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Abstract

In the present paper the problem of MHD pulsatile flow of a viscous conducting fluid in porous medium sandwiched between viscous
fluids is investigated inside permeable beds. The flow in porous region is modelled using Brinkman equation and in the permeable
beds by Darcy’s law. The Beavers Joseph slip boundary condition is used at the interfaces of permeable beds. The governing par-
tial differential equations of flow are transformed in to ordinary differential equations by separating steady and oscillatory terms. The
differential equations are solved analytically and the expressions for velocity, mass flux and shear stress are obtained. The analytical
solutions are evaluated numerically and depicted graphically to show the effects of physical governing parameters on velocity and shear stress.
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1. Introduction

From many decades the analysis of multiphase flow in porous media and inside permeable beds is in principal interest of scientists and
engineers because of its numerous applications in natural systems like ground water flows, biomechanics, drainage, rain, blood flow inside
an artery etc. as well as in many engineering problems like power generation, distillation of water, refrigeration etc. One of the major
application of study of multiphase flow is in petroleum industry where flow of many immiscible fluids occur in the reservoir rock of oil field.
A special kind of unsteady flow in which a periodic variation in flow velocity is superimposed on steady flow velocity is pulsatile flow and
occurs in natural systems like cardiovascular systems in human respiratory[8], blood flow in arteries[11] etc. Carpinlioglu[3] presented a
complete overview on pulsatile flow in his review article.
Governing equations of fluid motion in porous media and boundary conditions at different interfaces are reviewed by D.A.Nield [4]. M.
Zamir[20] elaborated fluid dynamics of steady and pulsating flow and its applications. P. Bhattacharyya[2] studied laminar flow in a channel,
considering that one boundary wall is porous and obtained analytical results by implementing B-J slip condition at porous wall. After that
Venugopal and Bathaiah[18] analysed MHD Couette, Poiseuille and surface flows over a permeable bed. Unsteady oscillatory flow and heat
transfer in composite porous medium is studied by Umavathi et.al.[16]. Iyengar and Bitla[5] reported expressions of velocity and mass flux
for an incompressible couple stress fluid between permeable beds. Flow inside a permeable bed under exponentially decaying pressure
gradient is investigated by Prasad and Kumar[10]. Jogie and Bhatt[6] studied flow of immiscible fluids in a naturally permeable channel
using B-J slip condition. After that Sreenadh et.al.[13] analysed two phase flow between permeable beds by taking one couple stress fluid
and the other Newtonian fluid. P. Sulochaana[15] reported MHD flow of couple stress fluid with periodic body acceleration. She reported
that when body acceleration dominates pulsation pressure gradient, body acceleration promotes flow while body acceleration supress flow
when pulsation gradient dominates body acceleration. Recently Khan and Zaman[7] obtained analytical expressions for velocity and shear
stress of an unsteady MHD flow of second grade fluid, generated by accelerating plate. Flow of second grade fluid through constricted tube
is discussed by Siddiqui et.al.[12]. Srinivas and Murthy[14] studied flow of two immiscible couple stress fluids between permeable beds and
concluded that presence of couple stress decrease flow velocity. Three layer fluid flow over a small obstruction on the bottom of a channel is
studied by S. Panda et.al.[9].Umavathi et.al.[17] studied unsteady flow in porous medium sandwiched between viscous fluids.
In view of various applications of flow in permeable beds, MHD flow and pulsatile flow in natural and human systems, we analyse flow of a
conducting fluid in porous medium sandwiched between two viscous fluids inside permeable beds. We follow the momentum equation [19]
for flow through porous media including fluid inertia and viscous stress in addition to Darcy’s law.

ρ{∂V
∂ t

+(∇.V )∇}=−∇P+µ∇
2V − µ

K
V,
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Figure 2.1

where
ρ is the fluid density
µ is the coefficient of viscosity
P is the pressure
V is the fluid velocity vector
K is the permeability of the porous medium
We use matching conditions (continuity of velocity and shear stress) at the interfaces but at the permeable beds we use the Beavers and
Joseph[1] slip boundary condition

∂u f

∂y
=

α

K
1
2
(u f −um).

Here the clear fluid region occupies the region (y > 0), u f is the fluid velocity and u f and ∂u f
∂y are evaluated at y = 0+. The Darcy velocity

um is evaluated at some small distance from y = 0 in the porous medium. The Beaver-joseph constant α is dimensionless constant, depends
on structure of porous medium and independent of the fluid viscosity.

2. Mathematical Formulation

The geometry under consideration is illustrated in Fig. 2.1, consists of a region inside permeable bed. The region-II (0≤ y≤ h) is occupied
by a conducting fluid of density ρ2, viscosity µ2 , the region-I (−h ≤ y ≤ 0) is filled with a viscous fluid of density ρ1 and viscosity µ1.
Region-III (h≤ y≤ 2h) is also filled by a viscous fluid of density ρ3 and viscosity µ3. Here ρ1 > ρ2 > ρ3.
We consider the permeable beds to be homogeneous and the fluids to be incompressible and immiscible. The flow is unsteady, laminar and
fully developed and driven only by a pulsatile pressure gradient

−∂ p
∂x

=

(
∂ p
∂x

)
s
+

(
∂ p
∂x

)
o

eiωt ,

where
(

∂ p
∂x

)
s

and
(

∂ p
∂x

)
o

are amplitudes of steady and oscillatory pulsations respectively and w is the frequency. It is noted that the viscous
fluids and conducting fluid are immiscible (that is there exist no mixing between the fluids) and the constitutive equations for viscous fluids
and conducting fluid are different.
Assuming that non zero component of velocity is X-component( that is the flow is one dimensional), the governing equations of fluid flow are
Region-I Equation of mass balance

∂u1

∂x
= 0. (2.1)

Equation of momentum balance

ρ1
∂u1

∂ t
=−∂ p

∂x
+µ1

∂ 2u1

∂y2 . (2.2)

Region-II Equation of mass balance

∂u2

∂x
= 0. (2.3)
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Equation of momentum balance

ρ2
∂u2

∂ t
=−∂ p

∂x
+µ2

∂ 2u2

∂y2 −
µ2

K2
u2−σB2

ou2. (2.4)

Region-III Equation of mass balance

∂u3

∂x
= 0. (2.5)

Equation of momentum balance

ρ3
∂u3

∂ t
=−∂ p

∂x
+µ3

∂ 2u3

∂y2 . (2.6)

Herein the velocities u1(y, t),u2(y, t),u3(y, t) are to satisfy the conditions

∂u1

∂y
=

α√
K1

(u
′

1−Q1) at y =−h,

u
′

1 = u1 at y =−h,

µ1
∂u1

∂y
= µ2

∂u2

∂y
at y = 0,

u1 = u2 at y = 0,

µ2
∂u2

∂y
= µ3

∂u3

∂y
at y = h,

u2 = u3 at y = h,

∂u3

∂y
=− α√

K3
(u
′

3−Q2) at y = 2h,

u
′

3 = u3 at y = 2h.

(2.7)

Where u1, u2 and u3 are velocities in Regions-I, II and III respectively, K2 is permeability of the porous medium and K1, K3 are permeabilities
of lower and upper beds respectively. σ is electrical conductivity of the conducting fluid. Bo is applied magnetic field in the direction normal
to the flow. u′1, u′3 are slip velocities at the lower and upper permeable beds respectively and α is the slip parameter. Q1 = −K1

µ1

∂ p
∂x and

Q2 =−K3
µ3

∂ p
∂x are Darcy’s velocities in the upper and lower permeable beds.

In view of pulsating pressure gradient, let us assume that the velocities are in the form

ui = ui1 +ui2eiωt , i = 1,2,3.

Where ui1 and ui2 represent the steady and oscillatory parts of the velocities respectively.

3. Non-dimensionalization of flow quantities

We introduce following non dimensional quantities to make the governing equations and the boundary conditions dimensionless:

x∗ =
x
h
,y∗ =

y
h
,u∗i =

ui

u
,u∗i1 =

ui1

u
,

u∗i2 =
ui2

u
, t∗ =

tu
h
,K∗i =

Ki

h2 ,

w∗ =
wh
u
, p∗ =

p
ρ1u2 ,M = Boh

√
σ

µ2
.

After dropping the asterisks, governing equations of motion (2.2,2.4&2.6) in non-dimensional form are given by

∂u1

∂ t
=−∂ p

∂x
+

1
R1

∂ 2u1

∂y2 . (3.1)

∂u2
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1
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∂ 2u2
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K2R2
u2−

M2

R2
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∂u3
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=−ρ

′ ∂ p
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+
1

R3

∂ 2u3

∂y2 . (3.3)
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and boundary conditions (2.7) become

∂u1

∂y
= ασ1(u

′

1 +
R1

σ2
1

∂ p
∂x

) at y =−1,

u
′

1 = u1 at y =−1,

β
∂u1

∂y
=

∂u2

∂y
at y = 0,

u1 = u2 at y = 0,

γ
∂u2

∂y
=

∂u3

∂y
at y = 1,

u2 = u3 at y = 1,

∂u3

∂y
=−ασ2(u

′

3 +
R3

σ2
2

ρ
′ ∂ p
∂x

) at y = 2,

u
′

3 = u3 at y = 2.

(3.4)

Where

ui = ui1 +ui2eiωt , i = 1,2,3

−∂ p
∂x

=

(
∂ p
∂x

)
s
+

(
∂ p
∂x

)
o

eiωt

are non-dimensional velocities and pressure gradient respectively. R1 =
ρ1hu
µ1

,R2 =
ρ2hu
µ2

,R3 =
ρ3hu
µ3

are Reynolds numbers respectively in

flow regions I, II, III, σ1 =
h√
K1
,σ2 =

h√
K3

are non-dimensional parameters inversely proportional to square root of permeabilities of regions

I&III respectively and β = µ1
µ2

, γ = µ2
µ3

, ρ = ρ1
ρ2
,ρ
′
= ρ1

ρ3
are non-dimensional parameters. M = Boh

√
σ

µ2
is the Hartmann number.

3.1. Steady flow

The governing equations of steady flow are given by

1
R1

d2u11

dy2 +Ps = 0. (3.5)

1
R2

d2u21

dy2 −
(

1
K2R2

+
M2

R2

)
u21 +ρPs = 0. (3.6)

1
R3

d2u31

dy2 +ρ
′
Ps = 0. (3.7)

The boundary conditions to be satisfied by ui1 are

du11

dy
= ασ1(u

′

11−
R1

σ2
1

Ps) at y =−1,

u
′

11 = u11 at y =−1,

β
du11

dy
=

du21

dy
at y = 0,

u12 = u21 at y = 0,

γ
du21

dy
=

du31

dy
at y = 1,

u21 = u31 at y = 1,
du31

dy
=−ασ2(u

′

31−
R3

σ2
2

ρ
′Ps) at y = 2,

u
′

31 = u31 at y = 2.

(3.8)

Where Ps = ( ∂ p
∂x )s.
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3.2. Oscillatory flow

The governing equations of oscillatory flow are given by

1
R1

d2u12

dy2 − iωu12 +Po = 0. (3.9)

1
R2

d2u22

dy2 −
(

1
K2R2

+
M2

R2
+ iω

)
u22 +ρPo = 0. (3.10)

1
R3

d2u32

dy2 − iωu32 +ρ
′
Po = 0. (3.11)

The boundary conditions to be satisfied by ui2 are

du12

dy
= ασ1(u

′

12−
R1

σ2
1

Po) at y =−1,

u
′

12 = u12 at y =−1,

β
du12

dy
=

du22

dy
at y = 0,

u12 = u22 at y = 0,

γ
du22

dy
=

du32

dy
at y = 1,

u22 = u32 at y = 1,
du32

dy
=−ασ2(u

′

32−
R3

σ2
2

ρ
′Po) at y = 2,

u
′

32 = u32 at y = 2.

(3.12)

Where Po = ( ∂ p
∂x )o.

4. Solution of the problem

4.1. Steady flow solution

The solution of steady flow described in Section 3.1 is given by

u11 =C1 +C2y− 1
2

y2PsR1. (4.1)

u21 =C3 cosh
√

Ay+C4 sinh
√

Ay+
ρPsR2

A
. (4.2)

u31 =C5 +C6y− 1
2

y2
ρ
′
PsR3. (4.3)

Where A = M2 + 1
K2

and Ci,i = 1,2,3,4,5,6 are not reported for brevity.

4.2. Oscillatory flow solution

The solution of oscillatory flow described in Section 3.2 is given by

u12 =C7 cosh
√

iωR1y+C8 sinh
√

iωR1y− iPo

ω
. (4.4)

u22 =C9 cosh
√

By+C10 sinh
√

By+
ρPoR2

B
. (4.5)

u32 =C11 cosh
√

iωR3y+C12 sinh
√

iωR3y− iρ
′
Po

ω
. (4.6)

Where B = M2 + 1
K2

+ iωR2 and Ci,i = 7,8,9,10,11,12 are not reported for brevity.
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4.3. Pulsatile flow solution

The solution of the pulsatile flow is given by

u1 = u11 +u12eiωt .

u2 = u21 +u22eiωt .

u3 = u31 +u32eiωt .

where u11,u21,u31 and u12,u22,u32 are known from the steady flow and oscillatory flow solutions given in Eqs. (4.1),(4.2),(4.3),(4.4),(4.5)
and (4.6) respectively.

4.4. Mass flux

The instantaneous mass fluxes in Regions I, II and III are respectively given as

Q1 =

0∫
−1

u11dy+

 0∫
−1

u12dy

eiωt .

Q2 =

1∫
0

u21dy+

 1∫
0

u22dy

eiωt .

Q3 =

2∫
1

u31dy+

 2∫
1

u32dy

eiωt .

The elaborated expressions are not given for brevity.

4.5. Shear stress

The shear stresses in non-dimensional form at the both permeable beds are given by

τl =
∂u1

∂y
at y = 0.

τu =
∂u3

∂y
at y = 2.

Where τl and τu are shear stress at the lower and upper permeable beds respectively.

5. Results and discussions

The analytical solutions for the velocity profile of MHD pulsatile flow of conducting fluid in porous medium sandwiched between viscous
fluids inside permeable beds are obtained. The analytical solutions are evaluated numerically and depicted graphically in Figs.5.1-5.6,
for different values of governing parameters to elucidate interesting features of velocity. In numerical work, we take ρ = 1,ρ ′ = 1 (i.e.
ρ1 = ρ2 = ρ3),R1 = 2,R2 = βR1,R3 = βγR1,β = 1.1,γ = 1.2,Ps = 2,Po = 2.5,α = 0.5,K2 = 3,σ1 = 0.5,σ2 = 0.5, except where they are
variable.
The effect of various flow parameters entering in to problem on pulsating velocity are depicted in Figs. 5.1-5.6. Figs. 5.1(a) and 5.1(b) show
the pulsatile velocity profile with respect to y and t simultaneously. It is noticed as Hartmann number M increases, flatness in velocity profile
in Regions-I&III increases while in Region-II flatness in velocity profile decreases. Fig. 5.2 shows the variation of pulsating velocity in
Region-I (Fig. 5.2(a)), Region-II (Fig. 5.2(b)) and Region-III (Fig. 5.2(c)). The velocities correspond to slip velocities at the interfaces of
lower permeable bed (y =−1) and upper permeable bed (y = 2).
Velocity profiles for permeability of porous medium(K2), Hartmann number(M), frequency parameter(ωt) and slip parameter(α) are depicted
in Fig. 5.3. In Fig. 5.3(a), we see that as K2 is increasing, the velocity is increasing. From Figs. 5.3(b)& 5.3(c), it is noticed that as M is
increasing, the velocity is decreasing. Also we observed that as ωt is increasing, the velocity is increasing(Fig.5.3(d)). For σ1 = σ2 = 0.5(Fig.
5.3(e)), as α is increasing, velocity is increasing while For σ1 = σ2 = 5(Fig. 5.3(f)), as α is increasing, velocity is decreasing. Fig. 5.4 shows
variations of velocity profiles for viscosity ratios β (Fig.5.4(a)) and γ(Fig.5.4(b)). As β and γ are decreasing, the velocity is decreasing. This
is due to fact that as the viscosity ratios decrease, the fluids become thicker. Therefore the flow velocity is reduced. Fig. 5.5 illustrates the
influence of the porosity parameters σ1&σ2 on the flow velocity. In Figs. 5.5(a) and 5.5(b), we see that as the porosity parameters increase,
the flow velocity decrease.
Finally velocity profiles for some special cases are depicted in Fig. 5.6. Fig. 5.6(a) shows the velocity profile for high Reynolds number
R1(=250) when permeability of porous medium K2→ ∞. Velocity profile For same fluids(β = 1,γ = 1,M = 0) in all regions is shown in
Fig. 5.6(b). Further we see that, for same fluids and K2→ ∞, velocity profile is parabolic (similar to plane Poiseuille flow in a permeable
channel)(Fig.5.6(c)). In addition, if porosity parameters σ1→ ∞&σ2→ ∞ then permeable beds behave like impermeable plates (Fig.5.6(d))
and the no slip condition follows.
The variation in shear stress τ at the interfaces of lower permeable bed(LPB) and upper permeable bed(UPB) with respect to various flow
parameters entering into the problem is presented numerically through Tables 1-6. In Table 1, we have presented the shear stress as R1
increases for a fixed set of other values of parameters. As R1 is increasing, the shear stress at both plates is increasing. In Table 2, we notice
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Figure 5.1: Velocity profiles for simultaneous variations in y and t
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Figure 5.2: Velocity profiles with time
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Figure 5.3: Velocity profiles for permeability(K2), Hartmann number(M), frequency parameter(ωt), slip parameter(α).
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Figure 5.4: Velocity profiles for viscosity ratios.
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Figure 5.5: Velocity profiles for porosity parameters.
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Figure 5.6: Some special cases.
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that as the Hartmann number M in increasing for ωt = 0, π

4 ,
π

2 , shear stress is increasing at both plates. While at ωt = 3π

4 , as M is increasing
through values 0 to 1, shear stress is decreasing at both the permeable beds and further an increase in M results an increase in shear stress.
In Table 3, it is seen that as the porosity parameter σ(= σ1 = σ2) is increasing shear stress is increasing at both the permeable beds. At fixed
value of σ , greater or equal to 1.5 as ωt is increasing through values 0 to π

4 , shear stress at both the permeable plates is increasing. Further
an increase in ωt results a decrease in shear stress at both permeable beds. Table 4 shows that as slip parameter α is increasing, shear stress
is increasing at the both permeable beds.
In Table 5, it is seen that as the viscosity ratio β is increasing for ωt = 0, π

4 and π

2 , shear stress at lower permeable bed is decreasing while
at upper permeable bed is increasing. However, for ωt = 3π

4 shear stress at both the permeable beds is increasing. Table 6 shows that as
viscosity ratio γ is increasing, shear stress at both the permeable beds is increasing.

Table 1: Variation in shear stress at ρ = 1,ρ ′ = 1,β = 1.1,γ = 1.2,α = 0.1,K2 = 0.5,M = 0.5,σ = 0.5,Ps = 2,Po = 2.5.

modτ R1 = 1 R1 = 2 R1 = 3 R1 = 4 R1 = 5
ωt = 0 LPB 0.576235 1.26637 1.94451 2.61591 3.28401

UPB 0.835937 1.79615 2.73995 3.67603 4.60869
ωt = π

4 LPB 0.511393 1.15577 1.79376 2.42633 3.05605
UPB 0.74404 1.63640 2.51935 3.39597 4.26958

ωt = π

2 LPB 0.394241 0.930285 1.46393 1.99331 2.52031
UPB 0.563685 1.28775 2.00798 2.72324 3.43396

ωt = 3π

4 LPB 0.275511 0.684203 1.08954 1.49088 1.89003
UPB 0.359703 0.874562 1.38495 1.89074 2.39423

Table 2: Variation in shear stress at ρ = 1,ρ ′ = 1,β = 1.1,γ = 1.2,α = 0.1,K2 = 0.5,R1 = 0.5,σ = 0.5,Ps = 2,Po = 2.5.

modτ M = 0 M = 1 M = 2 M = 3 M = 4
ωt = 0 LPB 0.234249 0.261655 0.302353 0.326433 0.339460

UPB 0.357861 0.385929 0.425848 0.449225 0.461851
ωt = π

4 LPB 0.201686 0.227863 0.270706 0.295819 0.309167
UPB 0.311327 0.339955 0.382696 0.407355 0.420455

ωt = π

2 LPB 0.147856 0.163184 0.199394 0.221357 0.232903
UPB 0.225843 0.246331 0.283357 0.305139 0.316599

ωt = 3π

4 LPB 0.097197 0.0860313 0.102392 0.116566 0.124215
UPB 0.131169 0.128155 0.147005 0.161133 0.168830

Table 3: Variation in shear stress at ρ = 1,ρ ′ = 1,β = 1.1,γ = 1.2,α = 0.1,K2 = 0.5,M = 0.5,R1 = 0.5,Ps = 2,Po = 2.5.

modτ σ = 0.5 σ = 1.5 σ = 2.5 σ = 3.5 σ = 4.5
ωt = 0 LPB 0.242167 0.379546 0.658378 0.857072 1.01040

UPB 0.366173 0.384147 0.706753 0.938218 1.11837
ωt = π

4 LPB 0.20864 0.406545 0.680018 0.873209 1.02041
UPB 0.319456 0.419315 0.736508 0.962566 1.13679

ωt = π

2 LPB 0.150494 0.371778 0.598397 0.756888 0.876073
UPB 0.230816 0.390812 0.654390 0.840841 0.982867

ωt = 3π

4 LPB 0.090721 0.280585 0.426084 0.526122 0.599565
UPB 0.127775 0.303020 0.473024 0.59185 0.680481
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Table 4: Variation in shear stress at ρ = 1,ρ ′ = 1,β = 1.1,γ = 1.2,R1 = 0.5,K2 = 0.5,M = 0.5,σ = 0.5,Ps = 2,Po = 2.5.

modτ α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
ωt = 0 LPB 0.242167 0.446143 0.619790 0.769034 0.898413

UPB 0.366173 0.682074 0.956955 1.19801 1.41084
ωt = π

4 LPB 0.208640 0.382286 0.528574 0.653148 0.760256
UPB 0.319456 0.591913 0.826586 1.03050 1.20911

ωt = π

2 LPB 0.150494 0.27481 0.378936 0.467211 0.542847
UPB 0.230816 0.425289 0.590973 0.733524 0.857272

ωt = 3π

4 LPB 0.0907217 0.168961 0.237268 0.29748 0.35097
UPB 0.127755 0.236725 0.330798 0.41289 0.485178

Table 5: Variation in shear stress at ρ = 1,ρ ′ = 1,γ = 1.2,α = 0.1,R1 = 0.5K2 = 0.5,M = 0.5,σ = 0.5,Ps = 2,Po = 2.5.

modτ β = 1.1 β = 1.2 β = 1.3 β = 1.4 β = 1.5
ωt = 0 LPB 0.242167 0.235693 0.229787 0.224480 0.219647

UPB 0.366173 0.406497 0.447604 0.489375 0.531704
ωt = π

4 LPB 0.208640 0.202891 0.198229 0.194543 0.191758
UPB 0.319456 0.355058 0.391547 0.428814 0.466753

ωt = π

2 LPB 0.150494 0.148264 0.147592 0.148340 0.150339
UPB 0.230816 0.257663 0.285451 0.314073 0.343430

ωt = 3π

4 LPB 0.090721 0.095987 0.102598 0.110203 0.118511
UPB 0.127775 0.14550 0.164142 0.18358 0.203701

Table 6: Variation in shear stress at ρ = 1,ρ ′ = 1,β = 1.1,α = 0.1,R1 = 0.5,K2 = 0.5,M = 0.5,σ = 0.5,Ps = 2,Po = 2.5.

modτ γ = 1.1 γ = 1.2 γ = 1.3 γ = 1.4 γ = 1.5
ωt = 0 LPB 0.242042 0.242167 0.242297 0.242431 0.242566

UPB 0.323116 0.366173 0.409472 0.452474 0.496653
ωt = π

4 LPB 0.208492 0.20864 0.208794 0.208952 0.209112
UPB 0.280799 0.319456 0.358420 0.397632 0.437051

ωt = π

2 LPB 0.150302 0.150494 0.150686 0.150879 0.151071
UPB 0.202437 0.230816 0.259588 0.288665 0.317987

ωt = 3π

4 LPB 0.090445 0.090721 0.090984 0.091235 0.091475
UPB 0.113949 0.127775 0.142160 0.156977 0.172135

6. CONCLUSION

The problem of MHD pulsatile fluid of viscous conducting flow in porous medium sandwiched between viscous fluids is analysed inside
permeable beds of different permeability. Separate expressions for velocity and mass flux in both regions are obtained using B-J slip
boundary condition at the interfaces of permeable beds. The analytical solutions are evaluated numerically and depicted graphically to
elucidate the features of velocity and shear stress for various values of Hartmann number M, Reynolds number R1, permeability of porous
medium K2, frequency parameter ωt, slip parameter α , viscosity ratios β and γ and non-dimensional parameters σ1, σ2. It is observed that
Hartmann number M and non-dimensional parameters σ1, σ2 suppress the flow velocity while permeability of porous medium K2, frequency
parameter ωt and viscosity ratios β and γ promote the flow. Variation of pulsatile velocity with slip parameter α depends on σ1, σ2. For
σ1 = σ2 = 0.5, α promotes the flow while for σ1 = σ2 = 5, α supress the flow. As the slip parameter, Reynolds number and viscosity ratio
γ are increasing, shear stress at both the permeable beds are increasing. Shear stress shows mix trends with Hartmann number, porosity
parameters and viscosity ratio β .
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