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Abstract− In this paper, we extend the classic properties of Bertrand curves in Euclidean
3-space to an n-dimensional Riemann-Otsuki space. We introduce the concept of infinitesimal
deformations of curves within this space, and by applying the Frenet formulas concerning
the contravariant component of the covariant derivative, we derive conditions under which a
given deformation of a curve corresponds to a Bertrand curve in this n-dimensional space.
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1. Introduction

Riemann-Otsuki spaces are defined by a Riemannian metric linked to the concept of a general
connection, as introduced by Otsuki [1–5]. When represented in local coordinates, it is established that
the components of an affine connection form a geometric object rather than a geometric quantity. This
distinction arises because, under coordinate transformations, these components do not transform like the
components of a tensor of type (1,2) since they also include terms with second-order partial derivatives
of the local coordinates. However, Otsuki showed that the components of an affine connection and
those of a tensor of type (1,2) are not entirely separate ideas. Both can be seen as special cases of a
more general connection, with the Otsuki connection extending the concept of an affine connection in
differentiable manifolds.

By the concept of second-order tangent bundles, denoted as T2(M), Otsuki unified classical connections
such as affine, projective, and conformal connections on manifolds within a broader framework. He
defined a general connection as a cross-section of the vector bundle T(M)⊗D2(M), where D2(M) is the
dual vector bundle of T2(M). Thus, Otsuki introduced the covariant derivative corresponding to this
general connection and established its relationship with the basic covariant derivative. Nadj [6] derived
Frenet formulas, and in [7], he derived the Gauss, Codazzi, and Kühne equations for Riemann-Otsuki
spaces. According to Moor [8, 9], a Riemann-Otsuki space is a special case of a Weyl-Otsuki space.
A Riemann-Otsuki space, denoted as (R − On), is defined by a general connection that satisfies the
equation Dkgij = 0, where D is the covariant derivative concerning the general connection Γ. Recently,
Pirinççi [10] investigated the congruences of curves in Weyl-Otsuki spaces.
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2Department of Mathematics, Faculty of Science, İstanbul University, İstanbul, Türkiye
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Infinitesimal deformations of curves in Riemannian spaces have been explored by Hayden [11], Schouten
and van Kampen [12], and Yano et al. [13]. Furthermore, Pears [14] used infinitesimal deformations to
study Bertrand curves in n-dimensional Riemannian space Rn. Then, Alo [15] used this method to
study generalized helices in n-dimensional Riemann-Otsuki space. Bertrand curves in 3-dimensional
Riemann-Otsuki space were studied by Yilmaz and Bektaş [16]. Besides, Li et al. [17] defined a new
class of Bertrand curves in Euclidean four-space.

This work uses infinitesimal deformations of curves to examine Bertrand curves in n-dimensional
Riemann-Otsuki space. The structure of the paper is as follows: Section 2 presents essential background
information on general connections, Frenet formulas for Riemann-Otsuki space, and Bertrand curves in
Riemannian space, all of which will be referenced in Section 3. Section 3 provides the main results
about Bertrand curves in n-dimensional Riemann-Otsuki space. The last section discusses the need for
further research.

2. Preliminaries

In this section, we present some general knowledge of general connections, Frenet formulas for Riemann-
Otsuki space, and Bertrand curves in Riemannian space. These results will be used to investigate
Bertrand curves in n-dimensional Riemann-Otsuki space.

2.1. General Connections

Otsuki defined a general connection as a cross-section of the vector bundle T (M) ⊗ D2(M), where
D2(M) is the dual vector bundle of T2(M). In local coordinates ui, a general connection Γ can be
expressed as:

Γ = ∂ui ⊗
(
P i

j d2uk + Γi
jkdui ⊗ duk

)
and it can be written as Γ = (P i

j , Γi
jk). It can be observed that P i

j represents the components of a
(1,1)-tensor, denoted by P = λ(Γ), which is referred to as the principal endomorphism of T (M). If P

is the identity isomorphism of T (M), meaning that P i
j = δi

j , then the connection Γ simplifies to an
affine connection. Otsuki also defined the covariant differential concerning this connection as

DV k1...kp
m1...mq

= V
k1...kp

m1...mq ;hduh

where

V
k1...kp

m1...mq ;h =P k1
i1

...P
kp

ip

∂V
i1...ip

j1...jq

∂uh
P j1

m1 ...P jq
mq

+
p∑

s=1
P k1

i1
...P

ks−1
is−1

Γks
ishP

ks+1
is+1

...P
kp

ip
V

i1...ip

j1...jq
P j1

m1 ...P jq
mq

−
q∑

t=1
P k1

i1
...P

kp

ip
V

i1...ip

j1...jq
P j1

m1 ...P jt−1
mt−1Λjtmt−1P jt+1

mt+1 ...P jq
mq

and Λj
ih = Γj

ih − ∂P j
i

∂uh . Moreover, he demonstrated that the product of a tensor Q of type (1,1)
and a general connection Γ results in another general connection. These connections, denoted by
′Γ = QΓ = (Qi

kP k
j , Qi

kΓk
jh) and ′′Γ = ΓQ = (P i

kQk
j , Λi

khQk
j ), are referred to as the contravariant and

covariant parts of the connection Γ, respectively. In local coordinates, they can be given by
′Γ = ∂ui ⊗

(
Qi

kP k
j d2uj + Qi

kΓk
jhduj ⊗ duh

)
= ∂uiQ

i
k ⊗

(
P k

j d2uj + Γk
jhduj ⊗ duh

)
= QΓ

and
′′Γ = ∂ui ⊗

(
d
(
P i

kQk
j duj

)
+ Λi

khQk
j duh ⊗ duj

)
= ΓQ
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If Γ is a regular general connection and Q = P −1, then
′Γ = P −1Γ =

(
δi

j , Qi
kΓk

jh

)
=
(
δi

j , ′Γi
jh

)
and

′′Γ = ΓP −1 =
(
δi

j , Λi
khQk

j

)
=
(
δi

j , ′′Γi
jh

)
(2.1)

i.e., ′Γ and ′′Γ are affine connections. Furthermore, Otsuki defined a basic covariant differential by

DV
i1...ip

j1...jq
= V

i1...ip

j1...jq |hduh

where

V
i1...ip

j1...jq |h =
∂V

i1...ip

j1...jq

∂uh
+

p∑
s=1

′Γis

khV
i1...is−1kis+1...ip

j1...jq
−

q∑
t=1

′Γk
jthV

i1...ip

j1...jt−1kjt+1...jq

and showed that
V

i1...ip

j1...jq ;m = P i1
k1

...P
ip

kp
V

k1...kp

h1...hq |mP h1
j1

...P
hq

jq

For a general connection γ = (P i
j , Γi

jh) and an identity isomorphism I,

Dδi
j

ds
=
(
Γi

hkP h
j − P i

hΛh
jk

) dxk

ds

and when Γ is regular,
Dδi

j

ds
=
(

′Γi
jk − ′′Γi

jk

) dxk

ds
(2.2)

which does not necessarily vanish. From (2.1),

′′Γi
khP k

j = Λi
lhQl

kP k
j =

(
−∂P i

l

∂uh
+ Γi

lh

)
Ql

kP k
j = −

∂P i
j

∂uh
+ Γi

jh = −∂P i
l

∂uh
+ P i

k
′Γk

jh

and thus the equation obtained called the Otsuki equation,

∂P i
l

∂uh
+ ′′Γi

khP k
j − P i

k
′Γk

jh = 0

gives the relationship between the covariant and contravariant parts of a general connection Γ.

The components of the curvature tensor with respect to ′Γ and ′′Γ, respectively, are given by

′R
i
jkl = ∂′Γi

kl

∂xl
−

∂′Γi
jl

∂xk
− ′Γi

ak
′Γa

jl + ′Γi
al

′Γa
jk (2.3)

and
′′R

i
jkl = ∂′′Γi

kl

∂xl
−

∂′′Γi
jl

∂xk
− ′′Γi

ak
′′Γa

jl + ′′Γi
al

′′Γa
jk

The components of the torsion tensor of ′Γ and ′′Γ, respectively, are given by
′T

i
jk = ′Γi

jk − ′Γi
kj

and
′′T

i
jk = ′′Γi

jk − ′′Γi
kj

2.2. The Frenet Formulas for the Riemann-Otsuki Space

Nadj [6] derived the Frenet formulas for the Riemann-Otsuki space using the contravariant and covariant
parts of the general connection Γ. Let C be a curve in n-dimensional Riemann-Otsuki space given by
C : s → xi(s) with V(1), V(2), ..., V(n) the unit tangent, 1-normal, ..., (n − 1)-normal vector, respectively,
and κ1, κ2, ..., κ(n−1) its curvatures. Then,
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i. Frenet formulas of the basic covariant differential applied on the contravariant components of the
tangent and normal vectors (′D = D for contravariant vectors) are as follows:

′DV
i
(α) = DV i

(α) = −κα−1V i
(α−1) + καV i

(α+1) + V q
(α)Dδi

q (2.4)

where

κα =
(
gij

(
′DV

i
(α) + κα−1V i

(α−1) − V r
(α)

′Dδi
r

) (
′DV

j
(α) + κα−1V j

(α−1) − V t
(α)

′Dδj
t

)) 1
2

with κ0 = 0 and κn = 0 and α ∈ {1, 2, ..., n}.

ii. Frenet formulas of the basic covariant differential ′′D applied on the contravariant components of
the tangent and normal vectors are:

′′DV
j
(α) = P j

i

(
−κ∗

(α−1)V
i

(α−1) + κ∗
αV i

(α+1)

)
where κ∗

1 =
(
gij

′′DV i
1

′′DV j
1
) 1

2 > 0 and κ∗
α =

(
gij(′′DV i

α + κ∗
α−1V i

α−1)(′′DV j
α + κ∗

α−1V j
α−1)

) 1
2 . Here, *,

by scalars, denotes that the curvature is expressed with Otsuki’s covariant differential ′′D applied to
the contravariant components of the vectors.

iii. Frenet formulas concerning covariant differential ′D applied on the covariant components of the
tangent and normal vectors are

′DV (α)i = P j
i

(
−κ∗∗

(α−1)V(α−1)j + κ∗∗
α V(α+1)j

)
− V(α)r(Dδa

i )Qr
a

where α ∈ {1, 2, ..., n}, κ0 = 0, κn = 0, and

κ∗
α =

(
gij
(

′DV (α)i + κ∗∗
α−1V(α−1)i + V(α)r

′Dδr
i

) (
′DV (α)j + κ∗∗

α−1V(α−1)j + V(α)r
′Dδr

j

)) 1
2

Here, **, by scalars, denotes that the curvature is expressed with Otsuki’s covariant differential ′D

applied to the covariant components of the observed vectors.

iv. Frenet formulas concerning the covariant differential ′′D applied on covariant components of the
tangent and normal vectors (′′D = D for covariant vectors)

′′DV (α)i = D̄V(α)i = −κ∗∗∗
(α−1)V(α−1)i + κ∗∗∗

α V(α+1)i

where
κ∗∗∗

α =
(
gij(′′DV (α)i + κ∗∗∗

α−1V(α−1)i)(′′DV (α)j + κ∗∗∗
α−1V(α−1)j

) 1
2

Here, ***, by scalars, denotes that the curvature is expressed with Otsuki’s covariant differential
applied to the covariant components of the observed vectors.

2.3. Bertrand Curves in Riemannian Spaces

Bertrand Curves in 3-dimensional Euclidian Space (E3) were first introduced by Bertrand in 1850.
When a curve C can be brought into a point-to-point correspondence with another curve C so that at
corresponding points P and P, the curves have the same principal normal, then these curves are called
Bertrand mates. Pears [14] used the infinitesimal deformations of curves to examine these curves in
Rn. He obtained the following results: If the distance between these two curves measured along the
normal is small enough for its square to be neglected, then

i. Corresponding points are a fixed distance apart
ii. There are constraints on its curvature
iii. If C is a curve with constant torsion, then the tangent to C at P , when parallel transported back
to P , maintains a constant angle with the tangent at P
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3. Bertrand Curves in (R − On)

In this section, we introduce Bertrand curves in n-dimensional Riemann-Otsuki space, defining them as
curves that share the same principal normal at corresponding points. We then explore the conditions
for two curves to be Bertrand mates. To establish these conditions, we use infinitesimal deformations
of the curves since there is no presumption regarding the existence of such pairs of curves in the
Riemann-Otsuki space. We prove the following theorem.

Theorem 3.1. Let C be a curve in n-dimensional Riemann-Otsuki space given by C : s → xi(s)
with unit tangent, 1-normal, ..., (n − 1)-normal vectors, respectively, V(1), V(2), ..., V(n), and curvatures
κ1, κ2, ..., κ(n−1). Let xi(s) = xi(s)+ϵλV i

(2) be an adjacent curve denoted by C̄, where ϵ is an infinitesimal
constant for its square to be neglected and λ is a function of s. Let P and P̄ be corresponding points
on C and C̄, respectively. Then,

i. The distance λ between corresponding points of these curves satisfies the equation dλ
ds = −λV q

(2)V(2)i
D̄δi

q

ds

ii. If the second curvature of the curve C, and λ are constant functions then the angle between the
tangent to C at P and the tangent to C̄ at P̄ , when parallel transported back to P , remains constant.

iii. There are restrictions, called Bertrand equations, on its curvatures.

Proof. Let C be a curve in (R − On) space given by

xi = xi(s)

and let δxi = ϵV i
(2) be an infinitesimal displacement at each point of this curve, where ϵ is an infinitesimal

constant for its square to be neglected. Denote by C the deformed curve given by

xi(s) = xi(s) + ϵλV i
(2) (3.1)

where λ is a function of s.

Let P and P be corresponding points on C and C , and V
i
(2) the principal normal vector at P . Denote

by V (2) the parallel transported vector of V
i
(2) from P to P and then find conditions which must be

satisfied for V
i

(2) = V i
(2).

From (3.1),
dx̄i

ds
=
(

dxi

ds
+ ϵλ

dV i
(2)

ds
+ ϵ

dλ

ds
V i

(2)

)
ds

ds̄

and

V̄ i
(1) =

(
V i

(1) + ϵλ
dV i

(2)
ds

+ ϵ
dλ

ds
V i

(2)

)
ds

ds̄
(3.2)

To find ds
ds̄ , we substitute (3.2) in

ḡijdx̄idx̄j = (ds̄)2

then from (3.1),
ḡij = gij + ∂gij

∂xk
(x̄k − xk) = gij + ϵλ

(
giα

′′Γα
jk + gjα

′′Γα
ik

)
(3.3)

From (2.2), (3.2), and (3.3),(
ds

ds

)2

=
(

gij + ϵλV k
(2)
(
gia

′′Γα
jk + gja

′′Γα
ik

))
·

(
V i

(1)V
j

(1) + V i
(1)ϵλ

dV j
(2)

ds
+ V i

(1)ϵ
dλ

ds
V j

(2) + ϵλ
dV i

(2)

ds
V j

(1) + ϵ
dλ

ds
V i

(2)V
j

(1)

)
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(
ds

ds

)2
= 1 + 2ϵλgijV i

(1)

dV j
(2)

ds
+ ′′Γj

kαV k
(2)V

α
(1)


(

ds

ds

)2
= 1 + 2ϵλgijV i

(1)

dV j
(2)

ds
+
(

′Γj
ka − δj

k|l

)
V k

(2)V
α

(1)


and (

ds

ds

)2
= 1 + 2ϵλgijV i

(1)

D̄V j
(2)

ds
− D̄δj

kV k
(2)


By using Frenet formulas in (2.4),(

ds

ds

)2
= 1 − 2ϵλκ1 and ds

ds
= 1 − ϵλκ1

Thus,
ds

ds̄
= 1 + ϵλκ1 (3.4)

Substituting (3.4) in (3.2),

V̄ i
(1) =

(
V i

(1) + ϵλ
dV i

(2)
ds + ϵdλ

ds V i
(2)

) (
1 + ϵλκ1

)
= V i

(1)
(
1 + ϵλκ1

)
+ ϵλ

dV i
(2)

ds + ϵdλ
ds V i

(2)

(3.5)

Let ¯̄V i
(1) be the parallel transported vector of V̄ i

(1) from P̄ back to P. Since the vector field V̄ i
(1) is

parallel transported it satisfies the equation

dV̄ i
(1)

ds
+ V̄ j

(1)Γ̄
i
jk

dx̄k

ds
= 0

Then, for infinitesimal deformations,
¯̄V i

(1) = V̄ i
(1) + ′Γ̄i

jkV̄ j
(1)(x̄

k − xk) = V̄ i
(1) + ϵλ′Γ̄i

jkV̄ j
(1)V

k
(2)

By using (3.5),

¯̄V i
(1) = V i

(1) (1 + ϵλκ1) + ϵλ
dV i

(2)

ds
+ ϵ

dλ

ds
V i

(2) + ϵλ

(
V j

(1) (1 + ϵλκ1) + ϵλ
dV j

(2)

ds
+ ϵ

dλ

ds
V j

(2)

)
V k

(2)

(
′Γi

jk + ϵλ
∂′Γi

jk

∂xl
V l

(2)

)
then since ϵ is small enough such that its square is neglected,

¯̄V i
(1) = V i

(1) (1 + ϵκ1) + ϵλ
D̄V i

(2)
ds

+ ϵ
dλ

ds
V i

(2)

By using the Frenet formulas in (2.4),

¯̄V i
(1) = V i

(1) + ϵλκ2V i
(3) + ϵ

(
λV q

(2)
D̄δi

q

ds
+ dλ

ds
V i

(2)

)
(3.6)

If we multiply (3.6) by V(2)i, since the angles are unchanged during the parallel transport, then

dλ

ds
= −λV q

(2)V(2)i
D̄δi

q

ds
(3.7)

which proves i.

If we use (3.7) in (3.6), then
¯̄V i

(1) = V i
(1) + ϵλκ2V i

(3)
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From here, we find sin
( ¯̄V(1), V(1)

)
= ϵλκ2. Hence, the angle between ¯̄V(1) and V(1) is constant if and

only if λ and κ2 are constant, which proves the part ii.

To determine V̄(2), by using the definition of basic covariant differentiation and the Frenet formulas,

dV i
(α)

ds
= −κα−1V i

(α−1) + καV i
(α+1) + V q

(α)D̄δi
q − ′Γi

jkV j
(α)V

k
(1) (3.8)

If we substitute (3.7) into (3.5) and use (3.8), then

V̄ i
(1) = V i

(1) + ϵλκ2V i
(3) − ϵλ′Γi

jkV j
(2)V

k
(1) (3.9)

If we differentiate V̄ i
(1) by using the basic covariant differentiation, then

D̄V̄ i
(1) =

dV̄ i
(1)

ds

ds

ds̄
+ ′Γ̄i

jkV̄ j
(1)V̄

k
(1)

Then, by using (3.9), (3.4), and Frenet equations,

κ̄1V̄ i
(2) + V̄ q

(1)Dδi
q =

[
d

ds

(
V i

(1) + ϵλκ2V i
(3) − ϵλ′Γi

jkV j
(2)V

k
(1)

)]
(1 + ϵλκ1)

+

[
′Γi

jk + ϵλ
∂′Γi

jk

∂xl
V l

(2)

](
V j

(1) + ϵλκ2V j
(3) − ϵλ′Γj

rsV r
(2)V

s
(1)

)(
V k

(1) + ϵλκ2V k
(3) − ϵλ′Γk

rsV r
(2)V

s
(1)

)
Thus,

κ̄1V̄ i
(2) +

(
V q

(1) + ϵλκ2V q
(3) − ϵλ′Γq

jkV j
(2)V

k
(1)

)
Dδi

q =
dV i

(1)
ds

+ ϵλ dκ2
ds

V i
(3) + ϵ dλ

ds
κ2V i

(3) + ϵλκ2
dV i

(3)
ds

− ϵ dλ
ds

′Γi
jkV j

(2)V
k

(1)

−ϵλ
∂′Γi

jk

∂xl V l
(1)V

j
(2)V

k
(1) − ϵλ′Γi

jk

dV
j

(2)
ds

V k
(1) − ϵλ′Γi

jkV j
(2)

dV k
(1)

ds

+ϵλκ1
dV i

(1)
ds

+ ′Γi
jkV j

(1)V
k

(1) + Γi
jkϵλκ2V j

(1)V
k

(3) − ϵλ′Γi
jk

′Γk
rsV j

(1)V
r

(2)V
s

(1)

+ϵλκ2
′Γi

jkV j
(3)V

k
(1) − ϵλ′Γi

jk
′Γj

rsV s
(1)V

r
(2)V

k
(1) + ϵλ

∂Γi
jk

∂xl V
(2)

l V j
(1)V

k
(1)

since ϵ is an infinitesimal constant, which is square to be neglected. By using Frenet equations, after
some algebraic operations,

κ̄1V̄ i
(2) − ϵλ′Γq

jkV j
(2)V

k
(1)Dδi

q =κ1V i
(2) + ϵλ

(
(κ2

1 − κ2
2)V i

(2) + dκ2
ds

V i
(3) + κ2κ3V i

(4) − κ′Γi
jkV j

(2)V
k

(2)

)
− ϵλ

(
−∂′Γi

kl

∂xj
+

∂′Γi
jl

∂xk
+ ′Γi

ak
′Γa

jl − ′Γi
al

′Γa
jk

)
V j

(1)V
k

(2)V
l

(1)

+ ϵ
dλ

ds
κ2V i

(3) − ϵκ1V i
(1)

dλ

ds

Then, by substituting (2.3),

κ̄1V̄ i
(2) =κ1V i

(2) + ϵλ

(
(κ2

1 − κ2
2)V i

(2) + dκ2
ds

V i
(3) + κ2κ3V i

(4) − κ1
′Γi

jkV j
(2)V

k
(2) + Ri

jklV
j

(1)V
k

(2)V
l

(1)

)
+ ϵ

dλ

ds
κ2V i

(3) − ϵκ1V i
(1)

dλ

ds

(3.10)

Since ¯̄V(2) is the parallel transport of the normal vector V̄(2) of C̄ at the point P̄ to the point P of C,

¯̄V i
(2) = V̄ i

(2) + ′Γ̄i
jkV j

(2)(x̄
k − xk) = V̄ i

(2) + ϵλ′Γ̄i
jkV j

(2)V
k

(2) (3.11)

From (3.11),
V̄ i

(2) = ¯̄V i
(2) − ϵλ′Γ̄i

jkV j
(2)V

k
(2)

and
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κ̄1V̄ i
(2) = κ̄1

( ¯̄V i
(2) − ϵλ′Γi

jkV j
(2)V

k
(2)

)
= κ̄1V̄ i

(2) − ϵλκ̄1
′Γi

jkV̄ j
(2)V

k
(2)

= κ̄1V̄ i
(2) − ϵλ

(
κ1 + ϵλ∂κ1

∂xl V l
(1)V

k
(1)

)
′Γi

jkV̄ j
(2)V

k
(2)

= κ̄1V̄ i
(2) − ϵλκ1

′Γi
jkV̄ j

(2)V
k

(2)

Subtituting this equation in (3.10),

κ̄1
¯̄V i

(2) − ϵλκ1
′Γi

jkV j
(2)V

k
(2) = κ1V i

(2)

+ϵλ
((

κ2
1 − κ2

2
)

V i
(2) + dκ2

ds V i
(3) + κ2κ3V i

(4) + ′R
i
jklV

j
(1)V

k
(2)V

l
(1) − κ1Γi

jkV j
(2)V

k
(2)

)
+ϵ dλ

ds κ2V i
(3) − ϵκ1V i

(1)
dλ
ds

or
κ̄1

¯̄V i
(2) = κ1V i

(2) + ϵλ
((

κ2
1 − κ2

2
)

V i
(2) + dκ2

ds V i
(3) + κ2κ3V i

(4) + ′Ri
jklV

j
(1)V

k
(2)V

l
(1)

)
+ϵdλ

ds κ2V i
(3) − ϵκ1V i

(1)
dλ
ds

(3.12)

Multiplying (3.12) by V(3)i,

κ̄1
¯̄V i

(2)V(3)i = κ1V i
(2)V(3)i

+ϵλ
((

κ2
1 − κ2

2
)

V i
(2)V(3)i + dκ2

ds V i
(3)V(3)i + κ2κ3V i

(4)V(3)i + ′Ri
jklV

j
(1)V

k
(2)V

l
(1)V(3)i

)
+ϵdλ

ds κ2V i
(3)V(3)i − ϵκ1V i

(1)V(3)i
dλ
ds

and

0 = ϵλ

(
dκ2
ds

+ ′R
i
jklV

j
(1)V

k
(2)V

l
(1)V(3)i

)
+ ϵ

dλ

ds
κ2

Then, by using (3.7) and the notation ′Ri
jklV

j
(1)V

k
(2)V

l
(1)V(3)i = ′γ3121,

′γ3121 = −dκ2
ds

+ V q
(2)V(2)i

D̄δi
q

ds
κ2 (3.13)

Multiplying (3.12) by V(4)i,
κ2κ3 + ′γ4121 = 0

or
′γ4121 = −κ2κ3 (3.14)

Finally, multiplying (3.12) by V(p)i, for p > 4,
′γp121 = 0 p > 4 (3.15)

(3.13)-(3.15) represent the n − 2 Bertrand equations, which establish the relationship between n − 1
curvatures of the curve C in n-dimensional Riemann-Otsuki space, thereby proving part iii of the
theorem.

4. Conclusion

In this study, we use the infinitesimal deformations of curves to examine the properties of Bertrand
curves in n-dimensional Riemann-Otsuki space, as there is no assumption regarding the existence of
these curves within this space. Theorem 3.1 provides the conditions for such curves’ existence. From
part i of Theorem 3.1, we conclude that the distance λ between corresponding points of the Bertrand
mates satisfies the differential equation (3.7). This condition corresponds to λ being constant in Rn.
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From part ii of Theorem 3.1, we deduce that the angle between tangents at corresponding points
remains constant if both the second curvature κ2 and λ are constant functions. In part iii of Theorem
3.1, we derive the n − 2 Bertrand relations, as given by (3.13)-(3.15), which relate the n − 1 curvatures
of the given curve C in n-dimensional Riemann-Otsuki space. These relations are consistent with the
corresponding relations in Riemannian space, with D̄δi

q

ds = 0, obtained by Pears [14]. Furthermore,
applying these results to Euclidean space yields the well-known result in E3, κ2 being constant. In En

for n ≥ 4, we have κ2 = 0 or κ3 = 0, implying that the Bertrand curves in En for n ≥ 4 are degenerate.

Future research may focus on (1, 3) − V Bertrand curves in the Riemann-Otsuki space. These curves,
as introduced in [17], are characterized by the property that the plane spanned by the principal normal
and second binormal of the curve coincides with the plane spanned by the principal normal and
second binormal of its Bertrand mate. Moreover, the focus of interest is other unique curves in the
Riemann-Otsuki space.
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[9] A. Moor, Über die veränderung der länge der vektoren in Weyl-Otsukischen räumen, Acta Scien-
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