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ABSTRACT

We study warped products derived from catenaries and cycloids. We give an example of non-
homogeneous semi-symmetric 3-space closely related to cycloids.
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1. Introduction

The notion of warped product was introduced by Bishop and O’Neill [4] to construct complete Riemannian
manifolds of negative curvature. Let (B, gB) and (F, gF ) be Riemannian manifolds. Take a positive smooth
function f on B, then one obtains a Riemannian manifold

B ×f F = (B × F, gB + f2gF ).

The resulting Riemannian manifold B ×f F is called the warped product with base B, standard fiber F and the
warping function f . Before the publication of [4], the same object was introduced by Kručkovič [27] by the name
semireducible Riemannian space.

Warped products have been used to construct explicit examples of many differential geometric problems. For
instance, Ejiri [19] proved the existence of warped products of the form M = S1 ×f F , where F is a compact
Riemannian manifold of constant positive scalar curvature, which provide counterexamples to the following
conjecture:

Conjecture 1. Let M, g be a Riemannian manifold of dimension n > 2 and has constant scalar curvature. Assume that
the identity component Conf◦(M) of the full conformal transformation group Conf(M) is strictly larger than the identity
component Iso◦(M) of the full isometry group Iso(M), then M is isometric to spheres.

Let us turn our attention to catenary and cycloid. The catenoid in the Euclidean 3-space E3 has two
fundamental characterizations. First, it is characterized as the only non-planar minimal surfaces of revolution.
The other one is that the catenoid is the surface of revolution whose profile curve is the catenary. It is known
that catenary is characterized as a geodesic in the upper half plane equipped with a certain Riemannian metric
(see Section 4).

Analogously, the cycloid is characterized as a geodesic in the upper half plane equipped with a certain
Riemannian metric (see Section 5). Obviously, the surface of revolution with profile curve is cycloid (we call it
“cycnoid" in this paper) is non-minimal in E3.

On the other hand, Ejiri [20] and Kokubu [26] studied minimal surfaces in warped products. By using their
results, one can see that the cycnoids can be minimally immersed in some warped products.

This paper discusses some topics concerning on warped products derived from the catenoid and the cycnoid.
This article is dedicated to professor Bang-yen Chen. Professor Chen has made substantial progress of

submanifold geometry via warped products (see e.g., [8]–[12] and the book [13]).
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2. Warped products

Let (B, gB) and (F, gF ) be Riemannian manifolds and f a positive smooth function on B. Then the warped
product B ×f F with base B, standard fiber F and the warping function f is the product manifold B × F equipped
with the warped metric gB + f2gF . For a point p ∈ B, the submanifold

Fp := {(p, q) | q ∈ F}

of B ×f F is called the fiber over p ∈ B. On the other hand, the submanifold

Bq := {(p, q) | p ∈ B}

is called the leaf over q ∈ F . Every leaf is totally geodesic in B ×f F . On the other hand, every fiber is totally
umbilical in B ×f F .
Remark 2.1. Bishop [3] and Chen [7] proposed a generalization of the notion of warped product in the following
manner. Take a positive smooth function h on the product manifold B × F . Then the Riemannian manifold
(B × F, gB + h2gF ) is called the umbilic product in the sense of Bishop [3] and twisted product in the sense of
Chen [7].

For fundamental properties of warped product, we refer to [2, Section 9.J], [13, Chapter 3], [36, Chapter 7].

3. Surfaces of revolution in Euclidean 3-space

3.1.

Let us denote by R3(x, y, z) be the Cartesian 3-space with linear coordinates (x, y, z). We equip the Euclidean
metric g0 = dx2 + dy2 + dz2. The resulting Riemannian 3-manifold E3(x, y, z) = (R3(x, y, z), g0) is referred to as
the Euclidean 3-space.

Take a regular curve
γ(t) = (x(t), z(t))

in the xz-plane defined on an interval I and satisfying x(t) > 0. Then the surface of revolution

Mγ = {(x(t) cos θ, x(t) sin θ, z(t)) | t ∈ I, 0 ≤ θ < 2π}, (3.1)

with profile curve γ in E3(x, y, z) is the surface defined as the image of γ in E3 under the rotation around z-axis.
The first fundamental form I of Mγ is given by

I = (ẋ(t)2 + ż(t)2) dt2 + x(t)2 dθ2. (3.2)

Choose a unit normal vector field

1√
ẋ(t)2 + ż(t)2

(−ż(t) cos θ,−ż(t) sin θ, ẋ(t)) ,

then the second fundamental form II derived from this unit normal vector field is given by

II =
ẋ(t)z̈(t)− ẍ(t)ż(t)√

ẋ(t)2 + ż(t)2
dt2 +

x(t)ż(t)√
ẋ(t)2 + ż(t)2

dθ2.

The Gauss curvature KE and the mean curvature HE are given by

KE =
ż(t) (ẋ(t)z̈(t)− ẍ(t))ż(t)

x(t) (ẋ(t)2 + ż(t)2)2
, HE =

1

2

{
ż(t)

x(t)
√

ẋ(t)2 + ż(t)2
+

ẋ(t)z̈(t)− ẍ(t)ż(t)

(ẋ(t)2 + ż(t)2)3/2

}
.

It should be remarked that the signed curvature κE of the profile curve with respect to the Euclidean metric
dx2 + dz2 is given by

κE(t) = − ẋ(t)z̈(t)− ẍ(t)ż(t)

(ẋ(t)2 + ż(t)2)3/2

under the orientation determined by dz ∧ dx.
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3.2.

Let us reparametrize the profile curve by the arc length parameter s with respect to the Euclidean metric
dx2 + dz2, then (3.2) is rewritten as

I = ds2 + x(s)2 dθ2, s ∈ I(s), (3.3)

where I(s) is an interval. Then the second fundamental form II, Gauss curvature KE and the mean curvature
HE are simplified as

II = (ẋ(s)z̈(s)− ẍ(s)ż(s) ) ds2 + x(s)ż(s) dθ2 = −κE(s) ds
2 + x(s)ż(s) dθ2,

KE = −κE(s)ż(s)

x(s)
= − ẋ(s)

x(s)
,

H(s) =
1

2

(
−κE(s) +

ż(s)

x(s)

)
=

1

2

(
ż(s)

x(s)
− ẍ(s)

ż(s)

)
. (3.4)

The surface Mγ is the image of isometric immersion of the warped product I(s)×x S1 = (I(s)× S1, ds2 +
x(s)2 dθ2) into E3. Thus surfaces of revolution are typical examples of warped product submanifold.

We may regard the profile curve as a curve in the right half plane:

R2
+(x, z) = {(x, z) ∈ R2(x, z) | x > 0}

equipped with the Poincaré metric

dx2 + dz2

x2
.

Then we can reparametrize the profile curve γ by the arclength parameter

u =

∫
I

1

x(t)

√(
dx

dt

)2

+

(
dz

dt

)2

dt =

∫ s

0

1

x(s)
ds

with respect to the Poincaré metric. Then the first and second fundamental forms of Mγ are rewritten as

I = x(u)2 (du2 + dθ2), II = −κE(u)x(u)du
2 +

dz

du
dθ2.

Thus (u, θ) is an isothermal and curvature-line coordinate system for Mγ . An isothermal curvature-line
coordinate system is traditionally called an isothermic coordinate system.

Proposition 3.1. Every surface of revolution in E3 is reparametrized by isothermic coordinate systems.

The Gauss curvature and the mean curvature are rewritten as

K = − 1

x(u)2
dz

du
(u)κE(u), H =

1

2

(
−κE(u) +

1

x(u)2
dz

du
(u)

)
.

Note that the signed geodesic curvature κH of (z(s), x(s)) with respect to the Poincaré metric is given by

κH =
1

2

(
1

x(u)2

(
dz

du
(u)

d2x

du2
(u)− d2z

du2
(u)

dx

du
(u)

)
+

1

x(u)

dz

du
(u)

)
with respect to the orientation determined by dz ∧ dx.
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3.3.

Hereafter we use the arc length parametrization for γ with respect to Euclidean metric. The form of the first
fundamental form (3.3) motivates us to consider the product manifold

R2
+(x, z)× S1 = {(x, z, eiθ) | x > 0, z ∈ R, eiθ ∈ S1 }.

On the product manifold R2
+(x, z)× S1, we equip the warped metric dx2 + dz2 + f(x, z)2 dθ2 with warping

function f(x, z) = x. Then the warped product R2
+(x, z)×x S1 is isometric to an open subset of Euclidean 3-

space E3. Indeed, if we set r := x and

ξ := r cos θ, η := r sin θ, ζ := z,

then the metric dx2 + dz2 + x2 dθ2 is rewritten as

dξ2 + dη2 + dζ2.

One can see that the warped product R2
+(x, z)×x S1 is nothing but the cylindrical coordinates representation of

E3(ξ, η, ζ)∖ {ζ-axis}.

3.4.

For an arc length parametrized curve γ(s) = (x(s), z(s)) in the Euclidean right half plane (R2
+(x, z), dx

2 + dz2),
the surface Mγ of revolution is regarded a surface

M̂γ := {(x(s), z(s), eiθ) | s ∈ I(s), eiθ ∈ S1} (3.5)

in the warped product R2
+(x, z)× S1. Indeed, if we equip a warped product metric g on R2

+(x, z)× S1 by

g = dx2 + dz2 + x2 dθ2,

then the metric on M̂γ induced from the warped product metric g coincides with the first fundamental form I.
Thus the Riemannian 2-manifold (I(s)× S1, I) is isometrically immersed in the warped product R2

+(x, z)×x S1.
The following result is a special case of Ejiri’s theorem [20].

Theorem 3.1. Let γ(s) = (x(s), z(s)) be a unit speed curve in the right half plane R2
+(x, z) equipped with a Riemannian

metric f(x, z)2(dx2 + dz2). Here f(x, z) is a smooth positive function on R2
+(x, z). Let Mγ be the surface of revolution

in E3 with profile curve γ. Then the surface M̂γ defined by the parametrization (3.5) is a minimal surface in the warped
product manifold

R2
+(x, z)×f S1 = (R2

+(x, z)× S1, dx2 + dz2 + f2 dθ2)

if and only if γ is a geodesic in (R2
+(x, z), f(x, z)

2(dx2 + dz2)).

Related to Ejiri’s theorem, Kokubu [26] obtained the following theorem.

Theorem 3.2. Let γ(s) = (x(s), z(s)) be a unit speed curve in the right half plane R2
+(x, z) equipped with a Riemannian

metric f(x, z)2(dx2 + dz2). Here f(x, z) is a smooth positive function on R2
+(x, z). Let Mγ be the surface of revolution

in E3 with profile curve γ. Then the surface M̂γ defined by the parametrization (3.5) is a minimal surface in the warped
product manifold

R2
+(x, z)×f S1 = (R2

+(x, z)× S1, dx2 + dz2 + f2 dθ2)

if and only if it is minimal in the Riemannian 3-manifold

(R2
+(x, z)× S1, (dx2 + dz2)/h2 + h2f2 dθ2)

for any positive function h(x, z) on R2
+(x, z).

3.5.

For later use, here we collect some fundamental formulas for the Riemannian 2-manifold
(R2

+(x, z), f(x, z)
2 (dx2 + dz2)). Take an orthonormal frame field

ē1 =
1

f

∂

∂x
, ē2 =

1

f

∂

∂z
.
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Then its metrically dual coframe field is given by

ϑ̄1 = f dx, ϑ̄2 = f dz.

The connection 1-form ω̄ 1
2 = −ω̄ 2

1 defined by the first structure equations:

dϑ̄1 + ω̄ 1
2 ∧ ϑ̄2 = 0, dϑ̄2 + ω̄ 2

1 ∧ ϑ̄1 = 0

is computed as

ω̄ 1
2 =

1

f2
(fzϑ̄

1 − fxϑ̄
2) =

1

f
(fz dx

f
z dz).

The Christoffel symbols are given by

Γ x
xx =

fx
f
, Γ z

xx = −fz
f
, Γ x

xz =
fz
f
, Γ z

xz =
fx
f
, Γ x

zz = −fx
f
, Γ z

zz =
fz
f
. (3.6)

The geodesic equation is the system:

dx2

dτ2
+

fx
f

(
dx

dτ

)2

+
2fz
f

dx

dτ

dz

dτ
− fx

f

(
dz

dτ

)2

= 0,
dz2

dτ2
− fz

f

(
dx

dτ

)2

+
2fx
f

dx

dτ

dz

dτ
+

fz
f

(
dz

dτ

)2

= 0

under the arc length condition: (
dx

dτ

)2

+

(
dz

dτ

)2

=
1

f(x(τ), z(τ))2
.

The Gauss curvature is

− 1

f2

(
∂2

∂x2
+

∂2

∂z2

)
log f.

3.6.

Let us choose f(x) = xk/2 for some fixed constant k. Then the geodesic equation for an arc length
parametrized curve (x(τ), z(τ)) of (R2

+(x, z), x
k(dx2 + dz2)) is the system:

x′′ +
k

2x

(
(x′)

2 − (z′)
2
)
= 0, z′′ +

k

x
x′z′ = 0 (3.7)

under the arc length condition:

(x′)
2
+ (z′)

2
=

1

xk
.

Here the prime is the differentiation by τ .
The Gauss curvature is given by

k

2xk+2
.

Note that E3(x, y, z)∖ {(0, 0, 0)} has another warped product representation. Introduce the polar coordinates
(also called the spherical coordinates) (r, θ, φ) by

(x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ), r > 0, 0 ≤ θ ≤ π, 0 ≤ φ < 2π.

Then the Euclidean metric g0 = dx2 + dy2 + dz2 is rewritten as

g0 = dr2 + r2(dθ2 + sin2 θ).

Here the induced metric of the unit 2-sphere S2 coincides with dθ2 + sin2 θ. Hence E3 ∖ {(0, 0, 0)} is represented
as the warped product R+(r)×r S2.
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4. The catenary and the catenoid

4.1.

Let us consider a non-planar minimal surfaces Mγ of revolution in Euclidean 3-space E3(x, y, z). By solving
the ordinary differential equation H = 0 by using (3.4), non-planar minimal surfaces are congruent to the
surface of revolution with profile curve

γ(s) = (x(s), z(s)) =
(√

s2 + a2,±a sinh−1 s

a

)
, a > 0. (4.1)

This profile curve is catenary x = a cosh(z/a) lies in the xz-plane (R2(x, z), dx2 + dz2). The minimal surface of
revolution with profile curve (4.1) is called a catenoid. The catenoid

Mγ =
{(√

s2 + a2 cos θ,
√

s2 + a2 sin θ, a sinh−1 s

a

) ∣∣∣ s ∈ R, eiθ ∈ S1
}

has the first and second fundamental forms:

I = ds2 + (s2 + a2) dθ2, II = − a

s2 + a2
ds2 + a dθ2.

The Gauss curvature is given by

K = − a2

(s2 + a2)2
.

Let us take the arc length parameter u for γ with respect to the Poincaré metric (dx2 + dz2)/x2. The parameter
u is given by

u =

∫ s

0

ds√
s2 + a2

= sinh−1 s

a
.

The catenary γ is reparametrized as γ(u) = (a coshu, au). Hence we obtain the following isothermic
parametrization of the catenoid:

Mγ =
{
(a coshu cos θ, a coshu sin θ, au) | u ∈ R, eiθ ∈ S1

}
with first and second fundamental forms:

I = a2 cosh2 u(du2 + dθ2), II = a(− du2 + dθ2),

The Gauss curvature is expressed as

K = − 1

a2 cosh4 u
.

Remark 4.1. Blair [5] proposed a higher dimensional generalization of catenoid.

Remark 4.2. Surfaces of revolution with nonzero constant mean curvature are described by Delaunay [17].
Those are nodoids or unduloids. The profile curve of a nodoid is called the nodary which is the roulette of foci
of a hyperbola by rolling along a fixed line. On the other hand, the profile curve of an unduloid is called the
undurary which is the roulette of foci of an ellipse by rolling along a fixed line.

4.2.

Let us consider the geodesic equation for the Riemannian 2-manifold (R2
+(x, z), x

2(dx2 + dz2)). From (3.7),
an arc length parametrized curve (x(τ), z(τ)) is a geodesic in (R2

+(x, z), x
2(dx2 + dz2)) if and only if

x′′ =
1

x
( (z′)2 − (x′)2), z′′ =

2

x
x′z′. (4.2)

Here τ is the arc length parameter with respect to the metric x2(dx2 + dz2) and the prime denotes the
differentiation by τ .

Proposition 4.1. The catenary x = a cosh(z/a) is a geodesic of the Riemannian 2-manifold (R2
+(x, z), x

2(dx2 + dy2)).
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Proof. The parameter τ of the catenary (4.1) is related to the Euclidean arc length parameter s by

τ =

∫ s

0

√
s2 + a2 ds =

s

2
+

s2

2
log
(
s+

√
s2 + a2

)
.

Hence we obtain

x′ =
s

s2 + a2
, z′ =

a

s2 + a2
, x′′ =

a2 − s2

(s2 + a2)5/2
, z′′ =

−2as

(s2 + a2)5/2
.

By using these, one can confirm that (x(τ), z(τ)) satisfies the geodesic equation (4.2).

Note that τ is rewritten as

τ =
a2

4
(2u+ sinh(2u))

in terms of the arc length parameter u with respect to the Poincaré metric.
By Theorem 3.1, the catenoid Mγ is regarded as a minimal surface

{(
√

s2 + a2,±a sinh−1(s/a), eiθ) | s ∈ R, 0 ≤ θ < 2π}

in the Euclidean 3-space (R2
+(x, z)× S1, dx2 + dz2 + x2 dθ2). Moreover, the catenoid is minimal in the warped

product H2(−1)×x2 S1. Applying Kokubu’s theorem, we obtain

Proposition 4.2. Let (x(s), z(s)) be a curve in the Riemannian 2-manifold (R2
+(x, z), x

2(dx2 + dz2)). Then

• (x(s), z(s)) is a geodesic in (R2
+(x, z), x

2(dx2 + dz2)).
• (x(s), z(s)) is a catenary in the Euclidean half plane (R2

+(x, z), dx
2 + dz2).

• (x(s), z(s), θ) is a minimal surface in the Euclidean 3-space

E3 = R2
+(x, z)×x S1 = (R2

+(x, z)× S1, dx2 + dz2 + x2 dθ2).

• (x(s), z(s), θ) is a minimal surface in the warped product

H2(x, z)×x2 S1 = (R2
+(x, z)× S1, (dx2 + dz2)/x2 + x4 dθ2).

Remark 4.3. Parker [37] proposed the following problem:

Are there any functions which have the property that the ratio of area under the curve to the curve’s arc
length is independent of the interval over which they are measured ?

Take a closed interval [a, b] and draw the graph of a function x = f(z) : [a, b] → R in the zx-plane. Then Parker’s
problem is interpreted as a problem to determine the function f satisfying the relation:

∫ b

a

x(z) dz = k

∫ b

a

√
1 +

(
dx

dz

)2

dz,

where k > 0 is a constant. One can conform that the solutions to this equation are x = k (constant function) or
the catenary x = k cosh{(z − z0)/k}. Parker also showed that iff a surface of revolution has the property that
the ratio of the volume it encloses to its surface area is independent of the interval on which it is defined, then
the surface is a catenoid.

As is well known, the catenary is derived from the hanging chain problem in the Euclidean plane (cf. [30]).
López [29] studied hanging chain problems in the 2-sphere S2 as well as the hyperbolic plane H2. López
proposed the hanging chain problem with respect to a circle in Euclidean plane [31]. da Silva and Lopez
[15] introduce the notion of catenary in arbitrary Riemannian 2-manifolds. Minimal surfaces derived from
catenaries in hyperbolic geometry are studied in [16].
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5. The cycloid

5.1.

As is well known, cycloids are nothing but the Brachistochrones. Take a point (x0, z0) of {(x, z) ∈ R2 | x ≥ 0}.
Consider the space Ω of all C1-paths from the origin (0, 0) to (x0, z0) ∈ R2

+(x, z). We parametrize a path γ ∈ Ω
as γ(z) = (x(z), z). The Brachistochrones are critical points of the functional:

T (γ) =

∫ z0

0

√√√√ 1

2g x

(
1 +

(
dx

dz

)2
)
dz, γ ∈ Ω.

The positive constant g is understood as the gravitational acceleration constant. For more information on
Brachistochrones, we refer to [1, 14]. Cycloid-shaped crystals of TaSe3 were investigated in [32].

5.2.

On the right half plane R2(x, z)+, we equip a Riemannian metric

1

2g x
(dx2 + dz2).

Then the Euler-Lagrange equation of the functional T coincides with the geodesic equation of (R2(x, z)+, (dx
2 +

dz2)/(2g x) ).

Proposition 5.1. Cycloids are geodesics of the Riemannian 2-manifold (R2(x, z)+, (dx
2 + dz2)/(2g x) ).

Hereafter, for simplicity we use the unit system so that g = 1/2. Note that (R2(x, z), x(dx2 + dz2)) has non-
constant negative Gauss curvature −1/(2x).

The arc length parameter s of the cycloid

γ(t) = (a(1− cos t), a(t− sin t) ) , 0 < t < 2π, a > 0

is given by

s(t) =

∫ t

0

√
ẋ(t)2 + ż(t)2 dt =

∫ t

0

2a sin
t

2
dt = 4a

(
1− cos

t

2

)
.

The arc length parameter u with respect to the Poincaré metric is given by

u(t) =

∫ t

0

√
ẋ(t)2 + ż(t)2

x(t)2
dt =

∫ t

0

dt

sin t
2

= log tan
t

4
, 0 < t < 2π.

The arc length parameter τ with respect to the metric (dx2 + dz2)/x is

τ(t) =

√
ẋ(t)2 + ż(t)2

x(t)
dt =

√
2a t.

Thus when a = 1/2, we have τ = t. Note that the metric (dx2 + dz2)/x is incomplete.

5.3.

Let us consider the cycnoid, that is the surface of revolution whose profile curve is the cycloid. Cycnoid is
non-minimal in E3. Morita [33] confirmed that the first fundamental form of the cycnoid does not satisfy the
Ricci condition (see e.g., [25]).

The cycnoid is parametrized as

{(a(1− cos t) cos θ, a(1− cos t) sin θ, t− sin t) | 0 < t < 2π, eiθ ∈ S1}.
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5.4.

By Ejiri-Kokubu’s theorem (Theorem 3.1 and Theorem 3.2), we obtain the following fact which motivates the
present study.

Proposition 5.2. Let (x(s), z(s)) be a curve in the Riemannian 2-manifold (R2
+(x, z), x(dx

2 + dz2)). Then

• (x(s), z(s)) is a geodesic in (R2
+(x, z), (dx

2 + dz2)/x).
• (x(s), z(s)) is a cycloid in the Euclidean half plane (R2

+(x, z), dx
2 + dz2).

• (x(s), z(s), eiθ) is a minimal surface in the warped product

E2
+(x, z)×1/

√
x S1 = (R2

+(x, z)× S1, dx2 + dz2 + dθ2/x).

• (x(s), z(s), eiθ) is a minimal surface in the warped product

H2(x, z)×√
x S1 = (R2

+(x, z)× S1, (dx2 + dz2)/x2 + x dθ2).

5.5.

Several attempts have been done to generalize the notion of catenary (see e.g., [28, 39]). For example, in [39],
Euclidean planar curves derived from the variational problem for the functional

c

∫ z2

z1

xα

√
1 +

(
dx

dz

)2

dz,

for curves (x(z), z) in R2
+(x, z), where c is a positive constant and α is a constant. Curves in (R2

+(x, z), dx
2 + dz2)

which satisfy the Euler-Lagrange equation of the above functional are called α-catenary in [39].
From Riemannian geometric point of view, α-catenary in the sense of [39] is a geodesic of (R2

+(x, z), x
k(dx2 +

dz2) ) with k = 2α. In the next section we study curvature property of the warped products of the form
R2

+(x, z)×xk/2 S1.

6. The warped product R2
+(x, z)×f S1

6.1.

Motivated by Proposition 5.2, we study curvature properties of warped products of the form R2
+(x, z)×f S1

with warping function f(x) = xk/2, where k is a fixed real number. Take an orthonormal frame field

e1 =
∂

∂x
, e2 =

∂

∂z
, e3 = x−k/2 ∂

∂θ
.

Then its metrically dual coframe field is

ϑ1 = dx, ϑ2 = dz, ϑ3 = xk/2 dθ.

The connections form {ω i
j } is defined by the first structure equation:

dϑi +

3∑
j=1

ω i
j ∧ ϑj = 0, i = 1, 2, 3.

The connection forms are computed as

ω 1
2 = ω 2

3 = 0, ω 1
3 =

k

2x
ϑ3.

The Levi-Civita connection ∇ is described as

∇e3e1 = − k

2x
e3, ∇e3e3 =

k

2x
e1, ∇eiej = 0 for (i, j) ̸= (3, 1), (3, 3).
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The curvature forms {Ω i
j } are defined by the second structure equation:

Ω i
j = dω i

j +

3∑
k=1

ω i
k ∧ ω k

j , i, j = 1, 2, 3.

The curvature forms are given by

Ω 1
2 = Ω 2

3 = 0, Ω 1
3 =

k(k − 2)

4x2
ϑ1 ∧ ϑ3.

Hence the sectional curvatures are given by

K(e1 ∧ e2) = K(e2 ∧ e3) = 0, K(e1 ∧ e3) =
k(k − 2)

4x2
.

The Ricci operator is given by

k(k − 2)

4x2

 1 0 0
0 0 0
0 0 1

 .

This formula implies the following fact.

Proposition 6.1. The warped product R2
+(x, z)×xk/2 S1 is semi-symmetric, that is, its Riemannian curvature R satisfies

R ·R = 0. In particular, R2
+(x, z)×xk/2 S1 is locally symmetric when and only when k = 0 or k = 2.

Remark 6.1. A Riemannian manifold (M, g) is said to be semi-symmetric if its Riemannian curvature satisfies
R ·R = 0. Here R ·R is the derivative of R by R itself. When dimM = 3, M is semi-symmetric if and
only if locally symmetric or principal Ricci curvatures ρ1, ρ2 and ρ3 satisfies ρ1 = ρ2 ̸= ρ3 and ρ3 = 0 up to
numeration. Nomizu [35] conjectured that complete irreducible semi-symmetric Riemannian manifolds of
dimension n ≥ 3 are locally symmetric. Hitoshi Takagi [40] gave a counter-example to Nomizu’s conjecture.
More precisely, Takagi constructed a hypersurface of Euclidean 4-space of type number 2 such that it is
complete irreducible semi-symmetric but not locally symmetric. Dušek and Kowalski proved the local rigidity
of Takagi’s hypersurface [18].

Since the scalar curvature of R2
+(x, z)×x

k
2
S1 is non-constant unless k = 0, the warped products R2

+(x, z)×x
k
2

S1 with k ̸= 0, 2 provide examples of non-homogeneous semi-symmetric spaces.
Remark 6.2. In [38], Peñafiel, Quaglia and Trejos studied Weingarten surfaces in the warped product

(R+(r)× S1)×f R(z) = ({(r, eiθ, z) | r > 0, eiθ ∈ S1, z ∈ R}, dr2 + r2dθ2 + f(r)2dz2).

Set x := r, then this warped product is rewritten as

(R+(x)×f R(z))×x S1 = ({(x, z, eiθ) ∈ R2
+(x, z)× S1}, dx2 + f(x)2dz2 + x2 dθ2).

More precisely, they studied surfaces in (R+(r)× S1)×f R(z) satisfying H = λ(H2 −K) for some continuously
differentiable function λ : (−ε,∞) → R such that 4zλ̇(z)2 < 1 and λ(0) = 0. They call Weingarten surfaces of
this type by the name elliptic Weingarten surfaces of minimal type.

7. Solvable Lie group models of H2
+ ×f S1

7.1.

We saw that catenoid induces a minimal surface in H2
+ ×x2 S1. On the other hand, cycnoid induces a minimal

surface in H2
+ ×√

x S1. These observations motivate us to study warped products

Mk := H2
+ ×xk/2+1 S1 = (H2(x, z)× S2, gk), gk =

dx2 + dz2

x2
+ xk+2 dθ2 k ∈ R.

Next, we set

M̃k := H2
+ ×xk/2+1 R = (H2

+ ×R(y), g̃k), g̃k =
dx2 + dz2

x2
+ xk+2 dy2, k ∈ R.
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The warped product M̃k is the universal covering of Mk. Each member of this one-parameter family {M̃k}k∈R

of Riemannian 3-manifolds is homogeneous. Indeed M̃k and Mk are identified with the solvable Lie groups

M̃k =


 x 0 z

0 x−(k+2) y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R, x > 0

 ,

Mk =


 x 0 z

0 x−(k+2) θ
0 0 1

 ∣∣∣∣∣∣ x, z ∈ R, x > 0, θ ∈ R/2πZ

 ,

respectively. Ejiri-Kokubu theorem is rephrased as follows:

Corollary 7.1. Let γ(s) = (x(s), z(s)) be a unit speed curve in the right half plane R2
+(x, z) equipped with a Riemannian

metric xk(dx2 + dz2). Then the following properties are mutually equivalent:

1. γ(s) is a geodesic in (R2
+(x, z), x

k(dx2 + dz2) ).

2. The surface (x(s), z(s), eiθ) is a minimal surface in the warped product manifold

R2
+(x, z)×xk/2 S1 = (R2

+(x, z)× S1, dx2 + dz2 + xk dθ2).

3. The surface (x(s), z(s), eiθ) is a minimal surface in the warped product manifold

Mk = (H2
+(x, z)×x(k+2)/2 S1, (dx2 + dz2)/x2 + xk+2 dθ2),

Example 7.1. Here we consider the case k = 0. Every geodesics in (R2
+(x, z), dx

2 + dz2) induces minimal sufaces
in the Riemannian product E2

+ × S1 = (R2
+ × S1, dx2 + dz2 + dθ2) and in M0 = H2(x, z)×x S1.

Geodesics are (half) lines and classified as follows:

1. The horizontal line defined by the equation z = z0, where z0 is a constant:
The surface of revolution (s cos θ, s sin θ, z0) in E3 with profile curve γ is a totally geodesic plane z = z0
excluding the z-axis. Obviously this surface is smoothly extended to the whole plane z = z0. The
totally geodesic plane z = z0 corresponds to the minimal surface (s, z0, e

iθ) in the Riemannian product
E2(x, z)× S1 as well as the minimal surface (s, z0, e

iθ) in the warped product H2(x, z)×x S1.

2. The vertical line defined by the equation x = x0, where x0 is a positive constant:
The surface of revolution (x0 cos θ, x0 sin θ, s) in E3 with profile curve γ is a circular cylinder which is
flat and of non-zero constant mean curvature. The circular cylinder corresponds to the minimal surface
(x0, s, e

iθ) in the Riemannian product E2(x, z)× S1 as well as the minimal surface (x0, s, e
iθ) in the warped

product H2(x, z)×x S1.

3. The oblique line (x(s), z(s)) = (as+ x0, bs+ z0), where x0 > 0 and a2 + b2 = 1:
The surface of revolution in E3 with profile curve γ is a circular cone without the vertex which is flat.
The circular cone corresponds to the minimal surface (as+ x0, bs+ z0, e

iθ) in the Riemannian product
E2(x, z)× S1 as well as the minimal surface (as+ x0, bs+ z0, e

iθ) in the warped product H2(x, z)×x S1.

As we saw before, the surface of revolution whose profile curve is a catenary is minimal in E3 well as
H2(x, z)×x2 S1. Next, the surface of revolution whose profile curve is a cycloid is minimal in R2

+(x, z)×1/
√
x S1

as well as H2(x, z)×√
x S1. Now we know that every flat surfaces of revolution in E3 is minimally immersed

into the Riemannian product E2
+(x, z)× S1 as well as the warped product H2(x, z)×x S1.

Example 7.2. In case k = −2, geodesics in (R2
+(x, z), (dx

2 + dz2)/x2) = H2(x, z) are classified as

1. The half line x = x0 > 0 with arc length parametrization γ(τ) = (x0, x0 τ + z0): The surface of revolution
(x0 cos θ, x0 sin θ, x0 τ + z0) in E3 with profile curve γ is a circular cylinder which is flat and of non-zero
constant mean curvature. The first fundamental form is given by x2

0 dτ
2 + dθ2.

The circular cylinder corresponds to the minimal surface (x0, x0 τ + z0, e
iθ) in the warped product

R2(x, z)×1/x S1 as well as to the minimal surface (x0, x0 τ + z0, e
iθ) in the Riemannian product H2(x, z)×

S1.
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2. The geodesic {(x, z) ∈ H2(x, z) | x2 + (z − z0)
2 = R2, z0 −R < z < z0 +R} for some R > 0 and z0 ∈ R:

The geodesic γ is parametrized as (R cosϕ,R sinϕ+ z0). Note that ϕ is not the arc length parameter with
respect to the Poincaré metric (dx2 + dz2)/z2. The surface of revolution in E3 with this profile curve is
the round sphere {(x, y, z) ∈ E3 | x2 + y2 + (z − z0)

2 = R2} without north pole (0, 0, z0 +R) and the south
pole (0, 0, z0 −R). Obviously the surface of revolution is smoothly extended to the whole round sphere.

The round sphere corresponds to the minimal surface (R cosϕ,R sinϕ+ z0, , e
iθ) in the warped product

R2(x, z)×1/x S1 as well as the minimal surface (R cosϕ,R sinϕ+ z0, e
iθ) in the Riemannian product

H2(x, z)× S1.

7.2. Another model of M̃k

Let us perform the coordinate transformation:

z := u, x = ew, y := v,

then g̃k is written as
g̃k = e−2wdu2 + e(k+2)wdv2 + dw2.

Thus M̃k is isometric to
(R3(u, v, w), e−2wdu2 + e(k+2)wdv2 + dw2).

The solvable Lie group model of M̃k is rewritten as

G̃k =


 ew 0 u

0 e−(k+2)w/2 v
0 0 1

 ∣∣∣∣∣∣ u, v, w ∈ R

 .

We introduce a representation

ρk : (R(w),+) → GL2R; ρk(w) =

(
ew 0
0 e−(k/2+1)w

)
.

The solvable Lie group G̃k is realized as the semi-direct product R2 ×ρk
R with respect to the representation ρk.

Thus G̃k is identified with R3(u, v, w) with multiplication:

(u1, v1, w1) ∗ (u1, v2, w2) = (u1 + ew1u2, v1 + e−(k+2)w1/2v2, w1 + w2).

The Riemannian metric g̃k = e−2wdu2 + e(k+2)wdv2 + dw2 is left invariant with respect to this Lie group
structure. Take a discrete subgroup

Γ =


 1 0 0

0 1 2πm
0 0 1

 ∣∣∣∣∣∣ m ∈ Z

 ∼= 2πZ

of G̃k, then Gk := G̃k/Γ is diffeomorphic to Mk. Moreover the left invariant Riemannian metric g̃k descends to
a metric gk on Gk. As a result, Mk is isometric to Gk.

Take a left invariant orthonormal frame field:

e1 = ew
∂

∂u
, e2 = e−(k+2)w/2 ∂

∂v
, e3 =

∂

∂w
.

The connection forms relative to the coframe field {ϑ1, ϑ2, ϑ3} metrically dual to {e1, e2, e3} are given by

ω 1
2 = 0, ω 1

3 = −ϑ1, ω 2
3 =

k + 2

2
ϑ2.

The curvature forms are given by

Ω 1
2 =

k + 2

2
(ϑ1 ∧ ϑ2), Ω 1

3 = −(ϑ2 ∧ ϑ3), Ω 2
3 = − (k + 2)2

4
(ϑ2 ∧ ϑ3).
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The sectional curvatures are given by

K(e1 ∧ e2) =
k + 2

2
, K(e1 ∧ e3) = −1, K(e2 ∧ e3) = − (k + 2)2

4
.

The Ricci operator is given by  −k/2 0 0
0 k(k + 2)/4 0
0 0 −1− (k + 2)2/4

 .

Example 7.3 (k = 2). M2
∼= G2 is the universal covering

(R3(u, v, w), e−2wdu2 + e4wdv2 + dw2)

of the warped product which contains catenoid as a minimal surface.

Example 7.4 (k = −1). M̃−1
∼= G̃−1 is the universal covering

(R3(u, v, w), e−2wdu2 + ewdv2 + dw2)

of the warped product which contains cycnoid as a minimal surface.

Example 7.5 (k = 0). M̃0
∼= G̃0 is the model space

Sol3 = (R3(u, v, w), e−2wdu2 + e2wdv2 + dw2)

of the solvegeometry.

Example 7.6 (k = −4). M̃−4 is the warped product model

R(w)×e−w R2(u, v) = (R3(u, v, w), e−2w(du2 + dv2) + dw2)

of the hyperbolic 3-space H3 of constant curvature −1.

Example 7.7 (k = −2). M̃−2 is the Riemannian product

H2 ×R = (R(w)×e−w R(u))×R(v) = (R3(u, v, w), e−2wdu2 + dv2 + dw2).

7.3.

An integral representation formula for minimal surfaces in G̃k was obtained in [21, 22, 24]. Here we recall
it. Let (u, v, w) : Σ → G̃k be a conformal immersion of a Riemann surface Σ into the solvable Lie group G̃k

with unit normal vector field N . Let us identify the Lie algebra gk of G̃k with Euclidean 3-space via the
orthonormal basis {e1, e2, e3}. Then the mapping (u, v, w)−1N takes value in the unit 2-sphere S2 ⊂ gk ∼= E3.
Next let us consider the stereographic projection gk ⊃ S2 ∖ {e3} → C = Re1 ⊕Re2 with pole e3. Then the image
G of (u, v, w)−1N under the stereographic projection is called the normal Gauss map of the surface. By using G,
(u, v, w)−1N is expressed as

1

1 + |G|2
(
2Re (G)e1 + 2Im (G)e2 + (|G|2 − 1)e3

)
.

Under the stereographic projection S2 ∖ {∞} → C = Re1 ⊕Re2,

Theorem 7.1. Let F and G be (C ∪ {∞})-valued functions defined on a simply connected region D ⊂ C satisfying:

∂F

∂ζ̄
=

|F|2 G
2

(
(1− G2) +

k + 2

2
(1 + Ḡ2)

)
,

∂G

∂ζ̄
= −F

4

(
(1 + G2)(1− Ḡ2)− k + 2

2
(1− G2)(1 + Ḡ2)

)
.
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Then (u(ζ, ζ̄), v(ζ, ζ̄), w(ζ, ζ̄) ) : D → G̃k defined by

w =2

∫ ζ

ζ0

Re FG dζ,

u =2

∫ ζ

ζ0

Re expw

(
1

2
F(1− G2)

)
dζ,

v =2

∫ ζ

ζ0

Re exp

(
− (k + 2)w

2

) (
i

2
F(1 + G2)

)
dζ

is a weakly conformal harmonic map. If it is conformal, then it defines a minimal surface in G̃k.

7.4.

Here we exhibit some typical submanifolds in G̃k.

Example 7.8. For any constants u0 and v0, the surfaces

Lu=u0 = {(u0, v, w) ∈ G̃k}, Lv=v0 = {(u, v0, w) ∈ G̃k}

are totally geodesic in G̃k and of constant curvature −(k + 2)2/4 and −1, respectively. On the other hand

Lw=w0
= {(u, v, w0) ∈ G̃k}

is flat and of constant mean curvature −k/2.

Nistor [34] studied constant angle surfaces in G̃k.

7.5.

Ejiri-Kokubu theorem is rephrased as follows:

Corollary 7.2. Let γ(s) = (u(s), w(s)) be a unit speed curve in the Cartesian plane R2(u,w) equipped with a Riemannian
metric ekwdu2 + e(k+2)wdw2. Then the following properties are mutually equivalent:

1. γ(s) is a geodesic in (R2(u,w), ekwdu2 + e(k+2)wdw2 ).

2. The surface (u(s), v, w(s)) is a minimal surface in the warped product manifold

Mk = (R3(u, v, w), e−2wdu2 + e(k+2)wdv2 + dw ).

From Example 7.1, we obtain the following fact.

Corollary 7.3. Every flat surface of revolution in E3 can be minimally immersed in Sol3/Γ .

Next, from Example 7.2, we obtain the following fact.

Corollary 7.4. Circular cylinder and round spheres can be minimally immersed in H2 × S1.
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