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Abstract

In this paper, we study concepts of .#-convergence, .# *-convergence, .# -Cauchy and .#*-Cauchy sequences of functions and investigate
relationships between them and some properties in 2-normed spaces.
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1. Introduction, Definitions and Notations

Throughout the paper, N denotes the set of all positive integers and R the set of all real numbers. The concept of convergence of a sequence
of real numbers has been extended to statistical convergence independently by Fast [8] and Schoenberg [27].

The idea of .#-convergence was introduced by Kostyrko et al. [20] as a generalization of statistical convergence which is based on the
structure of the ideal .# of subset of N [8,9]. Nabiev et al. [23] studied .#-Cauchy and .#*-Cauchy sequence, and then study their certain
properties. Gokhan et al. [13] introduced the notion of pointwise and uniform statistical convergence of double sequences of real-valued
functions. Gezer and Karakus [12] investigated .#-pointwise and uniform convergence and .#*-pointwise and uniform convergence of
function sequences and they examined the relation between them. Baldz et al. [1] investigated .# -convergence and .# -continuity of real
functions. Balcerzak et al. [2] studied statistical convergence and ideal convergence for sequences of functions Diindar and Altay [5, 6]
studied the concepts of pointwise and uniformly .#>-convergence and .#;'-convergence of double sequences of functions and investigated
some properties about them. Furthermore, Diindar [7] investigated some results of .#,-convergence of double sequences of functions.

The concept of 2-normed spaces was initially introduced by Gihler [10,11] in the 1960’s. Since then, this concept has been studied by many
authors. Giirdal and Pehlivan [17] studied statistical convergence, statistical Cauchy sequence and investigated some properties of statistical
convergence in 2-normed spaces. Sahiner et al. [29] and Giirdal [19] studied .#-convergence in 2-normed spaces. Giirdal and Ac¢ik [18]
investigated .#-Cauchy and .#*-Cauchy sequences in 2-normed spaces. Sarabadan and Talebi [25] presented various kinds of statistical
convergence and .¥ -convergence for sequences of functions with values in 2-normed spaces and also defined the notion of .# -equistatistically
convergence and study .#-equistatistically convergence of sequences of functions. Recently, Savas and Giirdal [26] concerned with
#-convergence of sequences of functions in random 2-normed spaces and introduce the concepts of ideal uniform convergence and ideal
pointwise convergence in the topology induced by random 2-normed spaces, and gave some basic properties of these concepts. Yegiil and
Diindar [31] studied statistical convergence of sequence of functions in 2-normed spaces. A lot of development have been made in this area
after the works of [3,4,21,22,24,28,30].

2. Definitions and Notations

Now, we recall the concept of 2-normed space, ideal convergence and some fundamental definitions and notations [1,2, 8,9, 14-20, 25,29].
If K C N, then K, denotes the set {k € K : k < n} and |K,| denotes the cardinality of K,,. The natural density of K is given by §(K) =
lim,, %\Kn |, if it exists. The number sequence x = (x;) is statistically convergent to L provided that for every € > 0 the set

K=K(e):={keN:|xy—L|>¢€}

has natural density zero; in this case, we write st — limx = L.
Let X # 0. A class .# of subsets of X is said to be an ideal in X provided:
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i) 0e s,
(i) A,B € ¥ impliesAUB € .7,
(iii) A€ .7, BC Aimplies B€ .7.

# is called a nontrivial ideal if X ¢ .#.
Let X # 0. A non empty class % of subsets of X is said to be a filter in X provided:

(i) 0g .7,
(i) A,B € % impliesANB € &,
(iii) A € .Z,A C Bimplies Be .Z.

Lemma 2.1 ( [20]). If .% is a nontrivial ideal in X, X # 0, then the class
F(I)={MCX:(FAc S)(M=X\A)}

is a filter on X, called the filter associated with .% .

A nontrivial ideal .# in X is called admissible if {x} € .#, for each x € X.

Example 2.1. Let .#; be the family of all finite subsets of N. Then, .#r is an admissible ideal in N and .# convergence is the usual
convergence.

Throughout the paper, we let .# C 2N be an admissible ideal.
A sequence (f;,) of functions is said to be .#-convergent (pointwise) to f on D C R if and only if for every € > 0 and each x € D,

{n:1fa(x) = f(x)| = €} € 7.

In this case, we will write f;, iZ> fonD.

A sequence (f;) of functions is said to be .#*-convergent (pointwise) to f on D C R if and only if Ve > 0 and Vx € D, 3K, ¢ .# and
Ing =ng(€,x) € Ky : Vn>np and n € Ky, | f(x) — f(x)| < €.

Let X be a real vector space of dimension d, where 2 < d < oo. A 2-norm on X is a function ||-,-|| : X x X — R which satisfies the following
statements:

() |lx,y]| = 0if and only if x and y are linearly dependent.

(i) [l yl| = [y, x]]-
(iii) [[ox,y[| = [efllx ]|, & € R.
(V) fbe,y+zf < fbey ]|+ e, 2]

The pair (X, ||-,-||) is then called a 2-normed space. As an example of a 2-normed space we may take X = R? being equipped with the
2-norm ||x,y|| := the area of the parallelogram based on the vectors x and y which may be given explicitly by the formula

]| = [x1ya —xayi s x= (x1,%2),y = (v1,52) € R%.

In this study, we suppose X to be a 2-normed space having dimension d; where 2 < d < oo,
A sequence (x,) in 2-normed space (X, ||-,-||) is said to be convergent to L in X if

Tim [l —L,y]| =0

for every y € X. In such a case, we write lim,_,ex, = L and call L the limit of (x;).
A sequence (x,) in 2-normed space (X, ||-,-||) is said to be .#-convergent to L € X, if for each € > 0 and each nonzero z € X,

A(g,z)={neN:|x,—Lyz| > e} e 7.

In this case, we write .¥ — lgn ||, —L,z]| =0or & — lgn 1%, 2]l = |IL, 2|
n—oo n—roo
A sequence (x,) in 2-normed space (X, ||-,-||) is said to be .#*-convergent to L € X if and only if there exists aset M € F(F), M = {m; <

my < - <my < ---} such that lijn ||%m, —L,z|| = 0, for each nonzero z € X.
n—yo0

A sequence (x,) in 2-normed space (X, ||-,-||) is said to be .#-Cauchy sequence in X, if for each € > 0 and nonzero z € X there exists a
number N = N(&,z) such that
{keN:|xx—xn,z| > €} € 4.

A sequence (x,) in 2-normed space (X, ||-,-||) is said to be .#*-Cauchy sequence in X, if there exists aset M € .F (&), M = {m| <my <
-++ <my, < ---} such that the subsequence xy = (X, ) is a Cauchy sequence on X, i.e.,

lim ||, —Xm,,z|| =0, for each nonzero z € X.
k,p—oo !
Let X and Y be two 2-normed spaces, { f,,} be a sequence of functions and f be a function from X to Y. {f,} is said to be convergent to f if
Sa(x) ‘M{ f(x) for each x € X. We write f, H—HI{ f. This can be expressed by the formula
(VzeY)(Vx e X)(Ve > 0)(3np € N)(Vn > no) || fu(x) — f(x),2]| < €.

Let X and Y be two 2-normed spaces, {f,} be a sequence of functions and f be a function from X to Y. {f,} is said to be .#-pointwise
convergent to f, if for every € > 0 and each nonzeroz € Y

Ale,z) = {n €Nt | falx) = flx).2] 2 e} € S,
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or.J — lgn I fn(x) — f(x),z|ly =0 (in (¥, ]|, .||y). for each x € X. In this case, we write f; ‘M;y /- This can be expressed by the formula
f—yoo

(VzeY)(Ve > 0)(IM € 7)(Vng € N\M)(Vx € X)(Vn > ng)|| fu(x) — f(x),z]| < €.

An admissible ideal .# C 2N is said to satisfy the condition (AP) if for every countable family of mutually disjoint sets {A},A,, ...} belonging
to .# there exists a countable family of sets {Bj, By, ...} such that A;AB; is a finite set for j € Nand B= ;2| B; € .~
Now we begin with quoting the lemma due to Nabiev et al. [23] which are needed throughout the paper.

Lemma 2.2 ([23]). Let {B}7 | be a countable collection of subsets of N such that P; € % (%) for each i, where F (%) is a filter associated
by an admissible ideal .9 with property (AP). Then, there is a set P C N such that P € % (%) and the set P\P; is finite for all i.

3. Main Results

In this paper, we study concepts of .#-convergence, .# *-convergence, .# -Cauchy and .#*-Cauchy sequences of functions and investigate
relationships between them and some properties in 2-normed spaces.

Throughout the paper, we let .# C 2N be an admissible ideal, X and ¥ be two 2-normed spaces, {f }nery and {gs }nen be two sequences of
functions and f, g be two functions from X to Y.

Definition 3.1. The sequence of functions {f,} is said to be (pointwise) .#*-convergent to f, if there exists a set M € .Z(.¥), (i.e.,
N\M e ), M ={m; <my <---<my<---},such that for each x € X and each nonzeroz € Y

Jim [|f (), 2]| = [1£Cx). 2]
—yo0
and we write
. B

I lim || fulw). 2l = £, or £ D .

Theorem 3.1. For each x € X and each nonzero z €Y,
S5 1 | fol), 2l = (1), implies 5 —limy ]| (). 2] = | £2). 2]
Proof. Since for each x € X and each nonzero z € Y,
S lim || fulw). 2l = £ ).l

so there exists a set H € .# such that for M = N\H = {m| <mp < --- <my <---} we have

Jim [ fo, (6), 2l| = 11£Co), 2.

Let € > 0. Then, for each x € X there exists a k) = ko(&,x) € N such that for each nonzero z € Y, || f(x) — f(x),z|| < €, for all n € M such
that n > kg. Then, obviously we have

Ale,z) ={neN:|fu(x) = f(x),z]| 2 e} CHU{m <my <--- <my,},
for each x € X and each nonzero z € Y. Since .# C 2N be an admissible ideal, then
HU{m <my <---<my} €S

and therefore, A(g,z) € . This implies that .% — 1ijn 1 fu(x), 2]l = IIf (), 2]|- O
H—yoo

Theorem 3.2. Let % C 2N be an admissible ideal having the property (AP). Then,
S = lim [ fu(x),2l| = [1£ (x) 2] implies 7 — lim || fu(x),2[| = [1f(x),z]]-

Proof. Let # C 2N satisfy the property (AP) and .% — 1131 I /n(x),z]] = || f(x),z]|, for each x € X and each nonzero z € Y. Then, for any
vl
>0
A(g,2) ={neN:|fu(x) - f(x),2] = e} € 7,

for each x € X and each nonzero z € Y. Now put
Ai(g,2) = {n e N: ||fu(x) = f(x),2l| = 1}
and
A = fneN: 1 <) F(@).2l < 1)
for k > 2. Ttis clear that A;NA; = @ for i # j and A; € .# for each i € N. By property (AP) there exists a sequence {By }ren of sets such that

AjABj is finite and B = U;f’:lBj €s.
We shall prove that, for each x € X and each nonzero z € Y,

lim | fi (x), 2l = 1/ (x),zll, k€M,
k—yoo
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for M =N\B € 7 (.#). Let § > 0 be given. Choose k € N such that }. Then we have
k

{neN:|fux) — f(x).2l = 8} < J 4.
j=1

Since AjABj, j =1,2,...,k, is finite set there exists nyg € N such that

(

k

-

Bj)ﬂ{neN:nZno}:(

Aj>ﬂ{n€N:nZno}.
1 J

1

J

If n > ng and n ¢ B then
k k
n¢ UB‘,'andsong UA.,-.
j=1 j=1
Hence, we have || f,,(x) — f(x),z|| < % < 8, for each x € X and each nonzero z € Y. This implies that

Jim [|fi (), 2| = |17 (x)2ll, k€M,
—yo0

and so, we have
7 = lim | ()2l = /).

for each x € X and each nonzeroz €Y. O

Now we give the concepts of .#-Cauchy sequence and .#*-Cauchy sequence and investigate some properties about them.

Definition 3.2. {f,} is said to be .#-Cauchy sequence, if for every € > 0 and each x € X there exists s = s(&,x) € N such that
{neN:[fulx) = fs(x).2l| = €} € 7,
for each nonzero z € Y.

Theorem 3.3. If {f,} is .7 -convergent, then it is . -Cauchy sequence.

Proof. Suppose that {f,,} is .#-convergent to f. Then, for € >0

A(52) = {reN: 0 - r@ .l = 5} e s,

for each x € X and each nonzero z € Y. This implies that
(€ N _ . _ oz
A (5.2) = {neN: I - f@.2l < S e #(),

for each x € X and each nonzero z € Y and therefore A¢ (%z) is non-empty. So, we can choose a positive integer k such that k ¢ A (%,z) and
[l fi(x) — f(x),z]| < §. Now, we define the set

B(e,z) = {n € N[ fu(x) — fi(x),z| > €},
for each x € X and each nonzero z € Y, such that we show that B(g,z) C A(,z). Let n € B(g,z), then we have

<N —A@.al < Il - £l + A6 - £,z
< ) = 10020+ 5,

for each x € X and each nonzero z € Y. This implies that

£
5 < Ifa(x) = f(x), 2l
and so, n € A(%,z). Hence, we have B(g,z) C A(§,z) and {f,,} is .#-Cauchy sequence. O

Definition 3.3. The sequence {f}, } is said to be .#*-Cauchy sequence, if there exists a set M = {m; <my < --- <my < ---} C N, such that
the subsequence {fi/} = {fi, } is a Cauchy sequence, i.e.,

Jim [} fon, () = fim, (x),2]| = 0,
p—roo

p

for each x € X and each nonzeroz €Y.

Theorem 3.4. If {fn} is a Z*-Cauchy sequence, then it is .% -Cauchy sequence in 2-normed spaces.
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Proof. Let (fy) is a .#*-Cauchy sequence in 2-normed spaces. Then, by definition there exists the set M = {m; <mp <...<my < ..} CN,
M € Z(.7) such that for every € > 0,
ank (x) _fnp(x)7z|| <§g,
for every € > 0, for each x € X, each nonzero z € Y and k, p > ko = ko(€,x). Let N = N(&,x) = my, + 1. Then, for every € > 0 we have
Hﬁlk(x) _fN('x)7ZH <E§,
for each x € X, each nonzero z € Y and k > ky. Now put H = N\M. It is clear that H € .# and
A(g,2) = {n e N:|[fu(x) — fn(x),2l = &} CHU{m <my <. <my,}.

Since .# is an admissible ideal, then HU {m| <my < ... <my,} € .#. Hence, for every € > 0 we find N = N(g,x) such that A(¢,z) € .7,
i.e., (fn) is a #-Cauchy sequence. O

Theorem 3.5. If .#* — lgll lfu(x) = f(x),2]| =0, then {f,,} is a .#-Cauchy sequence.
n—roo

Proof. By assumption there exists a set M = {m|] <mp < ... <my < ..} CN, M € .F (%) such that liﬁm |l fin(x) — f(x),z]| = O for each
n—oo

x € X and each nonzero z € Y. It shows that there exists ko = ko(€,x) such that
€
1)~ £l < 5,

for every € > 0, each x € X, each nonzero z € Y and k > kq. Since

[ fe () = S, ()2l < ([ fone () = f () 2l| + [ fo, (%) — £ (), 2]
< fifoe

for each x € X, each nonzero z € Y and k > kg, p > ko so we have
lim Hf"k('x) _fnp (x),zll =0,
k,p—oo

i.e., (fn) is a #*-Cauchy sequence. Then by Theorem 3.4 (f;,) is a .#-Cauchy sequence. O
Theorem 3.6. Let .& be an admissible ideal with property (AP). Then the concepts . -Cauchy sequence and .%*-Cauchy sequence coincide.

Proof. By Theorem 3.4, .#*-Cauchy sequence implies .#-Cauchy sequence (in this case .# need not to have (AP) condition). Then, under
assumption that (f;,) is a .#-Cauchy sequence, it suffices to prove (f,) is a .#*-Cauchy sequence. Let (f) is a .#-Cauchy sequence. Then,
for every € > 0 and each x € X there exists s = s(€,x) € N such that

{neN:|fulx) = fs(x),2] > €} € 7,

for each nonzero z € Y. Let

1
Pi={n e N 500 = fn (0,2l < < ),

i=1,2,... where m; = v(%) Itis clear that P, € Z# (%), i=1,2,.... Since .# has (AP) property then by Lemma 2.2 there exists a set P C N

such that P C .#(.#) and P\P, is finite for all i.
Now, we show that

Jim_fu(x) = £(2).2] = 0

for each x € X, each nonzero z € Y. Let € > 0 and j € N such that j > % If m,n € P then P\P; is a finite set, so there exists k = k() such
that m € P; and n € P;, for all m,n > k(j). Therefore,

\mw<mmnk}mmmw—mwnké

for all m,n > k(j), each x € X and each nonzero z € Y and so, we get

[fn(x) = ()2l < [1fn () = fom, ()2l + {1 fon (%) = fim; () 2]
1 1 2
< —+-==<E&
J 7 J

for m,n > k(j), each x € X and each nonzero z € Y. Thus, for any € > 0 and each x € X there exists k = k(&,x) such that for any m,n > k
andm,n€ Pe F (1),
1fn(x) = fim(x), 2| < &

for every nonzero z € Y and so, the sequence (f) is a .#*-Cauchy sequence in 2-normed spaces. O
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