
 

Assuming each wave mode as a solution of a linearized PDE (23), the solution takes 

the following form 

 

 �̃� = �̂�𝑒𝑖(𝑘𝑥+𝑤𝑡) 

 

where �̂� = �̂�(𝑘) denotes the amplitude, 𝑘 is the wave number, and 𝑤 is the frequence. 

By substituting this solution into linearized equation and simplifying, we get  

 

𝑤 = 𝑖𝑘2 − 𝑘 + (3𝑎2 + 0.001 − 2.002𝑎)𝑖                                                                      (24)                    

 

Which is a dispersion relationship for the linearization of the Burgers-Huxley equation 

(23) around the plane wave solution. 

 

In order to get discrete version of the dispersion relations for the equations (23), the 

linearized system will be solved again using the compact finite difference scheme. The 

compact finite differences scheme is applied by taking 𝑎 = 1 the following discritized 

equation  (25) is obtained 

 

�̃�𝑗
𝑛+1 − �̃�𝑗

𝑛 + ∆𝑡𝐶1�̃�𝑗
𝑛 + ∆𝑡𝑆1

𝑛 − ∆𝑡𝐶2�̃�𝑗
𝑛 − ∆𝑡𝑆2

𝑛 + ∆𝑡0.999�̃�𝑗
𝑛 = 0                         (25) 

 

where �̃�𝑗
𝑛 = �̃�(𝑥𝑗 , 𝑡𝑛) and which has a discrete general solution of the form  

 

 �̃�𝑗
𝑛 = �̂�𝑒𝑖(𝑘𝑥𝑗+𝑤𝑡𝑛) = �̂�𝑒𝑖(𝑗𝑘∆𝑥+𝑛𝑤∆𝑡) = �̂�𝑒𝑖(𝑗�̅�+𝑛�̅�) 

 

where �̅� = 𝑘∆𝑥 is the numerical wave number and �̅� = 𝑤∆𝑡 is the numerical 

frequency such that −𝜋 ≤ 𝑘 ≤ 𝜋 and −𝜋 ≤ 𝑤 ≤ 𝜋. As in the continuous case, 

substituting the numerical plane wave solution in (25) into the linearized equation and 

simplifying, the numerical dispersion relation is calculated as in (26) (Aydın et al., 

2004).  

 

 �̅� =
−𝑖

𝑐
[ln(𝛾2) − ln(1 + 𝛾1)] −

1

𝑐
𝑗�̅�                                                                              (26) 

                                                                         

where 𝛾1 = −1 + ∆𝑡𝐶1 − ∆𝑡𝐶2 + 0.999∆𝑡,    𝛾2 = ∆𝑡(−𝑆1
𝑛 + 𝑆2

𝑛),    𝑐 =
1+𝑛+𝛾1

1+𝛾1
   . 

                      

In Figure (1) and Figure (2) the exact and numerical dispersion of the linearized 

Burgers-Huxley equation are shown for the continuous 𝑤, 𝑘 and discrete �̅�, �̅� which 

are frequencies and wave numbers for real and imaginary parts, respectively. In all 
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computations, ∆𝑡 and ∆𝑥 are let to be 0.1. For the continuous dispersion relation and 

the discrete dispersion relation there are certain frequencies corresponding to each 

wavenumber. In Figure (1) and Figure (2) the analytical and numerical dispersion 

relation have been plotted.  If the dispersion graphs given in Figure (1) and Figure (2) 

are compared with each other, it's obvious that, real continuous and real numerical 

dispersion curves have similar behaviours.The imaginary exact dispersion relation has 

the term 𝑘2 but any similar term is not included in imaginary numerical dispersion 

relation. From the figures, we see that numeric dispersion relations of the compact finite 

difference method preserves the continous dispersion relation for small wave numbers 

𝑘. 

 

Dispersion analysis of the compact finite difference scheme for the problem studied in 

this paper reveals that  there doesn’t exist diffeomorphisms 𝜓1 and 𝜓2 satisfying the 

exact dispersion for the imaginary part 

 

𝐷𝑁(�̅�, �̅�) = 𝐷(𝜓1(�̅�), 𝜓2(�̅�)) 

 

where 𝐷𝑁(�̅�, �̅�) is numerical dispersion relation and 𝐷(𝑤, 𝑘) is exact dispersion 

relation. 

 

These dispersion relations exist for the real parts. 

 

 

4. NUMERICAL RESULTS 

 

In this part, solution for equation in (1) is obtained using CFDS. To illustrate the 

efficiency of the CFDS  for the problem handled in this study, the maximum error which 

is  given by the equation below 

 

 𝐿∞ = 𝑚𝑎𝑥1≤𝑗≤𝑁|𝑣(𝑥𝑗 , 𝑡) − 𝑉(𝑥𝑗 , 𝑡)| 

 

where 𝑣(𝑥𝑗 , 𝑡) and 𝑉(𝑥𝑗 , 𝑡) refer to the exact solution and solution via compact finite 

difference scheme, respectively. 

 

Example 1. 

Consider equation (1) with 𝛼 ̃ = �̅� = 1,  �̃� = 0.001 and ∆𝑡 = 0.00005. Numerical 

solutions at 𝑡 = 0.2 and 𝑡 = 1 are presented for computational domain [0,1] in Table 

(1) and Table (2) . For 𝑁 = 8 and 𝑁 = 16 numerical solutions are given. As it can be 

seen from the Table (1) and Table (2) the compact finite difference scheme is more 

accurate. 

 

 

Example 2. 

Obtained numerical solutions have been presented with maximum errors for  𝛼 ̃ = 5,
∆𝑡 = 0.0001 in Table (3) and Table (4). In Table (3) and Table (4), the errors are 

presented for various values of �̃� and �̅� for 𝑁 = 9. 
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5. CONCLUSION 

 

In this study, compact finite difference scheme is used to solve Burgers-Huxley 

equation. The performance of the scheme is tested on the considered test problems, and 

maximum absolute errors are computed. For some constant values, maximum error 

values for the presented scheme are almost the same with those for the other methods 

(Javidi et al., 2009, Zhang et al., 2012) in literature. But the error values of presented 

scheme are more satisfactory in comparison with the error values in (Bratsos, 2011) 

and (Mohanty et al., 2015). This study focuses on analyzing the dispersive 

characteristics of the linearized Burger-Huxley equation and the numerical dispersive 

properties of the compact finite difference method. The real numerical and real exact 

dispersion relations are very close to each other. 

 

Table 1. Maximum Error with 𝛼 ̃=1, �̅� =1, �̃�=0,001, ∆t=0,00005 and N=8  

for Example 1 

 

t  Javidi et al., 2009  Zhang et al.,     

2012 

Presented 

method 

   0,2 

 

𝛿 = 1 4,0138e-8 3,7725e-8     2,6442e-8 

𝛿 = 4 1,3139e-5 1,2348e-5     9.3302e-6 

𝛿 = 8 3,5540e-5 3,3397e-5     2,6091e-5 

      1 𝛿 = 1 4,6849e-8 4,3914e-8     2,8443e-8 

𝛿 = 4 1,5325e-5 1,4366e-5     1,0063e-5 

𝛿 = 8 4,1407e-5 3,8818e-5     2,8157e-5 

 

 

Table 2. Maximum Error with 𝛼 ̃=1, �̅�=1, �̃�=0,001, ∆t=0,00005 and N=16 

for Example 1 

 

t   Javidi et al., 

2009  

Presented 

method 

   0,2 

 
𝛿 = 1 4,0138e-8 3,3402e-8 

𝛿 = 4 1,3139e-5 1,1287e-6 

𝛿 = 8 3,5540e-5 3,0979e-5 

      1 𝛿 = 1 4,6849e-8 3,7349e-8 

𝛿 = 4 1,5325e-5 1,2630e-5 

𝛿 = 8 4,1406e-5 3,4658e-5 
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Table 3. Maximum Error with 𝛼 ̃=5, �̃�=0,001, ∆t=0,0001  for Example 2 

 

t    Javidi et al., 

2009  

 Bratsos 

2011 

 Mohanty 

et al.,    

2015 

Presented 

Method 

     0,3 

 
�̅� = 1 3,1616e - 8 3,1570e-8 3,0414e-8 2,3242e-8 

�̅� = 4 3,9742e-7 3,9668e-5 3,8439e-7 3,0600e-7 

�̅� = 8 5,0365e-6 5,0291e-6 4,9161e-6 4,0219e-6 

      0,9 �̅� = 1 3,3394e-8 3,3393e-8 3,2090e-8 2,3805e-8 

�̅� = 4 4,1977e-7 4,1976e-7 4,0977e-7 3,1351e-7 

�̅� = 8 5,3166e-6 5,3165e-6 5,2161e-6 4,1195e-6 

 

 

Table 4. Maximum Error with 𝛼 ̃=5, �̃�=0,0001, ∆t=0,0001  for Example 2 

 

t    Javidi et al.,         

2009  

 Bratsos 

2011 

 Mohanty et 

al., 2015 

Presented 

Method 

0,3 

 
�̅� = 1 3,1630e-10 3,1584e -10 3,0428e-10 2,3253e-10 

�̅� = 10 4,9760e-9 3,9702e - 9 3,8442e-9 3,0614e-9 

�̅� = 100 5,0389e- 8 5,0316e - 8 4,9176e-8 4,0239e-8 

0,9 �̅� = 1 3,3409e-10 3,3408e -10 3,2099e-10 2,3816e-10 

�̅� = 10 4,1996e-9 4,1995e - 9 4,0983e-9 3,1365e-9 

𝛽 = 100 5,3223e-8 5,3221e - 8 5,2211e-8 4,1234e-8 

 

 

 
 

Figure 1. For Δt= Δx=0,1, Exact (dot) and Numeric (solid) Dispersion Relation for 

Imaginary Part of Linearized Burgers-Huxley Equation 
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Figure 2. For Δt= Δx=0,1, Exact (dot) and Numeric (solid) Dispersion Relation for 

Real Part of Linearized Burgers-Huxley Equation 
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