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1. INTRODUCTION 

Today, there is helpful use in differential 

geometry for applied sciences. Differential 

geometry has a lots of different applications in 

the branches of science. These applications, 

came into our lives, are used in many areas and 

the popular science. We can say that 

differential geometry provides a good working 

area for studying Lagrangians of classical 

mechanics and field theory. That dynamic 

equation for moving bodies is obtained for 

Lagrangian mechanics. This dynamic equation 

is illustrated as follows: 

2. LAGRANGE DYNAMICS 

EQUATION [1,2,3]. 

Let M  be an n -dimensional manifold and 

TM  its tangent bundle with canonical 

projection TMTMM : . TM  is called the 

phase space of velocities of the base manifold 

M . Let R: TML  be a differentiable 

function on TM  called the Lagrangian 

function. We consider the closed 2-form on 

TM  given by .LddJL                          (1) 

Consider the equation  

.LLx dEi                                                   (2) 

Then X  is a vector field and xi is reduction 

function that it is  Xi LLx  . We shall 

see that (2) under a certain condition on X  is 

the intrinsical expression of the Euler-

Lagrange equations of motion. This equation is 

named as Lagrange dynamical equation. We 

shall see that for motion in a potential,  

LLVEL  )(                                             (3) 

is an energy function and )(XJV   a 

Liouville vector field. Here LdE  denotes the 

differential of E . The triple  XTM L ,,  is 

known as Euler-Lagrangian system on the 

tangent bundle TM . If it is continued the 

operations on (2) for any coordinate 

system..  )(),( tptq i

i
, infinite dimension 

Lagrange's equation is obtained the form 

below: 
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There are many studies about Euler-

Lagrangian dynamics, mechanics, formalisms, 

systems and equations. There are real, 

complex, paracomplex and other analogues for 

these studies. It is well-known that Euler-

Lagrangian analogues are very important tools. 

They have a simple method to describe the 

model for mechanical systems. The models 

about mechanical systems are given as follows. 

Some examples of the Euler-Lagrangian is 

applied to model the problems include 

harmonic oscillator, charge Q  in 

electromagnetic fields, Kepler problem of the 

earth in orbit around the sun, pendulum, 

molecular and fluid dynamics, LC  networks, 

Atwood’s machine, symmetric top etc. 

Previous works done on that subject can be 

given as follows. 

Vries examined that the Lagrangian motion 

equations have a very simple interpretation in 

relativistic quantum mechanics [4]. Tekkoyun 

showed that paracomplex analogue of the 

Euler-Lagrange equations was obtained in the 

framework of para-Kählerian manifold and the 

geometric results on a paracomplex 

mechanical systems were found [5]. Liu 

studied that electronic origins, molecular 

dynamics simulations, computational 

nanomechanics, multiscale modelling of 

materials fields were contributed [6]. Bi-

paracomplex analogue of Lagrangian systems 

was shown on Lagrangian distributions by 

Tekkoyun and Sari [7]. Tekkoyun and Yayli 

presented generalized-quaternionic Kählerian 

analogue of Lagrangian and Hamiltonian 

mechanical systems. Eventually, the 

geometric-physical results related to 

generalized-quaternionic Kählerian mechanical 

systems are provided [8]. Kasap and Tekkoyun 

obtained Lagrangian and Hamiltonian 

formalism for mechanical systems using 
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para/pseudo-Kähler manifolds, representing an 

interesting multidisciplinary field of research. 

Also, the geometrical, relativistically, 

mechanical and physical results related to 

para/pseudo-Kähler mechanical systems were 

given, too [9]. Enge and Maiber proposed a 

method for modelling electromechanical 

systems (EMS) with variable structure in the 

electrical subsystem [10]. 

In the present paper, we will present equations 

related to Euler-Lagrangian mechanical 

systems on three-dimensional space. 

3. PRELIMINARIES 

In this study, all the manifolds and geometric 

objects are of )(TMC
. The Einstein 

summation convention 
j

j

n

j

j

j xaxa 
1

 will 

in use. Also, TM  is tangent manifold, MT *
 is 

cotangent manifold and M  will always denote 

an n -dimensional smooth manifold. In 

addition to,  YX , , A , )(TMF , )(TM  

and )(1 TM  denote the set of vector fields, 

paracomplex numbers, the set of (para)-

complex functions on TM , the set of (para)-

complex vector fields on TM  and the set of 

(para)-complex 1-forms on TM , respectively. 

 

4. J -HOLOMORPHIC CURVES 

A pseudoholomorphic curve (or J -

holomorphic curve) is a smooth map from a 

Riemann surface into an almost complex 

manifold that satisfies the Cauchy-Riemann 

equation. Introduced in 1985 by Gromov, 

pseudoholomorphic curves have since 

revolutionized the study of symplectic 

manifolds. The theory of J  holomorphic 

curves is one of the new techniques which 

have recently revolutionized the study of 

symplectic geometry, making it possible to 

study the global structure of symplectic 

manifolds. The methods are also of interest in 

the study of Kähler manifolds, since often 

when one studies properties of holomorphic 

curves in such manifolds it is necessary to 

perturb the complex structure to be generic. 

The effect of this is to ensure that one is 

looking at persistent rather than accidental 

features of these curves. However, the 

perturbed structure may no longer be 

integrable, and so again one is led to the study 

of curves which are holomorphic with respect 

to some non-integrable almost complex 

structure J  [11]. A complex-valued function 

f  of a complex variable z  is said to be 

holomorphic at a point a if it is differentiable at 

every point within some open disk centered at 

a Negative curvature (pseudosphere). 

5. THE CAUCHY-RIEMANN 

EQUATION 

The Cauchy-Riemann differential equations in 

complex analysis consist of a system of two 

partial differential equations which must be 

satisfied if it is know that a complex function 

is complex differentiable. Moreover, the 

equations are necessary and sufficient 

conditions for complex differentiation once it 

seen that its real and 

imaginary parts are differentiable real 

functions of two variables. The Cauchy-

Riemann equations on a pair of real-valued 

functions of two real variables  ),( yxu  and 

 ),( yxv  are the two equations: 

y

v

x

u









, 

y

u

x

v









                      (5) 

Typically u  and v  are taken to be the real and 

imaginary parts respectively of a complex-

valued function of a single complex variable  

),(),(=)( ;= yxviyxuiyxfiyxz    (6) 

6. SYMPLECTIC GEOMETRY 

A symplectic manifold is a smooth manifold 

 M  equipped with a closed nondegenerate 

differential 2-form   called the symplectic 

form. The study of symplectic manifolds is 
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called symplectic geometry or symplectic 

topology. Symplectic manifolds arise naturally 

in abstract formulations of classical mechanics 

and analytical mechanics as the cotangent 

bundles of manifolds which provides one of 

the major motivations for the field. The set of 

all possible configurations of a system is 

modelled as a manifold, and cotangent bundle 

of this manifold describes the phase space of 

the system. The basic example of an almost 

complex symplectic manifold is standard 

Euclidean space  0

2 ,nR  with its standard 

almost complex structure 0J  obtained from 

the usual identification with 
nC . Thus, one 

sets 

jj xixz 212j  
                     (7) 

for nj ,...,1  and defines 0J  by 

    12202120 ,   jjjj JJ        (8) 

where 
jj x /  is the standard basis of 

n

xRT 2  [11]. 

7. ALMOST (PARA) COMPLEX 

STRUCTURE 

Let V  be a vector space over R . Recall that a 

complex structure on V  is a linear operator J  

on V  such that IJ 2
, where JJJ 2

, 

and I  is the identity operator on V . A 

prototypical example of a complex structure is 

given by the map VVJ :  defined by 

   vwwvJ ,,   where 
nn RRV  . An 

almost complex structure on a manifold M  is 

a differentiable map TMTMJ :  on the 

tangent bundle TM  of M  such that J  

preserves each fiber. If IJ 2 , J  is a 

paracomplex structure, 0)( JTr . 

A celebrated theorem of Newlander and 

Nirenberg [12] says that an almost complex 

structure is a complex structure if and only if 

its Nijenhuis tensor or torsion N  vanishes, 

where, for vector fields X  and Y  on M . 

Theorem : The almost complex structure J  

on M  is integrable if and only if the tensor 

JN  vanishes identically, where JN  is defined 

on two vector fields X  and Y  

by

         YXJYXJYJXJJYJXYXNJ ,,,,, 
.
 

                                                                       (9) 

The tensor (2,1) is called the Nijenhuis tensor 

(9). We say that J  is torsion free if 0JN . 

Paracomplex Nijenhuis tensor of an almost 

(para)-complex manifold  JM ,  is given by 

(9). Let ),...,( 21 nxx  be a local coordinate 

system. The torsion tensor is bilinear, for if 

jx
X




  and 

kx
Y




  are vector fields and 

i

jJ  are the components of J , then by direct 

calculation the 
thi  component of the torsion 

tensor is given by 

 



























n

h

h

jk

i

h

h

kj

i

h

i

jh

h

k

i

kh

h

j

i

jk

i

kj

JJJJJJJJ

N
xx

N

2
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 (10) 

where h denotes partial differentiation 
hx . It 

disappears if and only if J  is an integrable 

almost (para)-complex structure, i.e. given any 

point NP , there are local coordinates 

which are centered at P , so 

..
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                   (11) 

Holomorphic properties of these structures are 

http://planetmath.org/node/30364
http://planetmath.org/node/33995
http://planetmath.org/node/30697
http://planetmath.org/node/35418
http://planetmath.org/node/31975
http://planetmath.org/node/33739
http://planetmath.org/node/31981
http://planetmath.org/node/32919
http://planetmath.org/node/34756
http://planetmath.org/node/39525
http://planetmath.org/node/33276
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As it is seen from above, they are paracomplex 

structures. The system is based on three 

variables and three-dimensional for  .,, zyx  

In this study, above holomorpfic structures will 

be used. 

8. LAGRANGIAN EQUATIONS  

In this section, we get Euler-Lagrange 

equations for quantum and classical mechanics 

on three-dimensional space. Firstly, take J  as 

the local basis element on three-dimensional 

space and  zyx ,,  be its coordinate functions 

on three-dimensional space. Let   be the 

vector field decided by 

.
z

Z
y

Y
x

X
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
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
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
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is said to be Liouville vector field on three-

dimensional space. Three-dimensional space 

form is the closed 2-form which is given by 

LddJL   so that 

dz
z
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zx
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zy
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If we use (2), we obtain the equations given by 
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considering the external product and kronecker 

delta features that then we calculated 

 )( LLi  
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Energy function and its differential can be 

written as in the 

following:
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Its differential form is as 

follows:

.
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If we use (2) we obtain the equations given by 
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Considering the curve  , an integral curve of 

  i.e.  
t
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 )(  we can find the 
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follows:
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or using the definition of the integral curve 
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such that these equations are called Euler–

Lagrange equations on three-dimensional 

space. Thus the triple  , ,LM   is named as 

a Euler–Lagrange mechanical system on 

three-dimensional space. 

9. EQUATIONS CLOSED SOLUTION 

These partial differential equations (23) are 

depending on time. We can solve these 

equations using symbolic computation 

program. The software codes and solutions of 

these equations as follows: 

I. Codes: 

-diff(diff(L1(x,y,z,t),y),t)-

diff(diff(L1(x,y,z,t),z),t)+diff(L1(x,y,z,t),x) =0; 

Solutions: 

L1(x,y,z,t)=F1(x)*F2(y)*F3(z)*F4(t); 

diff(F1(x),x)=c1*F1(x), diff(F2(y),y)=c2*F2(y), 

diff(F3(z),z)=c3*F3(z),  

diff(F4(t),t)=-c1*F4(t)/(-c2-c3). 

 

II. Codes: 

-diff(diff(L2(x,y,z,t),x),t)-

diff(diff(L2(x,y,z,t),z),t)+diff(L2(x,y,z,t),y) =0; 

Solutions: 

L2(x,y,z,t)=F1(x)*F2(y)*F3(z)*F4(t); 

diff(F1(x),x)=c1*F1(x), 

diff(F2(y),y)=c2*F2(y), 

diff(F3(z),z)=c3*F3(z), 

diff(F4(t),t)=-c2*F4(t)/(-c1-c3) 

 

III. Codes: 

diff(diff(L3(x,y,z,t),z),t)+ diff(L3(x,y,z,t),z)=0; 

Solutions: 

L3(x,y,z,t)=F1(t,y,x)+exp(-t)*F2(z,y,x)        (24) 

10. CONCLUSION 

The equations found by (23) easily seen 

extremely useful in applications from Euler-

Lagrangian mechanics, quantum physics, 

optimal control, biology and fluid dynamics. 

The obtained equations are very important to 

explain the rotational spatial mechanical-

physical problems. For this reason, the 

obtained equations are only considered to be a 

first step to realize how a generalized on three-

dimensional space geometry. They have been 

used in solving problems in different physical 

areas. In addition in the equations, using the 

symbolic computation program, closed 

solutions (24) were found. 



Euler- Lagrange Equations On Three- Dimensional Space 

 

 

 

61 

Our proposal for future research, the Lagrange 

mechanical equations derived on a generalized 

on three-dimensional space are suggested to 

deal with problems in electrical, magnetical 

and gravitational fields of quantum and 

classical mechanics of physics [13,14,15]. 

References 

[1] J. Klein, Escapes Variationnels et Mécanique,  

Ann. Inst. Fourier, Grenoble, 12 (1962), 1-124. 

[2] M. De Leon, P.R. Rodrigues, Methods  

of Differential Geometry in Analytical Mechanics, 

North-Holland Mathematics Studies, 152 (1989). 

[3] R. Abraham, J. E. Marsden, T. Ratiu, 

Manifolds, Tensor Analysis and Applications, 

Springer, (2001), 483-542. 

[4] H. de Vries, Understanding Relativistic 

Quantum Field Theory, The Hamiltonian and 

Lagrangian Densities, Chapter 22, 

http://www.physics-

quest.org/Book_Chapter_Lagrangian.pdf), (2009). 

[5] M. Tekkoyun, On Para-Euler Lagrange and 

Para-Hamiltonian Equations, Physics Letters A, 34 

(2005), 7-11.  

[6] W.K. Liu, S. Jun, Computational 

Nanomechanics of Materials, American Scientific 

Publishers, Stevenson Ranch, CA, (2005). 

[7] M. Tekkoyun, M. Sari., Bi-para-Mechanical 

Systems on tThe Bi-Lagrangian Manifold, Physica 

B-Condensed Matter, 405 (2010), Issue 10, 2390-

2393. 

[8] M. Tekkoyun, Y. Yayli, Mechanical Systems on 

Generalized-Quaternionic Kähler Manifolds, 

IJGMMP, 8 (2011), No. 7, 1-13. 

[9] Z. Kasap and M. Tekkoyun, Mechanical 

Systems on Almost Para/Pseudo-Kähler.Weyl 

Manifolds, IJGMMP, 10 (2013). No.5, 1-8 

[10] O. Enge, P. Maiber, Multibody System 

Dynamics, Modelling Eelectromechanical Systems 

with Electrical Switching Components Using the 

Linear Complementarity Problem, Multibody 

System Dynamics, 13 (2005), No.4, 21-445. 

[11] D. McDu and D. Salamon, J-Holomorphic 

Curves and Quantum Cohomology, 

http://www.math.sunysb.edu/~dusa/jholsm.pdf. 

[12] A. Newlander and L. Nirenberg, Complex 

Analytic Coordinates in Almost Complex 

Manifolds. Ann. of Math. 65 (1957), 391-404. 

[13] H. Weyl, Space-Time-Matter, Dover Publ. 

1922. Translated from the 4th German Edition by 

H. Brose. London: Methuen. Reprint New York: 

Dover (1952). 

[14] M. de Le´on and P. R. Rodrigues, Generalized 

Classical Mechanics and Field Theory, North-

Holland Mathematics Studies, 112 (1985). 

[15] R. Miron, D. Hrimiuc, H. Shimada, S. V. 

Sabau, The Geometry of Hamilton and Lagrange 

Spaces, eBook ISBN: 0-306-47135-3, Kluwer 

Academic Publishers, New York, (2002). 

 

Geliş Tarihi:05.06.2013 
 

Kabul Tarihi:03.06.2014 

 

http://www.physics-quest.org/Book_Chapter_Lagrangian.pdf
http://www.physics-quest.org/Book_Chapter_Lagrangian.pdf
http://www.math.sunysb.edu/~dusa/jholsm

