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Article Info Abstract

Keywords: (2+1)-dimensional Chaffee- The focus of this paper is the (2+1)-dimensional Chaffee-Infante equation (CIE). The model
Infante equation, Modified extended describes the diffusion of a gas in a homogeneous medium, which makes it an important
Tanh expansion method, Solitons tool in the research of mathematics and physics. The modified extended Tanh expansion
2020 AMS: 34434, 35C08, 76B15 method is employed. Many soliton solutions have been obtained by rigorous analysis and
Received: 04 February 2025 calculation. This method can generate various types of solutions including trigonometric,
Accepted: 22 March 2025 trigonometric-hyperbolic, rational, kink, singular, and periodic singular solitons. We also
Available online: 24 March 2025 present some of the obtained solutions’ 3D, contour, and 2D plots. In order to tackle
complex nonlinear issues, the solutions are dependable, efficient, and manageable, and
the generated results provide a basis for further research. The study’s method used in this
paper is characterised by its ability to generate simple, reliable and original solutions to
nonlinear partial differential equations (NLPDESs) in mathematical physics. To the best of
our knowledge, no such work has been done before for this problem. The Maple software
has been used to check the correctness of each solution found.

1. Introduction

NLPDE:s are frequently used to describe complex physical events in the disciplines of chemistry, biology, mechanics, and physics [1-5] . It’s
an exciting attempt to find accurate solutions to NLPDEs, and academics have made great strides in this direction [6] . Many techniques
have been developed over time to obtain analytical solutions for these kinds of issues. Because of their innately unpredictable behaviors,
NLPDESs continue to provide substantial management and control issues despite these developments [7,8] . A system can change quickly
even with tiny modifications to some of the influencing variables. Therefore, scientists from different disciplines are investigating analytical
form solutions of nonlinear equations to understand and investigate complex processes [9—16] . These solutions aid in our understanding of
the behaviors of many nonlinear occurrences by illuminating their conceptual and visual connections. Therefore, in order to obtain deeper
understanding, scholars who are interested in nonlinear phenomena, whether in engineering and other scientific fields, have been examining
these analytic-form solutions [17, 18] .

The (2+1)-dimensional CIE is a NLEE that was first developed for use in combustion chemistry and combustion physics research.
Characterizing the kinetics of chemical interactions during combustion processes is essential, especially when premixed flames are involved.
Since its development, the CIE has been extensively studied and applied in the field of science. In many other disciplines, including electrical
science, nuclear physics, ecology, fluid dynamics, and others, it has been widely used to explain the physical processes of mass movement
and particle dispersion. In mathematics and physics, the (2+1)-dimensional CIE is primarily studied because it offers a valuable model for
examining the diffusion phenomenon that occurs a gas in a homogeneous medium.

In this paper, motivated by other studies, we used the modified extended tanh expansion method (METEM) approach to study the (2+1)-
dimensional CIE and get soliton solutions. Our ability to represent different wave patterns of complex physical events in scientific disciplines
is made possible by these innovative discoveries. The physical processes of mass transport and particle diffusion can be described using
the well-known reaction diffusion equation known as the CI equation. Numerous scientific and technological domains, including as fluid
dynamics, plasma physics, ion-acoustic waves in the plasma, sound waves, electromagnetic waves, and signal processing through optical
cables, use this equation. It is now known as the Chafee—Infante equation, and it was initially proposed by Nathaniel Chafee and Ettore
Infante.

Email address and ORCID number: ftmnrtlp @gmail.com, 0000-0001-7488-3254
Cite as: F. N. Kaya Saglam, New analytical wave structures for the (2+1)-dimensional Chaffee-Infante equation, Univers. J. Math. Appl., 8(1)
(2025), 41-55.



https://doi.org/10.32323/ujma.1633133
https://dergipark.org.tr/en/pub/ujma
https://orcid.org/0000-0001-7488-3254

42 Universal Journal of Mathematics and Applications

The study and identification of different types of optical solitons is crucial to the investigation and application of this equation. In this
context, researchers have carried out several studies. Sulaiman et al. obtained new lump solutions for the (2+1)-dimensional CIE using the
Hirota bilinear form (HBF) [19] . Zhu et al. obtained analytical solutions to the main equation by the application of two methods involving
the solutions of the trigonometric and hyperbolic functions [20] . To find closed-form solitary wave solutions for (2+1)-dimensional CIE,
Akbar et al. used the first integral method [21] . Ay and Yasar Painlevé constructed Béicklund transformations and the other symmetries in
non-local structures by using the shortened expansion approach. They put these symmetries in place and constructed the corresponding
single variable Lie conversion group using an extended system. Also they proposed novel correct solution profiles in this transformation
group by combining other simple accurate solution structures [22] .

In this paper, we consider the (2+1)-dimensional CIE in the form [19-22] :

Vx,+<fvxxfov3fov)x+nvyy=0. (1.1)

Here V (x,y,t) is the function which describes the intricate wave profile o, 1 are the coefficient for diffusion and degradation, respectively.
The primary motivation for studying the (2+1)-dimensional CIE in mathematics and physics is that it offers a practical model for examining
the diffusion happening of a gas in a homogeneous medium. Obtaining several families of analytical soliton solutions and illustrating the
dynamics of solitonic structures of the (2+1)-dimensional CIE will be the main goals of this study. These new discoveries enable us to depict
different wave patterns of complex physical occurrences in a variety of scientific fields.

The rest of the paper is structured as follows: Description of the METEM is given in §2. The implementation of the proposed method are
provided in §3. The dynamic behaviors for the various solutions is shown in 3D, contour, and 2D graphs in §4, and the findings are explained.
Lastly, §5 some conclusions are presented.

2. Description of Applied Method

Assume that the presence of a NLPDE in the following form [23] :
N(V7VX7‘/_\’7‘/17V)£)C7Vyy7V)Cy7VXt7~"):O7 (2-1)

where N stands for both the polynomial in space and time and its partial derivatives of V (x,y,7). In order to solve Eq. (2.1), the subsequent
wave transforms are used:

Vi) =UE), &=axtby—c, 2.2)

where U (&) represents the pulse’s form and a, b, c are the non-zero real constants.
The following ordinary differential equation (ODE) is derived from Eq. (2.1):

ow,u',u".u”,..y=o0. (2.3)

The main components of METEM are summarized below.
Step 1. To solve the ODE, take Eq. (2.3) in the series form as:

U&)=Ao+ ii (Ai<1>i(§) +Bf<1>’i(€))7 (2.4)

where A;, B; are the ordinary constant parameters to be determined later. The function ®(), which will be determined later, satisfies the
auxiliary equation as follows:

dd 2
WE) ot (@) @)
dg
In Eq. (2.5), are constants discovered be later. In subsequent, the use of Eq. (2.5) is shown.
Family 1. For ¢ < 0, the general solutions for the ansatz Eq. (2.5), given the following hyperbolic solutions:

®1(§) = —v—ptanh (/=9 (£ +&)), (2.6)

Dy(§) = —v—pcoth (V=9 (§+&)), 2.7

®3(8) = —/—¢ (tanh (2/=0 (§ +&)) +iesech (2= (5 +&))) (2.8
_ —/—¢tanh (/=0 (E+&)) +¢

)= puanh (P (E + &)1 9

(&) = VO (Heosh 2= (£ +&)+5) 210

(4sinh (2y/=¢ (§ +&0)) +3)
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gy/—w(a® +b%) —a/=@cosh (2/=0 (§ +&))

o= asioh (29 (& + &) 1 b | @
2a
e e e RN Tl 12
Family 2. For ¢ > 0, the general solutions for the ansatz Eq. (2.5), given the following trigonometric solutions:
5(8) = Votan (Vo (S +&)), (2.13)
Dy(§) = —V@cot (Ve (§+&)), (2.14)
P10(8) = Vo (tan (2y/9 (& +80)) +€sec (2@ (& + %)) (2.15)
__Ve(-an(Vo(E+&)))
q’ll(&)_ (1+tan(\/¢(§+§o))) ’ (216)
_ VP (=5c0s (2v9 (6§ +50)) +4)
P = Ve E 1 &) 1) @17
Bs(&) = 8,/¢(a2+b2)—a gocos(Z\/@(é—ﬁ—éo)) o18)
S asin (29 (E+&)) +b ’ '
. 2a
Pu(6) =ieVo {1 " a+cos (2y@(E+&)) —iesin (2P (E+&)) | 2.19)
Family 3. For ¢ = 0, the general solutions for the Eq. (2.5), the following rational solution is given:
1
Pi5(8) = “EiE (2.20)

Here, the real arbitrary parameters are € = +1, a, b, ¢, &.

Step 2. In order to balance the nonlinear terms in Eq. (2.3) with the highest order derivative, we determine n for Eq. (2.4).

Step 3. Inserting Eq. (2.4) and its derivatives in Eq. (2.3) with regard to Eq. (2.5), we get a polynomial for U (&). By taking the coefficients
of each power to zero, we yield a system of equations with unknown parameters ¢, A;, B; (i =1,2,3,...,n) and solving this system we
obtain the analytic solutions of Eq. (2.3).

Step 4. Finally, we get several analytical solutions to Eq. (2.1) by applying the transformation to Eq. (2.2) and using the solutions to Eq.
(2.3). Through the consideration of the above three families, we have acquired the analytical solutions for Eq. (1.1).

3. Analysis of Solitons for the (2+1)-Dimensional CIE

In this section of the study, we build different soliton solutions for Eq. (1.1) while taking the METEM into consideration.
The (2+1)-dimensional CIE is consider as:

V(x,y,t) =U(), &= (ax+by—ct). 3.1
When we apply in Eq. (3.1) to Eq. (1.1), we get

—aPU" (&) +b*nU" (&) — caU" (&) —acU' (€)+3acU’ (£)U? (€)= 0. (3.2)
After we integrate once with respect to &, Eq. (3.2) changes to as follows:

—d*U" (&) + (bzn - ca) U' (&) —acU (&) +acU? (&) =0, (3.3)

in which we obtain 1 = 1 by balancing U3 (&) with U” (£). The general solution to Eq. (3.3) is as follows:

U(é):Ao+A1¢(é)+31$. (3.4)

By inserting Eq. (3.4) together with Eq. (3.3) into Eq. (2.5) and setting the coefficients to zero for various powers of ®(&), we have a system
of equations. And we solve using the Maple software program to get the subsequent equation system:
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®(£) 1 acA —24°A; =0,
D(E): - ((—30A0A1 te)a— bzn) A =0,

1
®(&) 34 a0 (BlAl +A3 - 5) —2a°A10 =0,
B(E): ((6316A0—cg0)A1+GA(3)+cBI —GAo)a—bzn(—Al(p—i—Bl) —0,
o1, L N S
(I)(é) :3Bja BlA1+A0 3 c—2a Blng(),

()7 ((3310A0 +cp)a— 17277(/)) B; =0,
®(E) 3 : —2a°B19? +acB} =0.

By solving above system for By, A;, Ag, ¢, and @, we get these set solutions:

Set 1:

Set 2:

Set 3:

Set 4:

Set 5:

Set 6:

2 b2
Bl:O7 A]:\/;a, AO:O7 C=J7 (pzfi

V20 ) c
B = Al = Ay = =1 —
1= A 0, Ap=0, ¢ PRI 2
3v20 +/o [2 b? 4
Bl:&y Ay =1/Za, Ag=0, C:J7 Qo= G.
16a o a 16a2

V2 [2 1 3a2\/26 +2b*
Bl:J, A =+/Za, Ag= -, C:LJFT o=— ° )
2 2a 32a2

V2 1 —3a%6V/2+2./cb?
31: 0-7 A1:07 A0:_77 c= 3a Gf+ \/6 n7 (P:_i
8a 2 2a\/c 8a?

For Set 1, substituting the values of constants into Eq. (3.4) and Eq. (3.1) along with Eq. (2.6)-Eq. (2.20) and simplifying, yields next
solutions:
Family 1: When ¢ < 0 and the hyperbolic solutions of Eq. (1.1) are given as follows:

[ o p’nt
Vi1 (x,y,t) = —tanh ( ) (ax+by— T)) , (3.5)
[o b2nt
VI,Z(X»)’J):*COth( ﬁ (CIX‘Fby*T)),
20 ’nt , 20 b’nt
Vi3 (x,y,t) = — | tanh — (ax+by——— | +isech — |ax+by—— ,
’ a a a a

%a<,%f\/%tanh<\/%<ax+b)’*@)>) (3.6)
<1+ %tanh(\/%(“x+by7@>>> | |

5 —4cosh (\/ijg (ax+byf ”Za"’))

Vis(x,y,t) = >

(3 +4sinh <\/§j‘;<ax+by— %))) 7

Vl,4 (X,y,t) =
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\/g( 2a(a2+b —+/26cosh <\/izzy<ax+by— @)))
<2as1nh(\/7<ax+by b? nt)) +b> )

2a

(a+cosh(\/>(ax+by "”f)) Slnh(\/>(ax+by bzm>)>

Family 2: Given ¢ > 0, using the offered method obtained the following trigonometric solutions for Eq. (1.1):

. c pne
Vis (x,y,t) =itan (\/% (ax+by— T)) )

Vie(x,y,t) =

Vi (x,3,0) =1—

Vi (eyt) = <1+tan< -2 (ax+by7”2am)>)’
V112 (x,,1) l(4—5cos( —i—‘z’(ax_g-by_biaru)))

Vigs (x t)_\/ﬁ(w Fcos(F(ax+by,@>))
113 (1) = (asin<\/%(ax+by7%>)+b> :

2a

(o (8 (ot 28)) a5 (o= 59))

Family 3: When ¢ = 0, then Eq. (1.1) has rational solution:

\/ﬁ

_vVve
—.

ax+by — —ba"’

Viga(x,yt)=1-

Viis(xyt) =—

For Set 2, substituting the values of constants into Eq. (3.4) and Eq. (3.1) along with Eq. (2.6)-Eq. (2.20) and simplifying, yields following
solutions, respectively:
Family 1: When ¢ < 0 and the hyperbolic solutions of Eq. (1.1) are given as follows:

! o 3a2V/26 + 2b* 1
V2,1()€»y,t):5 (1—tanh (\/;(ax+hy_251 7

1 o 3a2\/20 +2b*nt
Vaa (i) =5 <1—coth <\/;2 (mb _W;n)»
l "v/20 + 252 226 + 2
Vaz (x,y,1) = 5 (1 — (tanh <\/§ <ax+by— W)) +isech <\/;T2 (ax+by— W 7
' a a

2 2
Vaalet) = L4 Za (-~ [anh (/2 (avt py - 22120 ))
24X, 01) = = . . ’
2 (H— &tanh(@(mq_by_%;M)))

1 5— 4co%h(\/7<ax+by @))
Vas(oyt)=o[1+

2 3+4smh(\/>(ax+by @» |
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2 bz - ) 5
1 @(\/@_\/%COSh(\/%(ax—kby—@)))
Vag (x,0,1) = 5 + |
2 <asinh (\/72 (aHby @»M)

a

V2.7 (x7y>t) =1-
' c 3a>\/26 +2b°nt
a+ cosh — lax+by— ————
242 2a
/ 3a2v/20 + 2b?
_sinh o ax+by — da”v2o+2b"nt
242 2a

Family 2: Given ¢ > 0, using the method obtained the following trigonometric solutions for Eq. (1.1):

V- _! o 3a>V20 +20%nt

2.8 (X,,1) 5 <1 +itan (Q <ax+by T))) :
_1 o 3a*V20 420t

Va9 (x,3,1) 3 (1 icot <\/; (ax+by a\/72an>>) 7

2 2 2
tan( ,% <ax+by3a V20 + brll
V 2a
Voo (xy,t) =5 | 1+i
2 c 3a2\/20'+2b2nt
+ sec ) ax+by—

(1 (o )
V2,ll(x7y7t):7 5 3
2 1+ tan (,/ (ax—l—by 43“2@;2’9“711»

1 i<475005<\/%(m+by7@>)>

Vano (x,y,t) =5 [ 1+

2 3+Ssin(\/%<ax+by_%(w>) )

\/ % 2 (\/ agzuzbz —/—gcos (, /— (ax-i—by 43612\/%:%2”[)))
V2,l3 (XJJ)—*"‘ 5
2 (asin(,/ 2u2 (ax+by %))—O—b)

a

2./ 2
a-cos c ax+b ,w
V 242 2a
2 /2 2 2
—isin ,/—i ax+by——3a o +2bmi
2a? 2a

Family 3: When ¢ = 0, then Eq. (1.1) has rational solution:

—

V2.14 (X,yJ) =1-

242

v =~ .
215 (6.0:0) 2 3a20\/g+2b2m
ax+by — — 5 ——

For Set 3, substituting the values of constants into Eq. (3.4) and Eq. (3.1) along with Eq. (2.6)-Eq. (2.20) and simplifying, yields following
solutions, respectively:
Family 1: When ¢ < 0 and the hyperbolic solutions of Eq. (1.1) are given as follows:

" tanh (\r <a)lc+by bz”’))

1

Vao (x,y,t) = coth <\/><ax+by hznz>>

Va1 (x,y,t) =
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. 1
Va3 ) = tanh (\/E (ax+by— M)) +isech <\/ii‘z’ (ax+by— @)) 7
Vo (oat) = F( tanh<\/7(ax+by bm))) ’
( tanh (\/7 (ax+by— i’)))

o) 3+ 4sinh (/22 (axtby—22Y) |

5 —4cosh (\/iz; (ax+by— 7”’))
Vi (et) = \/To; (asmh <\/> <ax+by b nz)) +b) 7 37

a< 20(a +b — /20 cosh <\/2azzy(ax+by7h2am)))
Va7 (x,y,t)=1- 2a

(oveon (2 (ors - 52)) s (v 52))

Family 2: Given ¢ > 0, using the method obtained the following trigonometric solutions for Eq. (1.1):
1

V38 (x,3,1) = o (F(ax+by bzm>>
1
Vi (x,y,t) = _icot (\/%( ban)) ’

1

V3,10(x,y,t): i(tan (F(ax—i—by ))—i—sec (\/T(ax—i-by—@)»7

y B <1+tan(\/%(ax+by—%m)>)
O ([ (wr2m)))

3+55in<\/§< bzam>>

Va2 (x,1) = i<4—5008 (\/% (ax-l—by— hzam)» ’
\/%<asin<\/7<ux+by bm>>+b)
V313 (xy) =

(V=25 v =meos (/<28 (wxy - 2)) )

2a

(a+eos (/22 (at by~ 2Y) ~rsin (/22 (axt by 20)))

Family 3: When ¢ = 0, then Eq. (1.1) has rational solution:

V2o vint
Va5 (x,0t) = ——— (ax+by— Tn) .

V3,l4(xayat) =—1+

2a

For Set 4, substituting the values of constants into Eq. (3.4) and Eq. (3.1) along with Eq. (2.6)-Eq. (2.20) and simplifying, yields following
solutions, respectively:
Family 1: When ¢ < 0 and the hyperbolic solutions of Eq. (1.1) are given as follows:

—2 o b*nt
Va1 (xp,t) = *\/zitanh (\/% (ax+by— T”))

1

Ftanh(F(ax—Q-by ))
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V=2 c b’nt
Vao (x,3,0) = — 3 coth e ax—b—by—T
1
v/ —2coth (, [~ (ax+by - @))

c b2nt
N tanh< f@<ax+byf P ))

Va3 (x,y,t) = T

e
+isech( — 62 (ax—i—by——n))
4a a

T a
B g ([ (a2
V2o (1+ —Jéﬂanh(,/—&(ax+by—”za”’)>>
"l (| (- EE)))
Ve (ent) = ¢j2<5 —4cosh (J%(ax—i—by— bz;”)))

2(3+4sinh “/%(ax—i—by— %Lt»)
R e o)
\/f2<5—4cosh (J%(‘”Hrby* bi?l)))

1
[ 1 —32a
V. W) =1/—=—
47 (rnt) 2 G 2
a+cosh —— |ax+by———
a a

+

a
2

—sinh (1/—% (ax—i—by—b nt))
a a

Family 2: Given ¢ > 0, using the method obtained the following trigonometric solutions for Eq. (1.1):

1

1 2
Va8 (x,9,t) = —=tan (U%(aerb 7M>)+ 5 ,
V2 4a a ﬂtan(,/ﬁz(ax—i-by—bm))

a

a

1 o sz]l‘ 1
V479(x7y7t):77C0t<\/i(ax+by, >)7 7
V2 4q? a ﬁcot< = (ax+by— bZnt))
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2
tan( %(ax—f—by—m))
1 a a 1

Vazo () = ~ v + = (3.8)
o (% (o= EN | o )Y
5o
oy o 2) (o rer-2))
’ 2<1+tan(\/§( 1)) ﬁ(lftan<\/;<ax+byfb 9))
o Al 52) (oo (sn-S2)
’ 2(3+5sin (/& (ax+by— ””’))) V2 (4=5c0s (/G (ar+by—51)))
R VE (/5D _gmwg( D))

m(asin(f(ax+by )>+b)
V25 (asin (/& (av+by— 1)) +b) |
WV Fe B )

1 2a
Vaa(xyt) =1/—5 | 1= p o - nt
414 \/72 a+cos<\/zz(ax+by bn)>71sm<\g( ))

2a

) ()

Family 3: When ¢ = 0, then Eq. (1.1) has rational solution:

2a®
24> o 2
Viis (x,0,t) = — g _vee <ax+ Y*M)
’ b nt da a
(ax+by )

For Set 5, substituting the values of constants into Eq. (3.4) and Eq. (3.1) along with Eq. (2.6)-Eq. (2.20) and simplifying, yields following
solutions, respectively:

Family 1: When ¢ < 0 and the hyperbolic solutions of Eq. (1.1) are given as follows:

I 3a2\/26 + 2b* 11
V51 (x,3,0) = 57 Ztanh <\/; (aerby —

1
4tanh (1 / ﬁ (ax+by— uz@;%z t))

L1 3a2\/26 + 2b* 1
Vso (x,y,1) = E_ZCOth <\/; (ax—i—b Y-

1

- 2./ 2 ’
4coth (, [ 5oz (aerbyf da2v20+2bmt 2(2’:% '7!>)
2./ 2
tanh (”832 (ax+by3a 2(;:217 m))
. [ o 3a2\/20 +2b*nt
+lSeCh< 8a2<ax+by—azan

1

) 3.9)
2 2 2 2
tanh( [= (m py_ 3PV 20t
8a 2a
2 2
HM( [= (m,,ysa mwbnt))
8a 2a

NS

1
Vs3(x,y,t) = 5
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1 \/%(—ﬁ‘az— 322tanh<r(m+by 73“2‘/272’;2”2"’»)
B T g o (o (e by S
\/%(1+ 322tanh<\/;<ax+by @)))
_32a(—ﬁ— 32uztanh<\/%(ax—b—by—M;:%ZTL’)>>7

(5 4cosh (/52 (av by~ 202G 20 )

Vss(xyt) =5+
2 4 (sasinn (/2 (avt by 220 ))

(3+4S1nh<\/7(ax+by @)))

+ <5 4COSh(\/><ax+by %;2%]1)))7

@(W, \/%cosh (\/g (ax+by7@)>)

1
Vaobont)= 2" <a sinh <\/7 <ax+by 73“2@;2”2’7’» +b)
\/%<asinh (\/;(ax—l—by %))—i—b)

s (VF oo ([ (wxs by g )

Dl —

V7 () = 2+ + a
5,7 X s =5 -
2 o 3a2\/26 +2b* 1
a+ cosh — | ax+oy—- —————
8a? 2a
3a*V26 4 2b*nt
—sinh i ax+by_w
8a? 2a

1
B 8a

2 2
a+COSh \/E ax_‘_by_w
802 2a
226 +2b?
_ sinh VGZ x4 by JEV20 260
8a? 2a

Family 2: Given ¢ > 0, using the method obtained the following trigonometric solutions for Eq. (1.1):

1 1 c 3a2\/26 +2b* 1t
Vs g (x,y,t) = 3 + \/%tan < s (ax+by— —

4itan< —ﬁ(axﬁ—by—%;ﬂﬂm))’
! ! o 3a’\V20 +2b°nt
V579 ()C,y,l) = E‘f‘\/%COt (\/; (ax—O—by— T
_ 1
dicot (\/= 55 (ax+by— 228 20n )

c 3a’V/20 + 26"t
t py— 2 VO N
1 I o (\/; (“H 2a
2V20 +2b°
+sec ﬁ axt by 2YZOT 2N
8a 2a

+
2 2

Y O L L el L

8a? 2a

4i
3a*\/20 + 2%t
+9ec< 62<ax+b _W’>>
8a 2a
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51

y 1 \/7%(1+tan(\/?<ax+b} @)))

51 (800) = 5 — <1—tan(\/%(ax+by,@>))
(17tan<\/?<ax+by %)))
4i(1—tan(\/%(ax+by,%a+2bzm))>v

1 \/%(475005 (\/?(a)hLb) 4%”2‘/%;2b2m)>)
Vizbot) = 2" (3+55in (J%(aerby* 4‘”2@;21’%')))
rssly oo 25)

+ 2 2 )
4i(475cos(1/7m (ngrbny%#)))
2 2_p2 3232 op?
1 @(W—\/—%COS(\/%(ax—Fby—W)))
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Family 3: When ¢ = 0, then Eq. (1.1) has rational solution:
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For Set 6, substituting the values of constants into Eq. (3.4) and Eq. (3.1) along with Eq. (2.6)-Eq. (2.20) and simplifying, yields following

solutions, respectively:
Family 1: When ¢ < 0 and the hyperbolic solutions of Eq. (1.1) are given as follows:
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Family 2: Given ¢ > 0, using the method obtained the following trigonometric solutions for Eq. (1.1):
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Family 3: When ¢ = 0, then Eq. (1.1) has rational solution:
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4. Discussion of the results achieved and graphical representation

The (2+1)-dimensional CIE is solved using the canonical-like transformation approach and the trial equation method [24]. Sulaiman et al.’s
is focused on finding new lump solutions to significant equations with variable coefficients, specifically the (2+1)-dimensional CIE [19]. In
this study, METEM is utilized for obtaining several soliton solutions for the (2+1)-dimensional CIE, like trigonometric, hyperbolic, and
rational solutions. METEM offers deeper analysis and gives an easier and powerful framework for researching complex occurrences like
impact interactions. 3D, contour, and 2D graphs are also provided to help comprehend the patterns of these solutions.

A kink soliton is usually a type of soliton that moves at a certain speed and conserves its energy. Its graph shows a sharp transition from an
initial low value to a high value (or vice versa). This can show the movement of a particle in a potential trough or a phase change in a field.
Bright solitons are solutions in which the intensity is sharply higher, with a pronounced peak in the centre, while dark solitons are solutions
in which the intensity decreases in the centre. The difference between the two types of soliton is the behaviour of their density in the centre.
Singular solitons are typically more complex and sometimes theoretically significant solutions. Such solutions usually have infinite values in
a given region. Solutions with a singularity are usually cases where a wave or field grows very rapidly, indicating a breakdown point at the

centre.
08 08
2 06 06
04
04
02
02
= ¢ 0-
5 o =
-02
02
—04
04
—06
-06
2 -038
-08
2 2 3
-2 -1 0 1 2 3 - -
. ,

(a) 3D (b) Contour

I/L. L(‘Y- », l)
>
T
Pialeyo)
RERT]

—0.5

Figure 4.1: The graphical explanation for Vi ; (x,y,1) to Eq. (3.5) when
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5. Conclusion

In this paper, various analytical solutions for (2+1)-dimensional CIE were found using an efficient methodology. In contrast to conventional
methods used up to this point, METEM exhibits its capacity to generate novel and broadly applicable precise solutions. This manifestation
demonstrates the great promise and effectiveness of the technique in solving difficult single-wave issues that are frequently encountered in
mathematical physics. The approach employed here yields analytical solutions, including trigonometric, rational, and hyperbolic function
solutions, to the (2+1)-dimensional CIE. Numerous phenomena, including periodic waves, kink-wave patterns, and bright and dark solitons,
have been reported in relation to the (2+1)-dimensional CIE. To further explain the dynamic behavior of resource solutions, graphical
representations have been created. The unique dynamic structures and features of these solutions can be fully understood through the use of
3D, contour, and 2D graphs. In the field of mathematical physics, these functions are useful to solve PDEs and offer a handy way to illustrate
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periodic solutions [25-28] . This specific approach has the ability to address a multitude of higher-dimensional nonlinear issues that arise in
the fields of mathematics and the applied sciences [23] . As a result, it is expected to contribute to the comprehensive study and investigation
of future research. The new results obtained from a wide range of dynamical structures and arbitrary parameters are expected to provide
important new insights into the behavior of the gas diffusion equations in a homogeneous medium. The accuracy of these results has been
ensured and extensively verified using Maple symbolic computing software.
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