

Recombinant Interferon-Beta1a Use in Six Patients with Myeloproliferative Neoplasms: A First Impression

Püsem Patır®

University of Health Sciences, Antalya Training and Research Hospital, Department of Hematology, Antalya, Türkiye

Table 1 Demonstration Clinical and Laboratery Characteristics of Dati

Dear Editor;

Recombinant and pegylated interferon-alpha2 (IFN- α 2) have a long history of off-label use in patients with Philadelphia-negative chronic myeloproliferative neoplasms (MPNs).¹ While preclinical evidence suggests potential anti-cancer activity for rIFN- β 1a (recombinant interferon-beta1a)², clinical experience with this agent in MPNs is lacking, with no prior reports of its use in this setting to the best of our knowledge. rIFN- β 1a, while a well-established therapy for multiple sclerosis, remains understudied in MPNs. Here, we present our initial observations on the safety profile of rIFN- β 1a in six MPN patients who transitioned to this therapy.

Six MPN patients, previously treated with off-label pegylated r-IFN α -2a due to unavailability, transitioned to off-label r-IFN β -1a and were retrospectively evaluated. Patients were followed for a median of 35.3 months after MPN diagnosis (30.8 months under r-IFN α -2a and 16.8 months under r-IFN β -1a). Demographic, clinical, and laboratory characteristics are summarized in the Table 1.

	1	2	3	4	5	6
Age/Gender	46/F	45/M	47/M	41/F	44/M	34/F
Diagnosis	PV	PV	ET	ET	PV	ET
Mutation	JAK2	Triple negative	JAK2	CALR Type 1	JAK2	CALR Type
Risk Score ^a	Low	Low	Low	Low	Low	Low
The Initiation of IFN-Beta1a						
Hb (g/dL)	13.3	13.2	14.7	11.5	15.3	12.4
Htc (%)	41.6	44.3	42.8	34.5	45.3	38.2
Leu (x10 ³ /mm ³)	5500	11700	5900	9400	4600	8900
<i>Plt (x10³/mm³)</i>	454	272	419	774	151	606
LDH (U/L)	237	191	241	313	229	263
JAK-2 allele (%)	9.8		8		10	
Latest Visit of IFN-Beta 1a						
Hb (g/dL)	12.9	12.9	16.4	10.9	16.9	11.7
Htc (%)	38.7	41.8	50.1	32.7	51.1	37.6
Leu (x10 ³ /mm ³)	7570	10700	11500	13250	10300	6500
<i>Plt (x10³/mm³)</i>	666	395	721	756	510	639
LDH (U/L)	203	173	303	309	178	318
JAK2 allele (%)	3.6		1.7		0.6	
Adverse Event						
Myalgia	Grade 2	Grade 1	Grade 2	Grade 2	Grade 2	Grade 1

Hb, hemoglobin; htc, hematocrit; leu, leukocyte; plt, platelet; LDH, lactate dehydrogenase. ^aAge ≤ 60 y of age, platelets ≤ 1500 (×10³/mm³) and no prior majoLor thrombosis

All patients initiated r-IFN β -1a at a dose of 44 mcg weekly. All patients reported myalgia on treatment days, requiring concomitant non-steroidal anti-inflammatory drug (NSAID) administration. This adverse event prevented dose escalation, and the initial dose remained unchanged. No other adverse events were observed,

Received: February 25, 2025; Accepted: April 10, 2025; Published Online: April 29, 2025

How to cite this article: Patir P Recombinant Interferon-Beta1a Use in Six Patients with Myeloproliferative Neoplasms: A First Impression DAHUDER MJ 2025,5(2):30-31. DOI: 10.56016/dahudermj.1647004

Address for correspondence: Püsem Patır, TUniversity of Health Sciences, Antalya Training and Research Hospital, Department of Hematology, Antalya, Türkiye email: pusemp@yahoo.com

Available at http://dergipark.org.tr/en/pub/dahudermj

and no treatment discontinuations occurred due to adverse events. No new arterial or venous thrombotic events were observed during r-IFN β -1a therapy.

Three of the six patients harbored the JAK2V617F mutation. Due to insufficient JAK2V617F measurements, assessment with an exponential response model was not feasible. However, a reduction in allele burden was observed in these three patients following the initiation of r-IFN β -1a.

MPNs are characterized by a self-sustaining inflammatory cycle driving clonal expansion.^{3,4}, supporting the idea of early interferon intervention to halt disease progression.⁵ While IFN- α and IFN- β share similar immunomodulatory mechanisms.⁶, they also exhibit distinct characteristics, most notably IFN- β 's higher receptor binding affinity.⁷

In this six-patient case series, r-IFN β -1a demonstrated a manageable safety profile, with myalgia being the most common side effect, which limited dose escalation. While some patients showed a reduction in JAK2V617F allele burden, the small sample size prevents any definitive conclusions about its clinical significance. Further studies are needed to determine the optimal role of r-IFN β -1a in the treatment of MPNs.

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/ or publication of this article.

Funding Sources

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Ethical Approval

No ethical approval needed

Authors' Contribution

Study Conception: PP; Study Design: PP; Supervision; PP; Funding: N/A; Materials: PP; Data Collection and/or Processing: PP; Analysis and/ or Data Interpretation: PP; Literature Review: PP; Critical Review: PP; Manuscript preparing: PP.

REFERENCES

- Foucar CH, Stein BL. Contemporary use of interferon therapy in the myeloproliferative neoplasms. Current Hematologic Malignancy Reports. 2017;12:406-414. https://doi. org/10.1007/s11899-017-0402-1
- Hasselbalch H, Skov V, Kjær L, Larsen MK, Knudsen TA, Lucijanić M, Kusec R. Recombinant Interferon-β in the Treatment of Polycythemia Vera and Related Neoplasms: Rationales and Perspectives. Cancers. 2022;14(22):5495. https://doi.org/10.3390/cancers14225495
- 3. Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: Is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood. 2012;119:3219–3225. https://doi.org/10.1182/blood-2011-11-394775
- 4. Hasselbalch HC. Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk Res. 2013;37:214–220. https://doi.org/10.1016/j. leukres.2012.10.020
- Pedersen RK, Andersen M, Knudsen TA, Sajiid Z, Gudmand-Hoeyer J, Dam MJB, Skov V, Kjaer L, Ellervik C, Larsen TS, et al. Datadriven analysis of JAKV617F kinetics during interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms. Cancer Med. 2020;9:2039–2051. https://doi. org/10.1002/cam4.2741
- 6. Borden EC. Interferons α and β in cancer: Therapeutic opportunities from new insights. Nat. Rev. Drug Discov. 2019;18:219–234. https://doi.org/10.1038/s41573-018-0011-2
- Platanias LC, Uddin S, Domanski P, Colamonici OC. Differences in Interferon α and β Signaling. J. Biol. Chem. 1996;271:23630–23633. https:// doi.org/10.1074/jbc.271.39.23630

This is an open access article distributed under the terms of <u>Creative Common</u> Attribution-NonCommercial-NoDerivatives 4.0 International License.