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Abstract: 3D semantic segmentation, the process of assigning semantic labels to every point in a 3D space, is critical for 
numerous applications, including autonomous driving, robotics, medical imaging, and urban mapping. Despite significant 
progress, challenges such as data imbalance, scalability, and real-time processing constraints persist. This study addresses the 
real-time processing issue by comparing Tiny, Medium, and Large PointNet-inspired models utilizing the ShapeNetCore 
dataset. The models incorporate the T-Net module for pose normalization to maintain robustness against geometric 
transformations. Class-specific segmentation is explored by training separate models for the Airplane, Motorbike, and Car 
classes, allowing custom optimizations for each class.  The Tiny model with 512 sampled points where the batch size is 16 and 
trained for 40 epochs with a starting learning rate of 1 × 10!" achieved an average training accuracy of 86.18% and an average 
validation accuracy of 83.50%, making it optimal for real-time applications due to its fast inference speed and high accuracy.  
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3B Semantik Bölütleme Performansı Üzerinde Model Kapasitesi ve Parametre Ayarının 
Etkisinin Araştırılması  

 
Öz: 3B semantik bölütleme, üç boyutlu uzaydaki her noktaya anlamsal etiketler atama sürecidir ve otonom sürüş, robotik, tıbbi 
görüntüleme ve kentsel haritalama dahil olmak üzere çok sayıda uygulama için kritik öneme sahiptir. Önemli ilerlemeye 
rağmen, veri dengesizliği, ölçeklenebilirlik ve gerçek zamanlı işleme kısıtlamaları gibi zorluklar devam etmektedir. Bu çalışma, 
ShapeNetCore veri setini kullanan Tiny, Medium ve Large olarak PointNet’ten esinlenen modelleri karşılaştırmak suretiyle 
gerçek zamanlı işleme sorununu ele almaktadır. Modeller, geometrik dönüşümlere karşı gürbüzlüğü korumak üzere poz 
normalizasyonu için T-Net modülünü içerir. Uçak, Motosiklet ve Araba sınıfları için ayrı modeller eğitilerek sınıf-özel 
segmentasyon çalışılmış ve her sınıf için özel optimizasyon değerlendirilmiştir. Küme büyüklüğünün 16 olduğu ve 1 × 10!" 
başlangıç öğrenme oranıyla 40 epok boyunca eğitilen 512 örneklenmiş noktaya sahip Tiny modeli, %86,18 ortalama eğitim 
doğruluğu ve %83,50 ortalama doğrulama doğruluğu elde etti ve test hızı ve yüksek doğruluğu nedeniyle gerçek zamanlı 
uygulamalar için ideal olduğu değerlendirilmiştir. 
 
Anahtar kelimeler: 3B semantik bölütleme, nokta bulutu işleme, ölçeklenebilirlik, gerçek zamanlı işleme. 
 
1. Introduction 
 

The rapid advancements in 3D semantic segmentation have significantly improved the ability to analyze and 
interpret point cloud data. Applications such as autonomous navigation, medical imaging, and remote sensing rely 
on robust segmentation models to classify and segment objects in complex 3D environments. Despite notable 
progress, achieving high segmentation accuracy while maintaining computational efficiency remains a critical 
challenge, particularly for real-time applications. A deep learning model PointNet [1] and its derivatives such as 
[2] leverage hierarchical feature extraction to capture both local and global geometric properties, enabling precise 
object classification and segmentation. Voxel-based approaches, on the other hand, convert point clouds into 
structured 3D grids, enabling the use of convolutional operations [3-5]. Hybrid approaches combine both point 
cloud and voxel-based methods [6-8].  

In contrast to voxel-based and hybrid methods, which introduce quantization artifacts and impose high 
memory requirements, PointNet operates directly on point clouds, preserving geometric details while maintaining 
efficiency. This study systematically investigates the influence of architectural and hyperparameter decisions on 
the segmentation performance of a PointNet inspired architecture. It examines how sampling density affects 
accuracy, the role of batch size in convergence speed, and the trade-offs between model capacity and segmentation 
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quality. The paper also emphasizes the importance of real-time applicability, shedding light on a frequently 
overlooked but crucial factor in 3D segmentation methodologies. This work shares results on class-specific 
segmentation where a separate segmentation model was trained for each class independently. This approach of 
segmentation allows custom optimization such that each class can have its architecture, hyperparameters, and loss 
function. This is also better for imbalanced data; since each model only focuses on one class, it can be better suited 
for handling rare classes. There are some downsides to this approach, such as if multiple models predict the same 
pixel, conflict resolution might be required. This paper does not address the approach but presents fine-tuned 
results for models with different capacities (Tiny, Medium, Large) and three sets of hyper-parameters. 

The remainder of this paper is structured as follows: Section 2 provides a comprehensive literature review, 
summarizing key developments in 3D semantic segmentation, including deep learning-based methodologies, 
benchmark datasets, and open challenges. Section 3 presents the material and methods. Section 4 presents our 
experimental results, detailing the dataset, preprocessing steps, and PointNet parameter tuning strategy. Section 5 
discusses challenges and open issues in the field, such as data imbalance, scalability, and annotation costs. 
 
2. Literature Review 
 

Point cloud-based methods operate directly on unstructured 3D point clouds, allowing for flexible and 
efficient data processing. PointNet [1] was a pioneering architecture that employed permutation-invariant networks 
to process unordered point clouds to perform three major tasks: classification, part segmentation, and semantic 
segmentation (Figure 1). To prevent sensitivity to point ordering, it uses max pooling. Each point is processed via 
Multi-Layer Perceptrons (MLPs), and the maximum is computed across all points to learn the global features of 
the scene. The method’s primary advantage is its ability to directly handle raw point cloud data with high speed. 
PointNet struggled to capture local geometric features, which was addressed by PointNet++ [2]. Instead of using 
a fixed grid (like CNNs in images), PointNet++ dynamically groups points based on their geometric proximity 
using a radius threshold. This allows it to adaptively learn geometric details at different scales, preserving local 
curvature and surface variations. While it excelled in handling complex geometries, it required higher 
computational costs and processing time. Dynamic Graph CNNs (DGCNN) [9] further expanded on this concept 
by introducing dynamic graph construction, which updates the neighborhood connections during training. Despite 
its success, the method required significant computational resources, limiting its scalability for large datasets. 

 

 
 

 
Figure 1. PointNet tasks [1]. 

 
Sub-manifold Sparse Convolutional Networks (SSCN) [10] utilized sparse convolutions for more efficient 

processing of 3D grids. MinkowskiNet [3] extended this concept by using sparse convolutions in 4D spatio-
temporal networks. However, voxelization leads to quantization errors, which may degrade segmentation 
performance at high resolutions. It employs 4D sparse convolutions to optimize time and memory usage for large-
scale datasets. Sparse convolutions operate only on active voxels, enhancing memory efficiency. 

PolarNet [5] introduced a polar grid representation to improve the processing of LiDAR data, especially when 
dealing with uneven data distributions. This method demonstrated notable improvements in datasets such as 
SemanticKITTI [4]. However, it faced challenges related to memory consumption and computational complexity, 
particularly for large-scale applications. PolarNet processed LiDAR data using polar grid representations. It aimed 
to understand the global context of the data. The model processed each cell to learn the global features of the scene.  
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KPConv [11] achieved high accuracy in complex scenes by leveraging deformable convolutions that adapt to 
irregular geometries. It defines learnable kernel points between points, and filters are automatically shaped based 
on the density of the data. While it was highly effective in detailed local feature learning, it required substantial 
computational resources and a complex training process. 

Hybrid methods aim to combine the strengths of point-based and voxel-based techniques. SalsaNext [6] is 
such a model that integrates point-wise uncertainty estimation with voxel-based representations. It achieved real-
time performance for applications like autonomous driving. Using an encoder-decoder architecture, it learned 
features from LiDAR inputs. The model optimized computations with polar grid representations and enhanced 
reliability through uncertainty estimation in segmentation predictions. This method is particularly effective for 
real-time applications, such as environmental sensing in autonomous vehicles.   PVCNN [12] is another hybrid 
approach that integrates the computational efficiency of voxel grids with the flexibility of point-level 
representations. It offered a balanced approach for real-time applications. SPVConv [7] merged sparse voxel 
processing with high-resolution point features, resulting in enhanced segmentation accuracy while maintaining 
computational efficiency. These hybrid models are well-suited for real-world applications that require both 
precision and high throughput.  

SASSNet [8], a semi-supervised learning approach, demonstrated state-of-the-art performance in kidney 
tumor segmentation. The KiTS19 challenge [13] highlighted the potential of automated 3D segmentation 
techniques for kidney tumor analysis, showcasing the effectiveness of these methods when annotated data is scarce 
and expensive to obtain. 

The field of 3D segmentation has been extensively reviewed in the literature. Vinodkumar et.al.[14] 
extensively explored deep learning-based methodologies for 3D object segmentation, detection, and classification. 
Their work categorized methods based on data modalities, such as LiDAR-based approaches, point cloud 
techniques, and hybrid models, providing insights into their relative strengths and limitations. Moreover, the study 
offered an analysis of benchmark datasets like SemanticKITTI and ModelNet, enabling comparative evaluations 
of various methods. Similarly, He et al. [15] conducted an in-depth survey focusing on three primary segmentation 
tasks: semantic segmentation, instance segmentation, and part segmentation.  
 
3. Material and Methods 
 

For this study, we utilize ShapeNetCore [16], a subset of the ShapeNet dataset, which is a large-scale, richly 
annotated repository of 3D shapes. ShapeNetCore includes 55 common object categories with 3D models, 
providing a reliable benchmark for 3D semantic segmentation. The experiments focused on the three vehicle 
categories, which are also included as part of the PASCAL 3D+ [17] dataset. The experiments were conducted on 
the classes: airplane, car, and motorbike, each segmented into specific parts (Table 1). The dataset consists of point 
cloud representations of 3D models along with manually verified category and alignment annotations (Figure 2). 
A class-specific segmentation method was used, where each class had its model trained separately. This allows 
the model to optimize for the unique features of each class.  

 

 
     (a)                                                             (b)               (c) 

 
Figure 2. Samples from the dataset: a)Airplane b)Car c)Motorbike. 
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Table 1. Data distribution. 
 

Class Segmentation parts Training size Validation size 
Airplane wing, body, tail, engine 2955 739 

Car wheel, hood, roof 5420 1356 
Motorbike wheel, handle, gas tank, light, seat 187 47 

 
3.1. Preprocessing 
 

One of the key challenges in handling point cloud data is that different 3D scans contain a variable number 
of points. This variability makes batch processing difficult. To ensure uniformity, we perform the following 
preprocessing steps: 

1) Fixed-size Sampling: We randomly sample a fixed number of points from each point cloud, choosing 
from {256, 512, 1024} to analyze its impact on performance. 

2) Normalization: The point clouds are normalized to ensure scale invariance, making the model robust to 
different object sizes. 
 
3.2. Model variants and hyperparameters 
 

We employ a PointNet-inspired architecture. The proposed model processes unstructured 3D point cloud data 
to classify each point into predefined segment categories. The architecture consists of three main components: an 
input transformation block, a hierarchical feature extraction network, and a segmentation head. 

Segmentation outputs should remain unchanged under geometric transformations (e.g., translation or scaling). 
To achieve pose normalization, we apply rigid or affine transformations to input point clouds. This is done using 
a Spatial Transformer Network (STN) [18], implemented as the T-Net module in PointNet. The T-Net learns a 
3 × 3 transformation matrix using a multi-layer perceptron (MLP), max-pooling, and fully connected layers. This 
matrix is then applied to the input before feature extraction, ensuring transformation invariance. While global 
features are sufficient for classification, segmentation requires capturing both local and global contexts. PointNet 
integrates local point features with global shape descriptors, ensuring fine-grained segmentation. To systematically 
explore the parameter space, we experiment with the three sets of hyper-parameters in Table 2 and the learning 
rate scheduled for decay by half every 5 epochs.  

 
Table 2. Hyper-parameter sets. 

 
Parameter set Number of sampled points  Batch size Training epochs Initial learning rate 

Set-0 256 8 20 1 × 10!# 
Set-1 512 16 40 1 × 10!" 
Set-2 1024 32 60 1 × 10!$ 

 
We evaluate three different model capacities (Table 3): The large model serves as an upper bound for 

computational complexity, while the tiny model allows efficient benchmarking with minimal hardware 
requirements. We ran the experiments on NVIDIA L4 Tensor Core GPU for each hyper-parameter set in Table 2 
and the models in Table 3. 

 
Table 3. Number of filters in T-net and segmentation-net convolutions and network size. 

 
Model 

Variant Transformation-net  Segmentation-net Network size (Total parameters / Model 
Size) 

Tiny 16, 32, 256, 128, 64 16, 32, 32, 32, 128, 512 ~344K / 1.31 MB 
Medium 64, 128, 1024, 512, 256 64, 128, 128, 128, 512, 2048 ~7M /28.11 MB 

Large 128, 256, 2048, 1024, 
512 

128, 256, 256, 256, 1024, 
4096 ~45M /173.22 MB 
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3.3. The architecture 
 

The segmentation pipeline consists of three main components: input transformation, hierarchical feature 
extraction, and segmentation output (Figure 3). To ensure pose invariance, an affine transformation was applied 
to the input point clouds using a Spatial Transformer Network (STN). This module learns a transformation matrix 
via a multi-layer perceptron (MLP), max-pooling, and fully connected layers. This transformation matrix 
normalizes point positions, reducing sensitivity to spatial distortions. 

 
 

 
 

 
Figure 3. The segmentation pipeline. 

 
The model extracts feature through multiple convolutional layers, progressively capturing local and global 

geometric structures. The key steps in this pipeline are point-wise feature learning, feature propagation, and global 
feature aggregation. A series of 1D convolutional layers with ReLU activation map each point to a higher-
dimensional feature space. Intermediate features are aggregated across different scales, allowing for both local and 
global context preservation. Using a max-pooling operation, a global shape descriptor is generated, summarizing 
the overall object structure while retaining permutation invariance. 

The extracted hierarchical features are concatenated and passed through a final segmentation head, which 
consists of 1D convolutional layers followed by a softmax activation function. This module assigns a class label 
to each point in the input cloud, completing the segmentation process. 
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4. Experimental Results 
 

The results in Tables 4-7 highlight the trade-offs between model size, training time, inference speed, and 
segmentation accuracy. Before class specific insights, a general overview is presented. Tiny models (Table 4) 
demonstrate the lowest computational overhead, with training times per epoch under 7 seconds and inference times 
per sample below 2 seconds across all hyperparameter sets. These models provide a fast and lightweight solution 
while maintaining competitive accuracy.  

 
Table 4. Results for model Tiny. 

 

Class Hyper-
parameters 

Training 
time per 

epoch (Sec.s) 

Inference 
time per 

sample (Sec.s) 

Training 
loss 

Validation 
loss 

Training 
accuracy 

Validation 
Accuracy 

Airplane Set-0 4.1349 1.7620 2.3877 2.4146 0.8780 0.8698 
Airplane Set-1 2.3104 1.7696 8.6765 8.6967 0.8840 0.8740* 
Airplane Set-2 2.4414 1.8607 34.0441 34.0239 0.8712 0.8708 

Car Set-0 6.8611 1.8447 2.2676 2.3316 0.9157 0.8872 
Car Set-1 3.1754 1.6191 8.5696 8.5645 0.9204 0.9153* 
Car Set-2 3.7116 1.8042 33.9594 33.7699 0.9095 0.9091 

Motorbike Set-0 2.0226 1.8694 2.4935 2.6193 0.8071 0.7603* 
Motorbike Set-1 1.2687 1.9001 8.5986 8.7146 0.8039 0.7519 
Motorbike Set-2 0.9450 1.9736 33.1477 29.3361 0.7664 0.6769 

Average 2.9857 1.8226 14.9050 14.4968 0.8618 0.8350 
 
Medium models (Table 5) increase the parameter count significantly, leading to longer training times (up to 

14 s/epoch) and inference times exceeding 2 seconds. In addition to the increased computational cost, the Medium 
model achieves worse validation accuracy in Set-1 for Airplane (87.40%→86.31%), Car (91.53%→89.14%), and 
Motorbike (75.19%→71.38%) compared to the Tiny model.  
 

Table 5. Results for model Medium. 
 

Class Hyper-
parameters 

Training 
time per 

epoch (Sec.s) 

Inference 
time per 

sample (Sec.s) 

Training 
loss 

Validation 
loss 

Training 
accuracy 

Validation 
Accuracy 

Airplane Set-0 1.8816 2.2174 8.5226 8.4514 0.8385 0.8457 
Airplane Set-1 3.5018 2.0405 32.9312 32.8586 0.8593 0.8631* 
Airplane Set-2 8.5038 2.0583 132.2373 131.8697 0.8130 0.8191 

Car Set-0 9.1773 3.1154 15.1606 19.3051 0.8218 0.8126 
Car Set-1 8.2329 2.2342 32.8249 34,8191 0.8971 0.8914* 
Car Set-2 14.1265 2.1972 131.6679 131.4640 0.8797 0.8840 

Motorbike Set-0 3.1759 2.9597 8.7785 23.2788 0.7758 0.6799 
Motorbike Set-1 1.6189 2.0418 37.5718 107.0709 0.7741 0.7138* 
Motorbike Set-2 1.6044 2.1266 221.6887 9.722.6299 0.7405 0.7093 

Average 6.3708 2.3323 69.0426 1.134.6386 0.8222 0.8021 
 
Large models (Table 6) introduce a major computational burden, requiring 12 to 33 s/epoch of training for 

the large sets of Airplane and Car classes. Validation accuracy drops yet again for most cases, except Set-2 of 
Airplane. In short, the increased network size and parameter count bring diminishing returns across most of the 
experiments. As for the Motorbike class, validation accuracy remains inconsistent and sometimes higher than for 
the Tiny model. This inconsistent behavior is best observed in terms of validation loss.  
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Table 6. Results for model Large. 
 

Class Hyper-
parameters 

Training 
time per 

epoch 
(Sec.s) 

Inference 
time per 
sample 
(Sec.s) 

Training 
loss 

Validation 
loss 

Training 
accuracy 

Validation 
Accuracy 

Airplane Set-0 12.5527 1.9552 16.6900 16.6852 0.8040 0.8027 
Airplane Set-1 13.2459 2.0164 70.2028 73.5573 0.8146 0.8151 
Airplane Set-2 19.8034 0.1301 337.5113 322.4445 0.8311 0.8377* 

Car Set-0 18.8614 2.2012 16.6593 18.9986 0.8238 0.8058 
Car Set-1 21.1859 2.1274 65.7322 70.3808 0.8334 0.8385* 
Car Set-2 33.2247 2.3344 275.3770 287.1585 0.8240 0.8240 

Motorbike Set-0 4.8082 2.0731 62.1769 9503.0341 0.7364 0.6749* 
Motorbike Set-1 2.3329 2.0818 217.9921 675.8121 0.7580 0.6280 
Motorbike Set-2 2.7758 3.1757 1080.8776 170735.4062 0.7384 0.6785* 

Average 14.3101 2.0106 238.1355 20189.2753 0.7960 0.7672 
 
4.1. Segmentation of Airplane 
 

Hyperparameter Set-0 indicates a small point cloud with a high learning rate, Set-1 moderate point cloud with 
reduced learning rate, and Set-2 largest point cloud with the lowest learning rate. Set-0 has the shortest training 
time across all model sizes as expected. However, higher training and validation loss values indicate potential 
convergence issues. Set-1 achieves the best balance between training time and segmentation accuracy. The 
medium model in Set-1 reaches 86.31% validation accuracy, making it a strong candidate for practical deployment. 
Set-2 shows stability with lower training loss but at a significantly higher computational cost. The large model in 
Set-2 reaches 83.77% accuracy but suffers from extreme inference latency (337.51s per sample), making it 
impractical for real-time scenarios.  

The Large Models show a notable increase in computational time and memory usage but do not achieve the 
highest accuracy when compared to the Tiny and Medium Models. In Set-1, the Large Model has a validation 
accuracy of 81.51%, which is lower than both the Tiny Model (87.40%) and the Medium Model (86.31%). This 
suggests that, despite the larger model capacity, it may not be as well-optimized for the task at hand, likely due to 
overfitting or the challenges of efficiently capturing the relevant features with a larger network. 

Figure 4 shows the segmentation results on medium models under each parameter set. The qualitative results 
indicate that Set-1 achieves a well-balanced trade-off between segmentation accuracy and computational 
efficiency. While Set-0 exhibits faster training times, its segmentation outputs show slightly less refined 
boundaries, particularly in complex regions of airplane models. In contrast, Set-2, which uses the highest number 
of sampled points and training epochs, produces finer segmentation but at the cost of significantly increased 
training time and inference delay. Set-1 provides a middle ground, capturing sufficient local and global features 
while maintaining reasonable training and inference efficiency. These findings align with the quantitative results 
in Table 4, where Set-1 consistently achieves high validation accuracy with lower training loss compared to Set-
0, without the excessive computational burden of Set-2. 

The Tiny model with Set-1 hyper-parameters (512 sampled points, batch size of 16, 40 training epochs, and 
an initial learning rate of 1×10⁻³) demonstrates a promising balance between computational efficiency and 
segmentation accuracy. The total training time for Set-1 is 1.54 minutes, which is only slightly higher than Set-0 
(1.38 minutes) but significantly lower than Set-2 (2.44 minutes). This increase in training time is justified by the 
observed improvement in segmentation accuracy. The validation accuracy reaches 87.40%, surpassing both Set-0 
(86.98%) and Set-2 (87.08%). The inference time per sample is 1.77 seconds, which is similar to Set-0 at 1.76s 
and faster than Set-2 at 1.86s. This suggests that Set-1 maintains efficient real-time performance while benefiting 
from improved model stability and accuracy. The choice of 512 points ensures that the model captures more 
geometric details than Set-0 with 256 points while avoiding the computational overhead of Set-2 with 1024 points.  

 



Exploring the Impact of Model Capacity and Parameter Tuning on 3D Semantic Segmentation 

334 
 

 
     (a)                                                        (b)               (c)  

 
Figure 4. Medium model inference for airplane: a)Set-0 b)Set-1 c)Set-2. 

 
4.2. Segmentation of Car 
 

Training time per epoch is significantly higher with Set-2: 3.71s (Tiny) → 14.13s (Medium) → 33.22s 
(Large), making the Large model computationally expensive. Inference time per sample is stable in Set-1 and-2, 
however, it varies for Set-2, with the Large model performing inference the fastest (0.13s), possibly due to 
improved internal representations. The results for Set-1 portray better results in terms of validation accuracy. 
However, training and validation loss increase across models (8.56 – 8.56 for Tiny, 32.82 – 34.81 for Medium, 
65.73 – 70.38 for Large), showing a higher complexity in optimization as model size increases. For Set-2 
experiments, loss values skyrocket in the Medium and Large models (131.67 – 131.46 for Medium, 337.51 – 
322.44 for Large), indicating overfitting and unstable training dynamics at this learning rate.  

As seen in Table 5 and Figure 4, Set-1 achieves a well-balanced trade-off between segmentation accuracy 
and computational efficiency for the Car category. While Set-0 provides the shortest training time, it falls behind 
in accuracy. On the other hand, Set-2 produces detailed segmentation but comes with significantly increased 
training time and high training loss, especially in the Large model. Set-1 successfully captures both local and 
global features, making it the most practical choice. 

Tiny model configurations struggle with overfitting and training stability, especially as batch size increases 
and the learning rate decreases in higher sets. Overall, the Tiny model’s validation accuracy peaks in Set-1 
(91.53%), indicating that a moderate batch size (16), increased training epochs (40), and lower learning rate 
(1×10⁻³) provide the best generalization. Training and validation loss increase significantly from Set-0 (2.26 / 2.33) 
to Set-2 (33.96 / 33.77) on the Tiny model, suggesting that a higher learning rate (1×10⁻²) in Set-0 helps maintain 
stable optimization. In terms of hyper-parameters sets, Set-1 strikes a balance, providing good validation accuracy 
with reasonable training efficiency. Set-0 offers fast performance but with limitations in terms of generalization 
for more complex models. Set-2 requires addressing the high training loss and the slow learning speed for the 
models. 

 
     (a)                                                        (b)               (c) 

 
Figure 5. Medium model inference for car: a)Set-0 b)Set-1 c) Set-2. 
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4.3. Segmentation of Motorbike 
 
The Tiny model in Set-0 exhibits a relatively decent training accuracy (80.71%), but the validation accuracy 

(76.03%) is notably lower, suggesting some overfitting. This indicates that while the model performs well on the 
training data, it struggles to generalize effectively to unseen data. The training loss (2.4935) and validation loss 
(2.6193) are also on the lower side, indicating that the model is not overly complex. The Medium model in Set-0 
demonstrates training accuracy (77.58%) and validation accuracy (67.99%), which is lower than expected (based 
on the results of the other classes). The training loss (8.7785) and validation loss (23.2788) show that the model 
could benefit from better hyperparameter tuning, as it might not be training efficiently with this configuration.  

The Tiny model in Set-1 shows a small drop in both training accuracy (80.39%) and validation accuracy 
(75.19%), which may be a result of the higher training loss (8.5986) and validation loss (8.7146). The performance 
deterioration indicates a potential issue with the larger batch size and smaller learning rate, as it might have caused 
the model to struggle with the small number of samples. The Medium model in Set-1 performs slightly better with 
training accuracy (77.41%) and the best validation accuracy (71.38%), which indicates that the model is slightly 
more generalizable compared to its Set-0 counterpart. Validation loss (107.0709) is significantly higher than Set-
0, but the improvement in validation accuracy suggests that the model has improved its performance with the new 
hyperparameters, particularly the batch size and learning rate.  

The segmentation results obtained from the Medium dataset in Figure 6 show that Set-0 produces less refined 
segmentation boundaries, particularly in complex car models. In contrast, Set-2 generates more detailed 
segmentation but comes at the cost of significantly increased training time and inference delay. These findings 
align with the quantitative results in Table 5, where Set-1 consistently achieves high validation accuracy with 
lower training loss compared to Set-0 while avoiding the excessive computational burden of Set-2. 

The Large model with Set-0 parameters shows train accuracy (73.64%) and validation accuracy (67.49%), 
with significantly higher train and validation loss compared to smaller models. With Set-1, the Large model shows 
a noticeable drop in validation accuracy (62.80%) compared to Set-0, with train accuracy (75.80%) still decent. 
The training loss (217.9921) and validation loss (675.8121) increase substantially, suggesting that the model’s 
larger capacity is not necessarily translating to better generalization for the Motorbike class. This insight is 
confirmed in Set-1 experiments indicating that this model struggles with overfitting and does not generalize well 
on the Motorbike class data.  

 

 
(a)                                                          (b)                                (c) 

 
Figure 6. Medium model inference for motorbike: a)Set-0 b)Set-1 c)Set-2. 

 
5. Discussion  
 

Our findings demonstrated how architectural choices and hyper-parameter tuning impact segmentation 
accuracy, computational efficiency, and real-world usability. Choosing the appropriate model size and hyper-
parameter configuration is crucial for practical applications. The Tiny Model with the Set-1 configuration, 
featuring a moderate batch size of 16, 512 sampled points, and an initial learning rate of 1×10⁻³, provided the best 
balance between fast convergence, stable learning, and segmentation accuracy. Figure 7 summarizes the results in 
validation accuracy. The Tiny model across all the hyper-parameter sets achieves reasonably competitive 
performance, especially in the Car class where it attains the highest validation accuracy at Set-1 (91.53%). 
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However, the validation accuracy for Motorbike (around 75%) shows a significant drop when compared to the 
other classes. This may suggest that the model struggles more with the smaller dataset. 

 
 

 
 

Figure 7. Validation accuracy across models and hyper-parameter sets. 
 
The Airplane class and the Set-2 configuration of the Large Model, with larger sampled points (1024) and an 

extended training period (60 epochs), led to higher accuracy but at the expense of computational efficiency. 
However, it is computationally expensive, making it more practical for offline processing. For Car segmentation, 
the Tiny Model (Set-1) offers the best trade-off between accuracy and computational efficiency. Larger models 
introduce a higher computational burden without significant performance gains, making them less ideal for 
practical use. For the Motorbike class, with the smallest number of samples, Set-1 offers the best performance for 
both Medium and Large models, providing the most balanced trade-off between training time and validation 
accuracy. Set-2 needs careful adjustment to prevent overfitting and high loss, especially with Tiny and Medium 
models. Additionally, it is important to note that Tiny models may require further tuning, particularly in Set-2, to 
improve both training and validation accuracies. The observed trade-offs suggest that hyper-parameter selection 
should be tailored to the specific deployment constraints rather than simply optimizing for accuracy alone. 

Our experimental results demonstrated that different model architectures exhibit distinct trade-offs between 
computational efficiency and segmentation accuracy. The Tiny model, with its shallower architecture, achieves 
competitive accuracy while maintaining low computational cost. This is primarily due to its ability to capture 
essential features efficiently without excessive parameter overhead. In our experiments, the Large model showed 
a higher risk of overfitting, particularly in the Motorbike class, where the dataset size was significantly smaller. 
This suggests that while deeper networks have greater capacity, they require careful regularization when handling 
limited data. Increasing the number of sampled points and batch size influences both convergence speed and 
generalization ability. The Set-1 configuration (512 sampled points, batch size of 16) provided the best balance, 
leading to stable learning dynamics and improved segmentation accuracy. 

Future studies will explore the integration of semantic, instance, and panoptic segmentation into a unified 
model. This would enhance the adaptability of segmentation systems across diverse applications, particularly for 
autonomous perception tasks in autonomous vehicles, robotics, and geospatial analysis [7, 8]. Extending training 
datasets to include more diverse scenarios, such as adverse environmental conditions, varying object densities, and 
occlusions, will further improve model robustness [9, 19]. The ability to generalize across different real-world 
settings remains a key challenge in 3D vision research. Although this study briefly explored efficiency concerns, 
future research will focus on optimizing neural architectures to improve computational complexity without 
sacrificing segmentation accuracy. Approaches such as sparse convolutions, knowledge distillation, and 
quantization will be explored to enable faster and more efficient inference on edge devices [3, 7].  
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