
Turkish Journal of Science & Technology Research Paper
20(1), 327-337, 2025 https://doi.org/10.55525/tjst.1637713

Exploring the Impact of Model Capacity and Parameter Tuning on 3D Semantic

Segmentation

Furkan KARAMAN1*, Fatma GUMUS2
1 Department of Computer Engineering, ATASAREN, National Defence University, İstanbul, Türkiye

2 Department of Computer Engineering, National Defence University, İstanbul, Türkiye
*1 furkan09karaman@gmail.com, 2 fatma.gumus@msu.edu.tr

 (Geliş/Received: 11/02/2025; Kabul/Accepted: 18/03/2025)

Abstract: 3D semantic segmentation, the process of assigning semantic labels to every point in a 3D space, is critical for
numerous applications, including autonomous driving, robotics, medical imaging, and urban mapping. Despite significant
progress, challenges such as data imbalance, scalability, and real-time processing constraints persist. This study addresses the
real-time processing issue by comparing Tiny, Medium, and Large PointNet-inspired models utilizing the ShapeNetCore
dataset. The models incorporate the T-Net module for pose normalization to maintain robustness against geometric
transformations. Class-specific segmentation is explored by training separate models for the Airplane, Motorbike, and Car
classes, allowing custom optimizations for each class. The Tiny model with 512 sampled points where the batch size is 16 and
trained for 40 epochs with a starting learning rate of 1 × 10!" achieved an average training accuracy of 86.18% and an average
validation accuracy of 83.50%, making it optimal for real-time applications due to its fast inference speed and high accuracy.

Key words: 3D semantic segmentation, point cloud processing, scalability, real-time processing.

3B Semantik Bölütleme Performansı Üzerinde Model Kapasitesi ve Parametre Ayarının
Etkisinin Araştırılması

Öz: 3B semantik bölütleme, üç boyutlu uzaydaki her noktaya anlamsal etiketler atama sürecidir ve otonom sürüş, robotik, tıbbi
görüntüleme ve kentsel haritalama dahil olmak üzere çok sayıda uygulama için kritik öneme sahiptir. Önemli ilerlemeye
rağmen, veri dengesizliği, ölçeklenebilirlik ve gerçek zamanlı işleme kısıtlamaları gibi zorluklar devam etmektedir. Bu çalışma,
ShapeNetCore veri setini kullanan Tiny, Medium ve Large olarak PointNet’ten esinlenen modelleri karşılaştırmak suretiyle
gerçek zamanlı işleme sorununu ele almaktadır. Modeller, geometrik dönüşümlere karşı gürbüzlüğü korumak üzere poz
normalizasyonu için T-Net modülünü içerir. Uçak, Motosiklet ve Araba sınıfları için ayrı modeller eğitilerek sınıf-özel
segmentasyon çalışılmış ve her sınıf için özel optimizasyon değerlendirilmiştir. Küme büyüklüğünün 16 olduğu ve 1 × 10!"
başlangıç öğrenme oranıyla 40 epok boyunca eğitilen 512 örneklenmiş noktaya sahip Tiny modeli, %86,18 ortalama eğitim
doğruluğu ve %83,50 ortalama doğrulama doğruluğu elde etti ve test hızı ve yüksek doğruluğu nedeniyle gerçek zamanlı
uygulamalar için ideal olduğu değerlendirilmiştir.

Anahtar kelimeler: 3B semantik bölütleme, nokta bulutu işleme, ölçeklenebilirlik, gerçek zamanlı işleme.

1. Introduction

The rapid advancements in 3D semantic segmentation have significantly improved the ability to analyze and
interpret point cloud data. Applications such as autonomous navigation, medical imaging, and remote sensing rely
on robust segmentation models to classify and segment objects in complex 3D environments. Despite notable
progress, achieving high segmentation accuracy while maintaining computational efficiency remains a critical
challenge, particularly for real-time applications. A deep learning model PointNet [1] and its derivatives such as
[2] leverage hierarchical feature extraction to capture both local and global geometric properties, enabling precise
object classification and segmentation. Voxel-based approaches, on the other hand, convert point clouds into
structured 3D grids, enabling the use of convolutional operations [3-5]. Hybrid approaches combine both point
cloud and voxel-based methods [6-8].

In contrast to voxel-based and hybrid methods, which introduce quantization artifacts and impose high
memory requirements, PointNet operates directly on point clouds, preserving geometric details while maintaining
efficiency. This study systematically investigates the influence of architectural and hyperparameter decisions on
the segmentation performance of a PointNet inspired architecture. It examines how sampling density affects
accuracy, the role of batch size in convergence speed, and the trade-offs between model capacity and segmentation

* Corresponding author: furkan09karaman@gmail.com. ORCID Number of authors: 1 0009-0009-1304-8103, 2 0000-0001-5191-0037

Exploring the Impact of Model Capacity and Parameter Tuning on 3D Semantic Segmentation

328

quality. The paper also emphasizes the importance of real-time applicability, shedding light on a frequently
overlooked but crucial factor in 3D segmentation methodologies. This work shares results on class-specific
segmentation where a separate segmentation model was trained for each class independently. This approach of
segmentation allows custom optimization such that each class can have its architecture, hyperparameters, and loss
function. This is also better for imbalanced data; since each model only focuses on one class, it can be better suited
for handling rare classes. There are some downsides to this approach, such as if multiple models predict the same
pixel, conflict resolution might be required. This paper does not address the approach but presents fine-tuned
results for models with different capacities (Tiny, Medium, Large) and three sets of hyper-parameters.

The remainder of this paper is structured as follows: Section 2 provides a comprehensive literature review,
summarizing key developments in 3D semantic segmentation, including deep learning-based methodologies,
benchmark datasets, and open challenges. Section 3 presents the material and methods. Section 4 presents our
experimental results, detailing the dataset, preprocessing steps, and PointNet parameter tuning strategy. Section 5
discusses challenges and open issues in the field, such as data imbalance, scalability, and annotation costs.

2. Literature Review

Point cloud-based methods operate directly on unstructured 3D point clouds, allowing for flexible and
efficient data processing. PointNet [1] was a pioneering architecture that employed permutation-invariant networks
to process unordered point clouds to perform three major tasks: classification, part segmentation, and semantic
segmentation (Figure 1). To prevent sensitivity to point ordering, it uses max pooling. Each point is processed via
Multi-Layer Perceptrons (MLPs), and the maximum is computed across all points to learn the global features of
the scene. The method’s primary advantage is its ability to directly handle raw point cloud data with high speed.
PointNet struggled to capture local geometric features, which was addressed by PointNet++ [2]. Instead of using
a fixed grid (like CNNs in images), PointNet++ dynamically groups points based on their geometric proximity
using a radius threshold. This allows it to adaptively learn geometric details at different scales, preserving local
curvature and surface variations. While it excelled in handling complex geometries, it required higher
computational costs and processing time. Dynamic Graph CNNs (DGCNN) [9] further expanded on this concept
by introducing dynamic graph construction, which updates the neighborhood connections during training. Despite
its success, the method required significant computational resources, limiting its scalability for large datasets.

Figure 1. PointNet tasks [1].

Sub-manifold Sparse Convolutional Networks (SSCN) [10] utilized sparse convolutions for more efficient

processing of 3D grids. MinkowskiNet [3] extended this concept by using sparse convolutions in 4D spatio-
temporal networks. However, voxelization leads to quantization errors, which may degrade segmentation
performance at high resolutions. It employs 4D sparse convolutions to optimize time and memory usage for large-
scale datasets. Sparse convolutions operate only on active voxels, enhancing memory efficiency.

PolarNet [5] introduced a polar grid representation to improve the processing of LiDAR data, especially when
dealing with uneven data distributions. This method demonstrated notable improvements in datasets such as
SemanticKITTI [4]. However, it faced challenges related to memory consumption and computational complexity,
particularly for large-scale applications. PolarNet processed LiDAR data using polar grid representations. It aimed
to understand the global context of the data. The model processed each cell to learn the global features of the scene.

Furkan KARAMAN, Fatma GUMUS

329

KPConv [11] achieved high accuracy in complex scenes by leveraging deformable convolutions that adapt to
irregular geometries. It defines learnable kernel points between points, and filters are automatically shaped based
on the density of the data. While it was highly effective in detailed local feature learning, it required substantial
computational resources and a complex training process.

Hybrid methods aim to combine the strengths of point-based and voxel-based techniques. SalsaNext [6] is
such a model that integrates point-wise uncertainty estimation with voxel-based representations. It achieved real-
time performance for applications like autonomous driving. Using an encoder-decoder architecture, it learned
features from LiDAR inputs. The model optimized computations with polar grid representations and enhanced
reliability through uncertainty estimation in segmentation predictions. This method is particularly effective for
real-time applications, such as environmental sensing in autonomous vehicles. PVCNN [12] is another hybrid
approach that integrates the computational efficiency of voxel grids with the flexibility of point-level
representations. It offered a balanced approach for real-time applications. SPVConv [7] merged sparse voxel
processing with high-resolution point features, resulting in enhanced segmentation accuracy while maintaining
computational efficiency. These hybrid models are well-suited for real-world applications that require both
precision and high throughput.

SASSNet [8], a semi-supervised learning approach, demonstrated state-of-the-art performance in kidney
tumor segmentation. The KiTS19 challenge [13] highlighted the potential of automated 3D segmentation
techniques for kidney tumor analysis, showcasing the effectiveness of these methods when annotated data is scarce
and expensive to obtain.

The field of 3D segmentation has been extensively reviewed in the literature. Vinodkumar et.al.[14]
extensively explored deep learning-based methodologies for 3D object segmentation, detection, and classification.
Their work categorized methods based on data modalities, such as LiDAR-based approaches, point cloud
techniques, and hybrid models, providing insights into their relative strengths and limitations. Moreover, the study
offered an analysis of benchmark datasets like SemanticKITTI and ModelNet, enabling comparative evaluations
of various methods. Similarly, He et al. [15] conducted an in-depth survey focusing on three primary segmentation
tasks: semantic segmentation, instance segmentation, and part segmentation.

3. Material and Methods

For this study, we utilize ShapeNetCore [16], a subset of the ShapeNet dataset, which is a large-scale, richly
annotated repository of 3D shapes. ShapeNetCore includes 55 common object categories with 3D models,
providing a reliable benchmark for 3D semantic segmentation. The experiments focused on the three vehicle
categories, which are also included as part of the PASCAL 3D+ [17] dataset. The experiments were conducted on
the classes: airplane, car, and motorbike, each segmented into specific parts (Table 1). The dataset consists of point
cloud representations of 3D models along with manually verified category and alignment annotations (Figure 2).
A class-specific segmentation method was used, where each class had its model trained separately. This allows
the model to optimize for the unique features of each class.

 (a) (b) (c)

Figure 2. Samples from the dataset: a)Airplane b)Car c)Motorbike.

Exploring the Impact of Model Capacity and Parameter Tuning on 3D Semantic Segmentation

330

Table 1. Data distribution.

Class Segmentation parts Training size Validation size
Airplane wing, body, tail, engine 2955 739

Car wheel, hood, roof 5420 1356
Motorbike wheel, handle, gas tank, light, seat 187 47

3.1. Preprocessing

One of the key challenges in handling point cloud data is that different 3D scans contain a variable number
of points. This variability makes batch processing difficult. To ensure uniformity, we perform the following
preprocessing steps:

1) Fixed-size Sampling: We randomly sample a fixed number of points from each point cloud, choosing
from {256, 512, 1024} to analyze its impact on performance.

2) Normalization: The point clouds are normalized to ensure scale invariance, making the model robust to
different object sizes.

3.2. Model variants and hyperparameters

We employ a PointNet-inspired architecture. The proposed model processes unstructured 3D point cloud data
to classify each point into predefined segment categories. The architecture consists of three main components: an
input transformation block, a hierarchical feature extraction network, and a segmentation head.

Segmentation outputs should remain unchanged under geometric transformations (e.g., translation or scaling).
To achieve pose normalization, we apply rigid or affine transformations to input point clouds. This is done using
a Spatial Transformer Network (STN) [18], implemented as the T-Net module in PointNet. The T-Net learns a
3 × 3 transformation matrix using a multi-layer perceptron (MLP), max-pooling, and fully connected layers. This
matrix is then applied to the input before feature extraction, ensuring transformation invariance. While global
features are sufficient for classification, segmentation requires capturing both local and global contexts. PointNet
integrates local point features with global shape descriptors, ensuring fine-grained segmentation. To systematically
explore the parameter space, we experiment with the three sets of hyper-parameters in Table 2 and the learning
rate scheduled for decay by half every 5 epochs.

Table 2. Hyper-parameter sets.

Parameter set Number of sampled points Batch size Training epochs Initial learning rate

Set-0 256 8 20 1 × 10!#
Set-1 512 16 40 1 × 10!"
Set-2 1024 32 60 1 × 10!$

We evaluate three different model capacities (Table 3): The large model serves as an upper bound for

computational complexity, while the tiny model allows efficient benchmarking with minimal hardware
requirements. We ran the experiments on NVIDIA L4 Tensor Core GPU for each hyper-parameter set in Table 2
and the models in Table 3.

Table 3. Number of filters in T-net and segmentation-net convolutions and network size.

Model

Variant Transformation-net Segmentation-net Network size (Total parameters / Model
Size)

Tiny 16, 32, 256, 128, 64 16, 32, 32, 32, 128, 512 ~344K / 1.31 MB
Medium 64, 128, 1024, 512, 256 64, 128, 128, 128, 512, 2048 ~7M /28.11 MB

Large 128, 256, 2048, 1024,
512

128, 256, 256, 256, 1024,
4096 ~45M /173.22 MB

Furkan KARAMAN, Fatma GUMUS

331

3.3. The architecture

The segmentation pipeline consists of three main components: input transformation, hierarchical feature
extraction, and segmentation output (Figure 3). To ensure pose invariance, an affine transformation was applied
to the input point clouds using a Spatial Transformer Network (STN). This module learns a transformation matrix
via a multi-layer perceptron (MLP), max-pooling, and fully connected layers. This transformation matrix
normalizes point positions, reducing sensitivity to spatial distortions.

Figure 3. The segmentation pipeline.

The model extracts feature through multiple convolutional layers, progressively capturing local and global

geometric structures. The key steps in this pipeline are point-wise feature learning, feature propagation, and global
feature aggregation. A series of 1D convolutional layers with ReLU activation map each point to a higher-
dimensional feature space. Intermediate features are aggregated across different scales, allowing for both local and
global context preservation. Using a max-pooling operation, a global shape descriptor is generated, summarizing
the overall object structure while retaining permutation invariance.

The extracted hierarchical features are concatenated and passed through a final segmentation head, which
consists of 1D convolutional layers followed by a softmax activation function. This module assigns a class label
to each point in the input cloud, completing the segmentation process.

Exploring the Impact of Model Capacity and Parameter Tuning on 3D Semantic Segmentation

332

4. Experimental Results

The results in Tables 4-7 highlight the trade-offs between model size, training time, inference speed, and
segmentation accuracy. Before class specific insights, a general overview is presented. Tiny models (Table 4)
demonstrate the lowest computational overhead, with training times per epoch under 7 seconds and inference times
per sample below 2 seconds across all hyperparameter sets. These models provide a fast and lightweight solution
while maintaining competitive accuracy.

Table 4. Results for model Tiny.

Class Hyper-
parameters

Training
time per

epoch (Sec.s)

Inference
time per

sample (Sec.s)

Training
loss

Validation
loss

Training
accuracy

Validation
Accuracy

Airplane Set-0 4.1349 1.7620 2.3877 2.4146 0.8780 0.8698
Airplane Set-1 2.3104 1.7696 8.6765 8.6967 0.8840 0.8740*
Airplane Set-2 2.4414 1.8607 34.0441 34.0239 0.8712 0.8708

Car Set-0 6.8611 1.8447 2.2676 2.3316 0.9157 0.8872
Car Set-1 3.1754 1.6191 8.5696 8.5645 0.9204 0.9153*
Car Set-2 3.7116 1.8042 33.9594 33.7699 0.9095 0.9091

Motorbike Set-0 2.0226 1.8694 2.4935 2.6193 0.8071 0.7603*
Motorbike Set-1 1.2687 1.9001 8.5986 8.7146 0.8039 0.7519
Motorbike Set-2 0.9450 1.9736 33.1477 29.3361 0.7664 0.6769

Average 2.9857 1.8226 14.9050 14.4968 0.8618 0.8350

Medium models (Table 5) increase the parameter count significantly, leading to longer training times (up to

14 s/epoch) and inference times exceeding 2 seconds. In addition to the increased computational cost, the Medium
model achieves worse validation accuracy in Set-1 for Airplane (87.40%→86.31%), Car (91.53%→89.14%), and
Motorbike (75.19%→71.38%) compared to the Tiny model.

Table 5. Results for model Medium.

Class Hyper-
parameters

Training
time per

epoch (Sec.s)

Inference
time per

sample (Sec.s)

Training
loss

Validation
loss

Training
accuracy

Validation
Accuracy

Airplane Set-0 1.8816 2.2174 8.5226 8.4514 0.8385 0.8457
Airplane Set-1 3.5018 2.0405 32.9312 32.8586 0.8593 0.8631*
Airplane Set-2 8.5038 2.0583 132.2373 131.8697 0.8130 0.8191

Car Set-0 9.1773 3.1154 15.1606 19.3051 0.8218 0.8126
Car Set-1 8.2329 2.2342 32.8249 34,8191 0.8971 0.8914*
Car Set-2 14.1265 2.1972 131.6679 131.4640 0.8797 0.8840

Motorbike Set-0 3.1759 2.9597 8.7785 23.2788 0.7758 0.6799
Motorbike Set-1 1.6189 2.0418 37.5718 107.0709 0.7741 0.7138*
Motorbike Set-2 1.6044 2.1266 221.6887 9.722.6299 0.7405 0.7093

Average 6.3708 2.3323 69.0426 1.134.6386 0.8222 0.8021

Large models (Table 6) introduce a major computational burden, requiring 12 to 33 s/epoch of training for

the large sets of Airplane and Car classes. Validation accuracy drops yet again for most cases, except Set-2 of
Airplane. In short, the increased network size and parameter count bring diminishing returns across most of the
experiments. As for the Motorbike class, validation accuracy remains inconsistent and sometimes higher than for
the Tiny model. This inconsistent behavior is best observed in terms of validation loss.

Furkan KARAMAN, Fatma GUMUS

333

Table 6. Results for model Large.

Class Hyper-
parameters

Training
time per

epoch
(Sec.s)

Inference
time per
sample
(Sec.s)

Training
loss

Validation
loss

Training
accuracy

Validation
Accuracy

Airplane Set-0 12.5527 1.9552 16.6900 16.6852 0.8040 0.8027
Airplane Set-1 13.2459 2.0164 70.2028 73.5573 0.8146 0.8151
Airplane Set-2 19.8034 0.1301 337.5113 322.4445 0.8311 0.8377*

Car Set-0 18.8614 2.2012 16.6593 18.9986 0.8238 0.8058
Car Set-1 21.1859 2.1274 65.7322 70.3808 0.8334 0.8385*
Car Set-2 33.2247 2.3344 275.3770 287.1585 0.8240 0.8240

Motorbike Set-0 4.8082 2.0731 62.1769 9503.0341 0.7364 0.6749*
Motorbike Set-1 2.3329 2.0818 217.9921 675.8121 0.7580 0.6280
Motorbike Set-2 2.7758 3.1757 1080.8776 170735.4062 0.7384 0.6785*

Average 14.3101 2.0106 238.1355 20189.2753 0.7960 0.7672

4.1. Segmentation of Airplane

Hyperparameter Set-0 indicates a small point cloud with a high learning rate, Set-1 moderate point cloud with
reduced learning rate, and Set-2 largest point cloud with the lowest learning rate. Set-0 has the shortest training
time across all model sizes as expected. However, higher training and validation loss values indicate potential
convergence issues. Set-1 achieves the best balance between training time and segmentation accuracy. The
medium model in Set-1 reaches 86.31% validation accuracy, making it a strong candidate for practical deployment.
Set-2 shows stability with lower training loss but at a significantly higher computational cost. The large model in
Set-2 reaches 83.77% accuracy but suffers from extreme inference latency (337.51s per sample), making it
impractical for real-time scenarios.

The Large Models show a notable increase in computational time and memory usage but do not achieve the
highest accuracy when compared to the Tiny and Medium Models. In Set-1, the Large Model has a validation
accuracy of 81.51%, which is lower than both the Tiny Model (87.40%) and the Medium Model (86.31%). This
suggests that, despite the larger model capacity, it may not be as well-optimized for the task at hand, likely due to
overfitting or the challenges of efficiently capturing the relevant features with a larger network.

Figure 4 shows the segmentation results on medium models under each parameter set. The qualitative results
indicate that Set-1 achieves a well-balanced trade-off between segmentation accuracy and computational
efficiency. While Set-0 exhibits faster training times, its segmentation outputs show slightly less refined
boundaries, particularly in complex regions of airplane models. In contrast, Set-2, which uses the highest number
of sampled points and training epochs, produces finer segmentation but at the cost of significantly increased
training time and inference delay. Set-1 provides a middle ground, capturing sufficient local and global features
while maintaining reasonable training and inference efficiency. These findings align with the quantitative results
in Table 4, where Set-1 consistently achieves high validation accuracy with lower training loss compared to Set-
0, without the excessive computational burden of Set-2.

The Tiny model with Set-1 hyper-parameters (512 sampled points, batch size of 16, 40 training epochs, and
an initial learning rate of 1×10⁻³) demonstrates a promising balance between computational efficiency and
segmentation accuracy. The total training time for Set-1 is 1.54 minutes, which is only slightly higher than Set-0
(1.38 minutes) but significantly lower than Set-2 (2.44 minutes). This increase in training time is justified by the
observed improvement in segmentation accuracy. The validation accuracy reaches 87.40%, surpassing both Set-0
(86.98%) and Set-2 (87.08%). The inference time per sample is 1.77 seconds, which is similar to Set-0 at 1.76s
and faster than Set-2 at 1.86s. This suggests that Set-1 maintains efficient real-time performance while benefiting
from improved model stability and accuracy. The choice of 512 points ensures that the model captures more
geometric details than Set-0 with 256 points while avoiding the computational overhead of Set-2 with 1024 points.

Exploring the Impact of Model Capacity and Parameter Tuning on 3D Semantic Segmentation

334

 (a) (b) (c)

Figure 4. Medium model inference for airplane: a)Set-0 b)Set-1 c)Set-2.

4.2. Segmentation of Car

Training time per epoch is significantly higher with Set-2: 3.71s (Tiny) → 14.13s (Medium) → 33.22s
(Large), making the Large model computationally expensive. Inference time per sample is stable in Set-1 and-2,
however, it varies for Set-2, with the Large model performing inference the fastest (0.13s), possibly due to
improved internal representations. The results for Set-1 portray better results in terms of validation accuracy.
However, training and validation loss increase across models (8.56 – 8.56 for Tiny, 32.82 – 34.81 for Medium,
65.73 – 70.38 for Large), showing a higher complexity in optimization as model size increases. For Set-2
experiments, loss values skyrocket in the Medium and Large models (131.67 – 131.46 for Medium, 337.51 –
322.44 for Large), indicating overfitting and unstable training dynamics at this learning rate.

As seen in Table 5 and Figure 4, Set-1 achieves a well-balanced trade-off between segmentation accuracy
and computational efficiency for the Car category. While Set-0 provides the shortest training time, it falls behind
in accuracy. On the other hand, Set-2 produces detailed segmentation but comes with significantly increased
training time and high training loss, especially in the Large model. Set-1 successfully captures both local and
global features, making it the most practical choice.

Tiny model configurations struggle with overfitting and training stability, especially as batch size increases
and the learning rate decreases in higher sets. Overall, the Tiny model’s validation accuracy peaks in Set-1
(91.53%), indicating that a moderate batch size (16), increased training epochs (40), and lower learning rate
(1×10⁻³) provide the best generalization. Training and validation loss increase significantly from Set-0 (2.26 / 2.33)
to Set-2 (33.96 / 33.77) on the Tiny model, suggesting that a higher learning rate (1×10⁻²) in Set-0 helps maintain
stable optimization. In terms of hyper-parameters sets, Set-1 strikes a balance, providing good validation accuracy
with reasonable training efficiency. Set-0 offers fast performance but with limitations in terms of generalization
for more complex models. Set-2 requires addressing the high training loss and the slow learning speed for the
models.

 (a) (b) (c)

Figure 5. Medium model inference for car: a)Set-0 b)Set-1 c) Set-2.

Furkan KARAMAN, Fatma GUMUS

335

4.3. Segmentation of Motorbike

The Tiny model in Set-0 exhibits a relatively decent training accuracy (80.71%), but the validation accuracy

(76.03%) is notably lower, suggesting some overfitting. This indicates that while the model performs well on the
training data, it struggles to generalize effectively to unseen data. The training loss (2.4935) and validation loss
(2.6193) are also on the lower side, indicating that the model is not overly complex. The Medium model in Set-0
demonstrates training accuracy (77.58%) and validation accuracy (67.99%), which is lower than expected (based
on the results of the other classes). The training loss (8.7785) and validation loss (23.2788) show that the model
could benefit from better hyperparameter tuning, as it might not be training efficiently with this configuration.

The Tiny model in Set-1 shows a small drop in both training accuracy (80.39%) and validation accuracy
(75.19%), which may be a result of the higher training loss (8.5986) and validation loss (8.7146). The performance
deterioration indicates a potential issue with the larger batch size and smaller learning rate, as it might have caused
the model to struggle with the small number of samples. The Medium model in Set-1 performs slightly better with
training accuracy (77.41%) and the best validation accuracy (71.38%), which indicates that the model is slightly
more generalizable compared to its Set-0 counterpart. Validation loss (107.0709) is significantly higher than Set-
0, but the improvement in validation accuracy suggests that the model has improved its performance with the new
hyperparameters, particularly the batch size and learning rate.

The segmentation results obtained from the Medium dataset in Figure 6 show that Set-0 produces less refined
segmentation boundaries, particularly in complex car models. In contrast, Set-2 generates more detailed
segmentation but comes at the cost of significantly increased training time and inference delay. These findings
align with the quantitative results in Table 5, where Set-1 consistently achieves high validation accuracy with
lower training loss compared to Set-0 while avoiding the excessive computational burden of Set-2.

The Large model with Set-0 parameters shows train accuracy (73.64%) and validation accuracy (67.49%),
with significantly higher train and validation loss compared to smaller models. With Set-1, the Large model shows
a noticeable drop in validation accuracy (62.80%) compared to Set-0, with train accuracy (75.80%) still decent.
The training loss (217.9921) and validation loss (675.8121) increase substantially, suggesting that the model’s
larger capacity is not necessarily translating to better generalization for the Motorbike class. This insight is
confirmed in Set-1 experiments indicating that this model struggles with overfitting and does not generalize well
on the Motorbike class data.

(a) (b) (c)

Figure 6. Medium model inference for motorbike: a)Set-0 b)Set-1 c)Set-2.

5. Discussion

Our findings demonstrated how architectural choices and hyper-parameter tuning impact segmentation
accuracy, computational efficiency, and real-world usability. Choosing the appropriate model size and hyper-
parameter configuration is crucial for practical applications. The Tiny Model with the Set-1 configuration,
featuring a moderate batch size of 16, 512 sampled points, and an initial learning rate of 1×10⁻³, provided the best
balance between fast convergence, stable learning, and segmentation accuracy. Figure 7 summarizes the results in
validation accuracy. The Tiny model across all the hyper-parameter sets achieves reasonably competitive
performance, especially in the Car class where it attains the highest validation accuracy at Set-1 (91.53%).

Exploring the Impact of Model Capacity and Parameter Tuning on 3D Semantic Segmentation

336

However, the validation accuracy for Motorbike (around 75%) shows a significant drop when compared to the
other classes. This may suggest that the model struggles more with the smaller dataset.

Figure 7. Validation accuracy across models and hyper-parameter sets.

The Airplane class and the Set-2 configuration of the Large Model, with larger sampled points (1024) and an

extended training period (60 epochs), led to higher accuracy but at the expense of computational efficiency.
However, it is computationally expensive, making it more practical for offline processing. For Car segmentation,
the Tiny Model (Set-1) offers the best trade-off between accuracy and computational efficiency. Larger models
introduce a higher computational burden without significant performance gains, making them less ideal for
practical use. For the Motorbike class, with the smallest number of samples, Set-1 offers the best performance for
both Medium and Large models, providing the most balanced trade-off between training time and validation
accuracy. Set-2 needs careful adjustment to prevent overfitting and high loss, especially with Tiny and Medium
models. Additionally, it is important to note that Tiny models may require further tuning, particularly in Set-2, to
improve both training and validation accuracies. The observed trade-offs suggest that hyper-parameter selection
should be tailored to the specific deployment constraints rather than simply optimizing for accuracy alone.

Our experimental results demonstrated that different model architectures exhibit distinct trade-offs between
computational efficiency and segmentation accuracy. The Tiny model, with its shallower architecture, achieves
competitive accuracy while maintaining low computational cost. This is primarily due to its ability to capture
essential features efficiently without excessive parameter overhead. In our experiments, the Large model showed
a higher risk of overfitting, particularly in the Motorbike class, where the dataset size was significantly smaller.
This suggests that while deeper networks have greater capacity, they require careful regularization when handling
limited data. Increasing the number of sampled points and batch size influences both convergence speed and
generalization ability. The Set-1 configuration (512 sampled points, batch size of 16) provided the best balance,
leading to stable learning dynamics and improved segmentation accuracy.

Future studies will explore the integration of semantic, instance, and panoptic segmentation into a unified
model. This would enhance the adaptability of segmentation systems across diverse applications, particularly for
autonomous perception tasks in autonomous vehicles, robotics, and geospatial analysis [7, 8]. Extending training
datasets to include more diverse scenarios, such as adverse environmental conditions, varying object densities, and
occlusions, will further improve model robustness [9, 19]. The ability to generalize across different real-world
settings remains a key challenge in 3D vision research. Although this study briefly explored efficiency concerns,
future research will focus on optimizing neural architectures to improve computational complexity without
sacrificing segmentation accuracy. Approaches such as sparse convolutions, knowledge distillation, and
quantization will be explored to enable faster and more efficient inference on edge devices [3, 7].

References

[1] Qi CR, Su H, Mo K, Guibas LJ. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Proc

IEEE Conf Comput Vis Pattern Recognit (CVPR), 2017; Honolulu, HI, USA. 652-660.
[2] Qi CR, Su H, Yi L, Guibas LJ. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Adv

Neural Inf Process Syst (NIPS), 2017; Long Beach, CA, USA. 30.
[3] Choy C, Gwak JY, Savarese S. 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. Proc

IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR), 2019; Long Beach, CA, USA. 3075-3084.

Furkan KARAMAN, Fatma GUMUS

337

[4] Behley J, Garbade M, Milioto A, Quenzel J, Behnke S, Stachniss C, Gall J. SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences. Proc IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR), 2019; Long Beach,
CA, USA. 9297-9307.

[5] Zhang Y, Zhou Z, David P, Yue X, Xi Z, Gong B, Foroosh H. PolarNet: An Improved Grid Representation for Online
LiDAR Point Clouds Semantic Segmentation. Proc. IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR), 2020;
Virtual. 9601-9610.

[6] Cortinhal T, Tzelepis G, Aksoy EE. SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds
for Autonomous Driving Int Symp Vis Comput., 2020; San Diego, CA, USA. 207-222.

[7] Tang H, Liu Z, Zhao S, Lin Y, Lin J, Wang H, Han S. Searching Efficient 3D Architectures with Sparse Point-Voxel
Convolution Eur Conf Comput Vis (ECCV), 2020; Glasgow, UK. 685-702.

[8] Li S, Zhang C, He X. Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images. Med Image Comput
Comput Assist Interv (MICCAI), 2020; Lima, Peru. 552–561.

[9] Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM. Dynamic Graph CNN for Learning on Point Clouds.
ACM Trans Graph (TOG), 2019; 38 (5): 1-12.

[10] Graham B, Engelcke M, van der Maaten L. 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks.
Proc IEEE Conf Comput Vis Pattern Recognit (CVPR), 2018; Salt Lake City, UT, USA. 9224-9232.

[11] Thomas H, Qi CR, Deschaud JE, Marcotegui B, Goulette F, Guibas LJ. KPConv: Flexible and Deformable Convolution
for Point Clouds. Proc. IEEE/CVF Int Conf Comput. Vis. (ICCV), 2019; Seoul, Korea (South). 6410-6419.

[12] Liu Z, Tang H, Lin Y, Han S. Point-Voxel CNN for Efficient 3D Deep Learning. Adv. Neural Inf. Process. Syst.
(NeurIPS), 2019; Vancouver, Canada. 32.

[13] Heller N, Isensee F, Maier-Hein KH, Hou X, Xie C, Li F, Nan Y, Mu G, et al. The state of the art in kidney and kidney
tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 Challenge. Med Image Anal 2021; 67:
101821.

[14] Vinodkumar PK, Karabulut D, Avots E, Ozçınar C, Anbarjafari G. A Survey on Deep Learning Based Segmentation,
Detection and Classification for 3D Point Clouds. Entropy, 2023; 25 (4): 635.

[15] He Y, Yu H, Liu X, Yang Z, Sun W, Anwar S, Mian A. Deep Learning Based 3D Segmentation: A Survey Inf Fusion
2025; 115: 102722.

[16] Chang AX, Funkhouser T, Guibas L, Hanrahan P, Huang Q, Li Z, Savarese S, Savva M, Song S, et al. ShapeNet: An
Information-Rich 3D Model Repository. arXiv. 2015; 1512.03012.

[17] Xiang Y, Mottaghi R., Savarese S. Beyond PASCAL: A Benchmark for 3D Object Detection in the Wild. Proc. IEEE
Winter Conf. Appl. Comput. Vis. (WACV), 2014; Steamboat Springs, CO, USA. 75-82.

[18] Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K. Spatial Transformer Networks. Adv Neural Inf Process Syst
(NIPS), 2015; Montreal, Canada. 29.

[19] Zhao H, Jiang L, Jia J, Torr P, Koltun V. Point Transformer. Proc. IEEE/CVF Int Conf Comput Vis (ICCV), 2021;
Montreal, Canada. 16239-16248.

