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Abstract

The present paper is devoted to the investigation of lossless transmission lines with Josephson junction. Such
lines are described by first order nonlinear hyperbolic system partial differential equations. We consider the
mixed problem for this system with boundary conditions generated by a circuit corresponding to Josephson
junction formulated by V. Angelov. We present the mixed problem in an operator form and obtain a suitable
sequence converging to a continuous solution.
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1. Introduction

The present paper deals with the problem of analysis of lossless transmission lines with Josephson junc-
tion. The superconductivity problem has been treated in many papers [I]-[4]. The describing of the problem
leads to the following nonlinear hyperbolic system

8.856 - 5 ot -

Zg;’t) =— ug:;,t) — Jjosin w, (z,t) e I = {(x,t) : (x,t) € [0,A] x [0,T])} (1.1)
0®(z,t)

o - u(zx, t),

Here u(z,t), i(z,t) and ®(z,t) are unknown functions — voltage, current and Josephson flux, L and C
are prescribed specific parameters of the line, A > 0 is its length; jy is maximal Josephson current per unit

length and &y = — is flux induction quantum, h is Planck constant and D= Jg is Josephson constant.
0
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In [5], [6] (cf. also [7], [8]) V. Angelov showed that it is better to consider (1.1]) instead of the well-known
Sin-Gordon equation. As in [5] we present the flux function as an integral of the voltage

O(x,t) = /u(x,s)ds, (1.2)
0

and then formulate the following initial-boundary value (mixed) problem: to find the unknown functions
u(x,t) and i(x,t) in II satisfying the system

Ou(z,t) = 10i(xz,t)  Jjo (27r ¢ >
+ = — [u(z,s)ds
0

= —= sin
ot g o O\ (o) €10, (1.3)
i(z,t) n 1 du(z,t) 0
ot L oz
with initial conditions
u(z,0) = up(z), i(z,0) =ig(x), = € [0,A] (1.4)
and boundary conditions (|5], [6])
E(t) —u(0,t) — Rpi(0,t) =0, t € (0,77, (1.5)
du(A,t) 1
Co b i(A,t) Rlu(A,t), te[0,7], (1.6)

where ig(z), up(x) are prescribed functions — the current and voltage at the initial instant, F/(t) is a prescribed
source function, Ry, R1,Cp are specific parameters of the elements of the circuits (cf. [5]).

Here we are based on the operator form of - used in [5], [6] and obtain a solution by the method
of successive approximations. Although we cannot overcome the cutting of the domain II we choose a better
initial approximation such that the sequence obtained tends to the continuous solution of the corresponding
operator equation.

2. Diagonalization of the hyperbolic system
: . L .
Following [8] we multiply by ol the second equation of the system ([1.3)

ou(x,t) 1 0i(x,t)  jo . (2w L
o + c s~ oo By Ofu(x, s)ds o)
\/f(%(x,t) n 1 Ou(x,t) 0 .
c ot VLC Oz '

Adding the above equations we get

% (u(:ﬂ,t) + \/7 i(x,t)) + \/iicaax (u(l‘,t) + \/g i(x,t)) = f%osin 27;/u(ac,.s:)als
0

Subtracting the equations of (2.1]) we get:

9 L 19 L jo . [2n |
En (u(az,t) - \/; z(a:,t)) - Jicos (u(z,t) - \/; z(m,t)) = _50 sin (I)O/u(x,s)ds

Ql
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So we obtain a new system:
0 [L 1 0 /L Jo f
— — —_— —i(x,t)) = —= — d
g (u(z,t) + Cz(af,t)) + \/ﬁax( (x,t) + Cz(a:, ) sin ( " Ofu(w,s) s 02
1 L ] 2 ¢ ’
gt(u(m,t) — \/éi(x,t)) — maax(u(x,t) - Uai(x,t)) = _%0 sin (q:(: J u(a:,s)ds)
A ally we put v ! Z L and define two functions of new real variables
s usu W = 2o =1\ = W W %
y p JIC 0 C
T tv Tv
(21,22):21:X€ [0,1], 2 X [0 A:|;OI'CC:AZl,t:U22:
1 A , A
fi(z1, 22) ToZoh [U (AZL U22> + Zoi <A21, Uzz)];
(2.3)
1 A , A
fa(z1, 22) SoZoh {u <A21, v2’2> — Zoi <AZ1, U@)],
T
for z = (21,22) € P C R?, where R2 =R xR (R = (—00,00)); P = [0,1] x [0, Av]
The inverse transformation is
_ JoZoA z tv T tv
wte) =220 [ (5 0) 40 (5 0]
(x,t) € 1L (2.4)
. _ JoAA T tv Tz tv
l($7t)—2|:fl <A7A) f2 <A’ A>:|7
For the partial derivatives of fi (k = 1,2) we obtain as follows:
0 fr(z1, 22) 1 0 A be1rr - A
= — — -1 Zoi | Azq, — ;
0z joZo O x “ AZI’UZQ +(=1) or\ L2 |
8fk(21,22) 1 0 A k—1 X A
= — Azy, — -1 Zoi | Azq, — .
0 29 joZov Ot WA 2 +(=1) ot { A5 *2
Consequently, by substituting into the equations of the system we obtain as follows:
8f1(21,22) 8f1(z1,22) C 0 1 0 L .
==+ — = VI \/ =i ( Az, AVL =
92 + AP + 603 u(Azl,A CZQ) + Cz( 21, ng)
A\/EZQ Z A
= —sin <27r u(Azl,s)dS> = —sin (<I> -AVLC - JoZo f fi1(z1,7) + fa(21,7)) d7~> =
0 0 0
. A%Ljg #2
= —sin <7T p Jo [ (fi(z1,7) + fo(z1,7)) dr);
0 0
8f1(z1,z2) 8f1(21,22) C 0 1 0 L .
— =—|=-——= Az, AW LCz29 ) — ]/ =i (Az1, AVLC
8 2 921 Jo \ot  VIC oz “( b 22) VC’Z( b zQ)
9 AVLCz A2L 29
= —sin | 2 | u(Az,s)ds| = —sin <7r J0 f(fl(z1,1")+f2(zl,r))dr>.
Thus we reduce the system (2.2)) to the following one
df1 0f1 B . 7TA2Lj0 Z2
929 + 92 = —sm( By {(fl(zl,r) + fo(z1,7)) dr
R (21, 22) eP. (2.5)

2 29
% — % = —sin (WA f]o [ (fi(z1,7) + falz1,7)) dr)
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The new initial conditions become:

o uo(Azl) io(AZl) B ug(Azl)\@—i— io(AZl)\/E_
Y T T W JoAVL ’
, 21 €0, 1]. (2.6)

fa(z1,0) = ug(Az1) . io(Az1) _ o (A21)\@—io(Az1)ﬁ
Yy S U AV

We obtaln the new boundary conditions substltutmg U and i from (12.4)) mto 1.5) and (|1.6} respectlvely
— f2 ) and

R R
2

Az
(Ro + Zo)joA v R T Z

&[5l t:ﬂ—;o[ofb—fzof:)}—m{ﬁ(l, }
_R}lzlzo f1< tv) R;JZOZ%( ) 220f (1 T>_R11%;LZOZO {fl( )+f2< i\)]

. A Tv
consequently, with t = —r, r € { 0, | Ve get
v

A
with t = —22 we get f1(0,22) = f2 (0, z2) for zo 6 0

S+ 4 2P 4 4 )= 2 h . o (o= )
R1+ZQAC Ry + Zy AC
S +pane BGT -2 Ran.e B G

and integrating the last equation from 0 to z2 (with a reasonable assumption that there exist the limits

T
lim fi1(1,7) = f1(1,0); lim fo(1,7)) = f2(1,0)), we obtain for each 2z € <0, !
r—+0 r—+0 A
R1 + Zy AC Ri1 + Zy AC
TR, 2 2AC 72 TR, C. (22—r)
fo(l,20) = e 1 o (f1(170)+f2(170))—f1(17Z2)+70ffl(l»S)e 1~ dr.
0

Finally, the new boundary conditions become:

2 A22 R Tv
0 = ———F(— 0, 0,—|; 2.7
fr0-22) = R 7 A <U)+R0+Zf2( “2), ZQG(’A]’ 27)
R+ 2 AC’
f2(17z2) =e€ Ry CO (f1(1,0)+f2(1,0))—f1(1,2’2)+
AC R1 + Zy AC( \ (2.8)
2 %2 ——(zy—r T
ff1 (1,s) Ri Gy ? dr, z9 € [O, Av] )
T A?Lj
We introduce the following real constants: o = Tv) = T 3 J0 (o € (0,400),p € (0,400)) and
0
Ry — Zo R1 + Zy AC A AL
RO"‘ZO’ R]_ ) 7 CO UZ()C() CQZ2 (a ( i )7 ﬁ ( 7+OO)7’Y ( 7+OO))7
as well as the real-valued functions hy,hs : [0,1] - R and K : [0,0] — R:
UQ<A2’1) ig(AZl) uo(Azl) io(AZl)
hi(z1) = — + — , ha(z1) = — - — ; 2.9
1) JoZoA JoA 21) JoZoA JoA (2.9)
1 Azo 1 . Ar
K = FEl—=) (K(0) = lim EF{— ) =K 2.1
(22) jOZ()A < v ) ( (O) j(]Z()A TLIEO < v ) (+O)) ( O)

(depending on the original constants A, T'; L, C, Ry, R1,Cy and functions i, u,, E).
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So the system ([2.5)) can be rewritten as:

gi*gi *bm(uf fi(z1,r )+f2(21,r))dr)
, 2= (21,22) € P. (2.11)

The transformed mixed problem is: to find a solution f = (fi, f2) of the system (2.11)), with
initial conditions

fl(zl,O) = h1(2:1>, fQ(Zl,O) = hg(zl),zl (S [0, 1] ; (2.12)
and boundary conditions
f1(0,22) = (1 = a)K(z2) + P10 [(f1, f2)] (22), 22 € (0, o], (2.13)
f2(1,20) = (f1(1,0) + f2(1,0)) €= P72 + a1 [(f1, fo)] (22), 22 € [0, 0], (2.14)
where the operators ®1 ¢ and ®5 ;1 are defined as follows:
D10 [(f1, f2)] (22) = af2(0,22), 22 € (0, 0]; (2.15)
Eaa (f1 o)) (22) =~z + 20 [ A0, 20 € 0, 0], (2.16)

3. An operator formulation of the mixed problem.

Our aim in this section is to reduce the initial-boundary value problem (2.11] - ) to an operator
equation for a corresponding mapping, acting on a suitable space of vector- functlons

Throughout this section (and the next), C'(I) will be the set of all continuous functions from the interval
I cRinto R (R = (—o00,00)), C(K) = (C(K),dc(k)) will be the complete metric space of all continuous
functions from the compact set K C R? into R with the usual uniform metric dc(ky induced by the max-norm

I lex) and C (K3R?) = {g = (g1,92) : gx € C(K) VEk =1,2}.
d
Consider Cauchy problem for the characteristics of (2.11]) — (2.14)): dj = A\k(21,22),&(22) = 2 for any
n

fixed (21,22) € P (cf. [5],[6]), where A1(z1,22) = 1 and Aa(21,22) = —1 for all z = (z1,22) € P, which
guarantee uniqueness to the left from z of the solution & = ¢k (n; 21, 22). Then we obtain two families
(cF) = {ck: 2 = (21, 29) € P}, corresponding to A\ = A\(21, 22) = (= 1)*1(k = 1,2):

d

df? =1, {(22) = z for each (21, 22) € P = p1(m;21,22) =0+ 21 — 22, << 20 (1 > 0); (3.1)
dg
an —1, &(z2) = z1 for each (z1,22) € P = pa(n;21,22) = —n+21+22,m2<n <20 (m2>0). (3.2)

Denote by x, (21, 22) (k = 1,2) the smallest value of 7 such that (¢«(n; 21,22),m7) € P =[0,1] x [0,0], i.e
0 < x,(21,22) < 22 and if x, (21, 22) > 0 then @i (x, (21, 22); 21, 22) = 00r i (X, (21, 22); 21, 22) = 1.

In fact, for the solution of (3.I)) we have: if x, (21, 22) > 0, then ¢1(x, (21, 22); 21, 22) = 0 as well as for
the solution of (B.2)) — if x, (21, 22) > 0, then ¢a2(x, (21, 22); 21, 22) = 1. Consequently

29 — 21, f 20 — 21 >0 zo+2z1—1,ifzo+21—1>0
) ={ 2T EETE 0 G = bR (1.2) € P).

0, ifzg—21 <0 0, ifzg4+21—1<0

Remark 3.1. It is easy to see that ¢1(0;21,22) = 21 — 22 and ¢ 2(0; 21, 22) = 21 + 22.



L. P. Georgiev, Results in Nonlinear Anal. 1 (2018), 30-45 35

Introduce the sets
Iin, 1 ={(21,22) € P: x,(21,22) =0} = {(21,22) €[0,1] x [0,0] : 0< 21 <1,0< 29 < 21},
Ho 1 ={(21,22) € P x,(21,22) > 0, 91(x,(21,22); (21, 22)) = 0} = P\l 1,
Iin,2 = {(21,22) € P: xy(21,22) =0} = {(21,22) €[0,1] X [0,0] : 0< 2 <1, 0< 20 <1— 2z},
I o = {(21,22) € P: x,(21,22) > 0, pa(x,(21,22); 21, 22) = 1} = P\l ».
Prior to present problem — in an operator form we introduce the pair of operators
® = (®q, Py), defined on a suitable function space M C {f = (f1, f2) : fr : P — R,k = 1,2}, such that for
any fixed f = (f1, f2) € M the functions ®1[f], ®2[f] : P — R are well defined as follows:

| hi(z1 — 22), (21, 22) € I,
Pulf](1,22) = { (11 —104)K?Z2 —21) + Q1o [f] (22 — 21), (2117 222) € I, 11; (33)
[ ha(z1 + 22), (21,22) € i 2
© UG = { (7 0) T (0 e 4 s 7] 52— 1 oy Tl O

where hy 2, K, ®10[f] = ®1,0[(f1, f2)] and P21[f] = P21 [(f1, f2)] are introduced in the previous section, in
(2.9), (2.10]) , (2.15)) and (2.16) respectively.

Remark 3.2. If f = (f1, f2) is a solution of (2.11)) — (2.14)), it is clear that for every z = (21, 22) € P
Pr[f](21, 22) = fulon(x, (21, 22); 21, 22), X, (21, 22)) (B = 1,2), or
hi(p1(0; 21, 22)), (21, 22) € in 1 { ha(p2(0; 21, 22)), (21,22) € Wi 2
® ,22) = PR ,22) = ’
1)z, 22) { £10.%, (21, 22)), (7)€ Mgy © 221G =050 G ), () e .

Now then, let us integrate equations of along characteristics from (c!) and (c?) respectively. For
any fixed z = (21,22) € P (22 > 0) there exist two characteristics, ¢ € (c!) and ¢ € (c?):
= {(Em) € P € = gulm 21 20)x, (1, 20) <0 < 20}y k= 1,2 (el = {(0.0) ki ) = {(Lo)}).

We rewrite definitions of ¢¥(k = 1, 2), substituting 7 for a function of &: 7 = 1 (&; 21, 29), where & belongs
to the closed interval between 21 and 6x(2) = Ox(21,22) (01(2) = @r(x,(2);2) : (£,m) € & C P) such that

or(Vp(&;2);2) = & Yr(or(n; 2); 2) = . In particular:
P1(§521,22) = 20 — 21 + &, O1(21,22) SE <215 o621, 22) = 20+ 21 — €, 21 < € < Ba(21, 22) (3.5)

and we get the following representations for the characteristics:
aa={(&n) eP:n=u1(&2,2), 0i(z1,22) <E< 21}

E={(&n) € P:n=1(&21,2), 21 <E<ba(21,2)},

where
01(2) = 01(0;2) = 21 — 22, Vz € Iy 15 01(2) = p1(x,(2);2) =0, Vz = (21, 22) € I 1;

02(2) = p2(0;2) = 21 + 22, Vz € Iy, 2; O2(2) = p2(x,(2); z) =1, Vz = (21,22) € II1,2.

Therefore, integrating the first and the second of equations in 1) along ¢! and ¢2, respectively, we
reduce the initial-boundary value problem (2.11)) — (2.14]) to the followmg system:

R 771)1 (5;21 :Zg)

fler,z2) = ilfl(e1z) = [ sin i ] (Re) + R ) drde
T , (3.6)
05 (21 ,25) P2(&52,,25)

fale ) = Balfl(erz2) = [ sinf [ (AE) + fal6or)) drde

where (21, 22) € P, or in an operator form:

f = B(f), (3.7)
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where f = (f1, f2), B(f) = (B1(f), B2(f)) = (B1(f1, f2), Ba(f1, f2)) and forz = (21, 22) € P:

Bi(f)(2) = @x[f](2) — Gr(f)(2) (k =1,2); (3.8)
z 05 (2, 25)
NG = [ FlfEn@E G = [ FUE vl e (39)
0, (2,25) Z
7
F[f](§,n) =sin {M/(fl(fﬂ”) +f2(§,7“))d"”] , (§.m) € P. (3.10)
0
In particular:
2y 2o =21 +€
Bi(f)(z1,22) = h1(z1 — 22) — [ sin [u { (f1(&,r) + fa(&, 1)) dr} d¢ for (z1, z2) € I, 1;
Bi(f)(z1.22) = (1 - a)K(z 1}1)1 o fa(0, 2 — 21)—
— Oflsin [u ’ bfl (f1(& ) —|—f2(§,7“))dr]d§ for (21, 22) € I, 1;
z2+21 zytz, =€

Bg(f)(zl, ZQ) hQ(ZQ + Zl f sin [/L f (f1 (6, 7") + fQ(f, 7")) dT] df for (2’1, 2’2) S Hin,?

and for (z1,22) € II1 2 :
Ba(f)(z1,22) = (f1(1,0) + f2(1,0)) e #1420 — f1 (1, 29 4+ 21 — 1)+

29tz —1 1 2otz =€
42y [ A e PR = [sinfp [ (fi6) + (6 7)) drde.
0 41

Remark 3.3. Let f = (f1, f2) € C (P; ]R2) be a fixed point of the operator B (i.e. f is a continuous solution
of the equation (3.7))). Then by necessity hy,hy € C([0, 1]); K € C([0, o]) (where the functions hi, he and
K are defined by (2.9) and ([2.10)), respectively) and the following conformity conditions have to be fulfilled:

h1(0) = £1(0,0) = lim f1(0,6) = (1-a)K(0) +a lim ' f5(0,6) = (1—a)K(0) + ah2(0);

ha(1) = f2(1,0) = hm fg(l 0) = h1(1) + ho(1 )+ hm [ f1(1,8) + 2ye~ ﬁwffl 1,7)efrdr].

Note that the last Condltlon is identically satlsﬁed for any continuous solutlon f of .

4. Main result

Everywhere in this bection we assume that for the initial current ig = ig(z), voltage up = wuo(z) and
source function E = E(t) (by (L.4), (L.5)) the following Conformity Condition (CC) is fulfilled:
(CC) The functions ip and ug are defined and continuous everywhere on [0, A], the function E = E(t) is
defined and continuous at each t € [0, 77, such that E( )': uo(0) + Roio(0) and lim E(t) = E(0).

In terms of initial-boundary conditions , , (CC) is equivalent to the following conformity
condition for the functions, defined by (2.9 . -

hi,he € C([0, 1]); K € C([0, o]) and h1(0) = (1 — a)K(0) + aha(0). (4.1)
We define the metric d : C(P;R?) x C(P;R?) — [0, 00) as follows
dfusw) = = wl] = g~ nleqey = oo { max 1, €) = wn(, )] . for every o pars
u = (ur,us),w = (w1, wz) € C(P;R?). Thus (C(P;R?),d) becomes a complete metric space.

We introduce the set M = {f = (f1, f2) € C (P;R?) : f(£,0) = (h1(§), ha(€)) V€ € [0,1]}.
(M, d) is also a complete metric space, as M is a closed subset of C (P; RQ).
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Lemma 4.1. The operator B, defined by (3.7) — (3.10), maps the set M into itself, whenever the conformity
condition (4.1)) is fulfilled.

Proof. Let f = (f1,f2) € C (P; ]R2) be a fixed pair of continuous functions.
Then the function fi + f2 belongs to C(P) (as a sum of continuous functions).
Therefore for any two points (¢, 77) (&,m) € P the following inequalities are fulfilled:

FIfI(E m) — FIAE. )| <2 [ fte.r)+ ps.rnar =2 (1) + &) o]

<

<pu

Ct—z3

(F1(67) + fol€.r) Of(fl Er) + fol6or) dr| <
<p [max |(fr+ f2) (€,7) = (f1 + f2) (& )| - min{n, 7} + |n — 7] (e [(fi+ f2) (877")!]-

0<r<
It follows from the uniform continuity of fi + f2 on the compact set P that F[f] € C(P).
Let k € {1,2} be fixed. The function ¢y, : R? — R : (&, 21, 22) = 20 — (—1)F (21 — €) is a smooth

O 1, O o, _

function such that — = (—1) B = = (1), 9y = 1, V(& 21, 22) € R? and its restrictions to the sets
21 29

of characteristics are at least continuous functions.

Thus, as a consequence of the continuity of integrands in it follows, at first, the continuity of
Gx(f)(2) at each point z € Iy,  or z € P\Il;;, . Then, by the continuity of 8, we get G (f) € C(P).

The continuity on the set II;;, 1 of ¢ (0;-) together with hj € C([0, 1]) implies continuity of ®4[f](2) at
each point z € Il;;, 1.

On the other hand, by the continuity of ¢ (x, (2); 2) and the requirements for hi,he € C([0, 1]),
K e C([0, a]), f1, f2 € C(P), it follows that ®j[f](z) is continuous at every point z € P\IL;, .

Finally, if f € M and z belongs to the common boundary of the sets II;,  and P\Il;, , then by the
conformity condition we obtain as follows:

for k=1: I @4[)(2) = (1 - )K(0) +alim /2(0,6) = (1~ a)K(0) + aha(0) = b1 (0) = B1[f](=);

z€llp 1
z — z
for k=2: lim ®o[f](2) = h1(1) + ho(1) — lim f1(1,0) = ha(1) = P2[f](2).
z€elly 2 0—4+0
z —= z

Hence ®4[f] € C(P), which implies Bi(f) = ®r[f] — Gr(f) € C(P).
Moreover, Gy (f) (€,0) = 0, consequently, By (f) (§,0) = ®x[f](£,0) = hx(§) V¢ € [0,1] (k = 1,2). Thus
we have proved that B(f) € M, Vf € M.

Our next aim in this section is to define a suitable sequence of successive approximations, which is
convergent in (M, d), for to find a continuous solution of the operator equation (3.7)).
Let f9 = ( P, fzo) eC (P; Rz) be a fixed pair of continuous functions such that

F(€,0) = hi(€) 5 f7(€,0) = ha(€) V€ € [0,1] and Juax |£2(&m)| < max [h(6)] (k=1,2)

0<e<1
(for example, we can choose as an initial approximation the pair of continuous functions

fO=(f7, ) € M for which: f)(&,n) = hi(€): f}(&n) = ha(§) V(& n) € P =[0,1] x [0,0]).

( n+1 n+1)

Define the sequences {g" = (g7, g8) %0, { " = (f1, f3

F1(=) = Bu(f)(2) = g7(2) - Gr() (e
F11(2) = Bo(f)(2) = g7(=) — Ga(fr)(z) & €T (4.2)

> o as follows:

where:
05 (21 ,25)

G = | FUIE (6 ) Galf)(z) = F PG ol ) - = 1,2 € P) o

91(751 722)
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for every n =0,1,2, ...

( 21 zo—z1+€
[ sin [u (e + frer) dr} de, if z = (21, 22) € Min.1
Gi(f) () =4 27 L
[sinlp [ (fPEr) + 12E) dr]de, iz = (21, 29) € Ty,
% 22+Zl 022+21 —£ (4'3)
Josinlp [ (€ ) SRE ) dr|dg i 2 = (21, 20) € T o
Go(f") () =4 [ L
[ sin [u () + 1)) dr} e, if 2 = (21, 2) € 11y o;
L %1 0
hi(z1 — 22), if 2= (21,22) € 1
g,y (2) =
(1 —-a)K(z2 — 2z1) + af3(0, 22 — 21), if 2 = (21,22) € lp 1;
ha(21 + 22), if 2= (21,22) € i, 2 (4.4)
gM(z) = { (h(1) + ho(1))e P27 — f1(1 25 4 21 — 1)+
z2+zl—1

+2v f f{l(l,r)e_m(”“‘zl_l_r)dr, if 2 = (21,22) € Iy 2.
0

First, we show that ¢g° € M and, by induction, that ¢g"*' € M, f"*1 € M(n=0,1,2,...).
Indeed, by ([&.1]) and f° = ( P,fQO) eMccC (P;]RQ) it follows:
(1= )K(0)+ Jim 12(0.8) = (1 aJK(0) + 120.0) = (1~ @)K(0) + ha(0) = ha(0) = g & € (P);

o—+

Therefore (¢°,¢%) = ¢° € C (P;R?), and in view of g(&,0) = (hi(€), h2(£))VE € [0,1] (by definition),
g% € M, which guarantees f! = B(f°) = (g? —G1(fY), 99 — G2(f°)) belongs to M.

If, by assumption, for some natural number n we suppose ¢™ € M, f™ € M ¥Ym < n, then for the next
number n + 1, we have f"*! = B(f") € M, from which (and the conformity condition ([4.1))) it follows the

continuity of g?“ on the common boundary of the sets II;, j and ;1 5 (k =1,2):

(1= )K(0) + lim f771(0,6) = (1= a)K(©O) + £27(0,0) = (1 = )K(0) + ho(0) = h1(0) = g1 € C (P);

limo [(hl(l) + ho(1))e™P70 — £9(1,8) + 2ye= P10 f6 1, r)ePrmdr| = hy(1) = g2 € C(P).
0

= hy(1) = g™t e C (P).

0
Tim [(hlm $ ho(1))e=P — (L, 6) + 2960 [ (1 r) e dr

This completes the proof that ¢g" € M, f**' € M (Vn =0,1,2,...). In particular,
g"(2) = ®(f")(2) and f"+1(£,0) = g"(&,0) = (h1(€), h2(§)) V€ € [0, 1]
Next, for any fixed 6 € [0, 0] we denote by Py the set Py = {(w,{) e P: 0<w <1;0<( <6}
(P, = P), define (for u = (u1,u2),w = (w1, wz) € C(P;R?)) the distance function
dy(u, w) = max lur = willep,y = max ¢ max |uy(w,¢) — wy(w, C)l }

:172 (UJ7C)€P9
and introduce the functions py,, ¢, : [0,0] — [0, 00) as follows:

pa(0) = do(f", f"); au(8) = dp(g""", ¢") (n=0,1,2,..). (4.5)
Thus, by definitions of the sequences we get: p,+1(0) < ¢,(0) + max HGk(f"H) — Gk(f")Hc(Pg) :

On the other hand, Vk € {1,2} for any fixed pairs f = (fl,fg),f: (fhﬁ) € C(P;R?) and for every

2= (21,20) € P it follows: |Gr(f)(2) = Gi(F)(2)]| =
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Z1 wk(g;zl ,Z2) 1/%(5;21 722)

= ](—U’H [ [sn(e [ A+ faendr) —sin ([ (F(&r) + Falg m)dr) Jdg] =
0k (2) 0 0
M"Z)k(fizluzg) - - MTZ)IC(E?'ZPZQ) - -
_’ f2W1§KfKﬁ+M—@ﬁhm&Wﬂmﬂ§lfKﬁ#m+%+hW&Wﬂ%M
01(2) 3 0 0
Consequently,
G1(f)(2) = G1(f)(2)]| < 2(21 — O1(21, 22)) < 221 < 2
Go(f)(2) — Ga(f)(2)| < 2(B2(z1,22) — 21) < 2(1 — 21) < 2
Moreover,
~ z P (§21,22) -
G =GN < (-1 Ll e r =i Fo)l(¢,r)drag <

Su(DRL [ max (A6 = &)+ fa(6r) — falé )l drdg <
0k (2) 0 0<¢<1
0<n<r

&) ~ z1
< 2#({}2?52( Hfl - leC(PT)dT.(—l)k_le {) dé =2u .|z — O0k(z f d(f — f)dr Consequently,
’ L(z

6111~ )| < 201 [ s = P <20 [ a5 = lar
o Vz = (21,22) € P. (4.6)
Ga(1)(2) = Ga(P)(z >\<2u1—zlof (f - fdr<2ufd (f = P

Thus we obtain: linax HGk ) — Gr( f”)“ C(Py) <2u f pn(7)dr, which implies the following inequalities

are valid for every n =0,1,2,...:

0
st (0) < gn(0) + 21 / pa(r)dr V0 € [0, 0]. (47)
0

We will prove the following statements:

Proposition 4.2. Let u = (u1,u2), w = (wi,ws) € M be two arbitrary chosen pairs. Then the following a
priory estimates are valid, whenever the conformity condition (4.1) is fulfilled:
if o > 1, then:

dg(®(B(u)), ®(B(w))) <2ufd uw)dr+2fyfd7(B u), B(w))dr, V8 € [0,1] and

do(®(B(u)), ®(B(w))) < |a|dg—1(u,w) + 2(y OfedT (u, w)dT+ (4.8)
‘+2v:de(B u), B(w))dr, Vo € (1,0];
if o <1, then:

0
do(®(B(u)), ® 2,u/dT U, w d7'+27/d B(w))dr, Y0 € [0, 0], (4.9)
0

where ® = (Py, Do) : M — M and B = (B1,B2) : M — M are the pairs of mappings, defined in Section 3.
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Remark 4.3. Recall that the real constants above were introduced in Section 2. In particular, by definition:

Z T
o] = Ro+Zz 1; 0= Av,thatiscTSl(:)Tng,

Proof of Proposition Let o > 1. Let 6 be any fixed point, belonging to the interval [0, o]. Then there
exist, by continuity, an index [ € {1,2} and a point (wo, (p) € Py, such that:

Imximw @u<ﬂwmwAMBmmwoﬁcwﬁwwmmmﬁ—@wwmmgw. (4.10)

k=12 C)EPy

Without restrictions, we assume (wp,(p) € P\Il;, ; (if, on the contrary, (wo, (o) € I, 1, then the right-
hand side of is equal to zero). Let us consider both possible cases: [ =1orl = 2:

Case 1: [ = 1. In this case (wo,(p) € PpNIlp,1 = 0<wy <1, 0< ¢ <0;0< o —wo <60 —wp and the
right-hand side of becomes
|©1[B(u)](wo, Co) — 1[B(w)](wo, Go)| = |a| [B2(u)(0, o — wo) — Ba(w)(0, o — wo)| =
= || [{®2[u](0, Co — wo) — P2[w](0, (o —wo)} — {G2(u)(0, o — wo) — G2(w)(0,Go — wo) }| <

—Ww,

%o
< laf [@2[u)(0, Co — wo) — P2[w](0,Go —wo)| +2|alp [ dr(u,w)dr (in view of (L6)).
0

If (p — wo < 1 (which, in particular, is ever fulfilled whenever 6 € [0, 1]), then the first addend in the last
sum vanishes, since (0, (o — wo) € Iy, 2, and the second one does not be greater than

2]04],ufd uw)d¢<2ufd (u, w)dr.

Let the inequalities 1 < (p —wp < 0 — wo be fulfilled (for 6 € (1, 0], by necessity).
Consequently the point (0, (o — wo) belongs to Iy, 2, which implies:
B[u)(0, o — w) — Baf](0, o — wo) = [(u1(1,0) + ua(1,0)) — (wr (L, 0) + ws(1,0))]e o401 4
Co—wo—1

+[w1(17 CO —Wo — 1) - u1(17 CO —Wwo — 1)} + 2y f (Ul(l,’l“) - ’11)1(1,7”)) eiﬁfﬂcoiwoilir)dr =
0

Co—wo—1
= [wi(1,¢o—wo— 1) —u (Lo —wo— D] +2y [ (ur(L,r) —wi(L,r))e G w0"1dr,
since u, w € M. °
Therefore do(®(B(u)), ®(B(w))) = [®1[B(u)](wo, o) — ¢1[B(w)](wo,§“o)! <
< lof max{|us (w, () —wi(w, Q)] : 0 Sw < L,0<C <G —wy — 11+
Go—wp—1 Co—wo

+2laly [ |w(l,r) —wi(L,r)|dr + 2]a|p f dy(u, w)dr <
0

<lofdeg—1(u,w) +2|af (v + 1) fd (u, w)dr < |a|dp—1(u,w) + 2 || (v + w) fd uw)dT

In view of v > 0; ]a\ (v + u) < v+ u, we have just obtained the estlmates , which completes the
proof of Proposition £.2]in Case 1.

Case 2: | = 2. In this case (wp,(p) € Py NIL1 2 =0<wy <1, 0<( <6;1<(+wy<0+wy and we
obtain as follows:

do(®(B(u)), ®(B(w))) = [®2[B(u)](wo, Co) — ‘1>2[B(WZ]§FWO,_C10)| =
= |(Bi(w)(L Go+wo—1) = Bi(u)(L, o+wo—1))+2v [ (Bi(u)(l,r)=Bi(w)(L,r))e M Coto=1=ndr| <

< [@1[u] (1, G0 +wo — 1) = @1[w](1,¢o +wo — D) + |G1(13)(1,§0 +wo—1) = Gi(w)(1, ¢ +wo — D[+

(OerOfl
+2y [ |Bi(w)(1,r) = Bi(w)(1,7)|dr < [@1[u](1, o +wo — 1) — ®1[w](1, o +wo — 1)| +
0
Cotwo—1 Cotwo—1

+2u Of lu(1,7) —w(1,r)| dr 4+ 2y “0[ |B1(uw)(1,7) — Bi(w)(1,7)|dr.
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If (o + wp — 1 <1 (in particular, such is the situation provided 0 € [0, 1]), then
D ful(1,{p +wo— 1) — 21 [w](1,¢o +wo— 1) =h1(2— (o —wo) —h1(2 = (o —wp) =0.

Consequently, [®2[B(u)](wo, (o) — P2[B(w)](wo, ()| <
Cotwo—1 Cot+wo—1

<2u of lu(l,r) —w(l,7)|dr + 2y of |By(u)(1,7) — By(w)(1,7r)]dr <

o o 0 0
< 2u0fdr(u,w)dr+ ZVOde(B(u),B(w))dr <2u Ode(u,w)dT + 2’yode(B(u),B(w))dT.

Ifép+wp—1>1,then0<op+wy—1—1<¢y—1<80—1 (wherever, by necessity 1 < § < o) and
|®1[u}(1,Co +wo — 1) — Paw](1, Co + wo — 1)| = || [uz(0,Go +wo —1 —1) —w2(0,{p +wo— 1 - 1)| <
< lafmax{|uz(w, () —wa(w, ()] : 0 Sw < 1,0 < ¢ < ¢ — 1}
Therefore,
o
| P2 [B(u)](wo, Co) — P2[B(w)](wo, Co)| < |a] deg—1(u, w) —i—2,ufd u w)dr—i—Z'yfd (u), B(w))dr <

[%
<ol dg_1(u,w) +2u ({dT(u, w)dT + QWg‘dT(B(u),B(w))dT.

In view of 0 < p < 7 + p, it follows (4.8]), which completes the proof of Proposition in Case 2.
Finally, if o < 1, then, by repeating the proof of the first of estimates from (4.8)), we get (4.9)), whenever
6 € [0,0] C [0,1]. The proof of Proposition 4.2|is completed.

As a consequence of Proposition [£.2] we obtain the following corollaries.

Corollary 4.4. Under the terms and conditions of Proposition [{.4 the following inequalities hold:
if o > 1, then:

da(BUB (). BUB(w)) < 20 [ d(u,w)dr + 20+ ) [ r(Bu). Blw)dr, 0 € 0,1
(BB, BBW) < laldo-r w0+ (111)
#2004 [lds(ow) + (BB dr W0 (Lol
if o <1, then:
0 0
do(B(B(u)), B(B(w))) < 2,L/d7(u w)dr +2(v + ) /dT (w))dr, V6 € [0, 0]. (4.12)
0 0

Corollary 4.5. If f = (f1, f2) € C(P;R?) and f= (]?1, fg) € C(P;R?) are solutions of the equation (3.7)),
then f = f (uniqueness of the fixed point).

Corollary 4.6. For the sequences of functions pn, qn(n =0,1,2,...), defined by (4.5)), the following estimates
are valid:
If 0 > 1, then for alln=1,2,...:

0
an(0) <2u [ pp_1(r)dr + 2*yfpn T)dr, V0 € [0,1] and
0 0 (4.13)
an(0) <la|prn-1(0 — 1) + 2(v + p) [ pn— dT+2"yfpn T, V0 € (1,0].
0

If 0 <1, then for alln=1,2,...:

0 0
an(0) <2u [ pp_1(7)dr +2v [ pu(7)dr, V8 € [0,0]. (4.14)
[ron]
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Proof of Corollary . The statement of this corollary is immediate from Proposition together with (|4.6))
and the fact that:

do(B(B(u)), B(B(w))) < dp(2(B(u)), ®(B(w))) + max [|G(B(w)) — Ge(B(w))llo,) -

Proof of Corollary . Let f = (f1, f2) € C(P;R?) and f (fl,fg) € C(P;R?) be two fixed pomts of the
operator B. Then f = B(f) = B(B(f)) € M, f ( f) = B(B(f)) € M and applying Corollary 4] to the
f) (0<0

continuous function : § — p(0) :=dy ( f,
If 0 <1, then:

~ 0
0<p(0) =do (1, ) = dy (B(B(f)%B(B(f) ) < 2ufd (. F)dr +20+ ) [ d=(BU), B())dr, %0 € [0,0].

o) we obtain as follows:

Therefore 0 < p(#) < (2v + 4u) fp )dr for all 6 € [0,0].

Then the classical Gronwall’s mequahty implies that dy ( fs f) =p(0) =0, V € [0,0].

Thust ﬂ‘—mafok—ka da(f,f):()(:)fzf

Let 0 > 1.

Then there exists a unique natural number m € {1, 2,3, ...} such that o € (m,m + 1].

At first, it is easy to see, by induction, that p(7) = d (f, f) = 0 for every 7 € [0, m].

Indeed, for 7 € [0, 1] the claim was, in fact, just proved.

By assumption that it is true for some k € {2,...,m — 1}, we have p(7) = d; (f, f) =0,V € [0, k] and
applying on [0,k + 1] for any 6 € (k,k+ 1] C (1,k + 1] it follows

0
p(0) = d(f, ) = do(B(B(£)), B(B(F))) < |l p(6 — 1) + 4(y + 1) / p(r
0

But p(0 — 1) = dg_1(f, f) =0, in view of § — 1 € (k — 1,k] C (0, k].
0 0
Consequently, p(f) < 4(y + p) [ p(r)dr = 4(y + w) [ p(7)dr, this, via Gronwall’s inequality, completes
0 k
the induction.
Thus we proved p(7) = d (f, f) = 0 for every 7 € [0, m].
Finally, (4.11)) applied once again, but to the interval (m, o], implies that for any 6 € (m,o]:
~ ~ 0 0
p(0) = do(f, f) = do(B(B(f)), B(B(f))) < la|p(0 — 1) +4(v + ) [ p(7)dr = 4(y + p) [ p(7)dT,
0 m
since —1€ (m—1,0—-1]C (m—1,m].
Then the Gronwall’s inequality applied to the interval [0, 0] implies p(f) = dy ( f,f) = 0 for every
0 € (m, o] too.
Therefore the function p(6 ) dg( I ) is equal to zero everywhere onto the interval [0, o], that is
If—fll = max || fi - Fellopy = do (£, f) = 0 < f = f, which completes the proof of Corollary [.5|and thus

we have proven that the equation (3.7) has at most one solution, belonging to C'(P;R?).
Proof of C’omllary. In order to prove that result, it is enough to recall that (by definition)

ft = B(f™) = B(B(f™ 1)) and to apply Proposition E to the pairs of functions u = f*, w = f* 1,
with the corresponding distances

0n(0) = do(g"*",g") = do(D(B(f™)), (B(f* 1)),  pn-1(0) = do(f", f*1),
pn(9> = dH(fn+1u fn) - d&(B(fn)vB(fnil)) (TL =1,2, )7

for to complete the proof.
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Thus we have almost proven the following Lemma:

Lemma 4.7. There exists A € (0, oo) such that for alln = 1,2, ... the following inequalities are satisfied:

if o > 1: Prsi1(0 <Af (P (T) 4 pr_1(T ))dT,VHE[O,l] and
) (4.15)
pn+1(9) < A[pn—l(e - 1 + f pn +pn 1( )) dT}, Vo € (170];
if o <1:
pria(0) < A / (Pn(7) + s (7)) dr, V0 € [0, 0. (4.16)

Proof. In order to complete the proof of L¥mma [£.7] it is only necessary to combine the Corollary [.6] with
the estimates in above and to show that inequalities , are satisfied, for example, with the
following real constant: A = max{|a|, 2(y+ )} > 0 (in view of 0 < p < v + p).

Lemma [£.7)is thus proved.

Remark 4.8. In terms of the original given physical constants, we have by definition:

Ry — Z, AC  7wA%Lj
max{la], 2(y + )} = max{ Wb <C ft Jo)}'
Now, we state our main result: 0+ 2o 0 0

Theorem 4.9. Let the condition (equivalently, (CC)) be fulfilled. Then the operator equation
has a unique solution f = (f1, f2) € C (P;RQ). That solution is a fixed point of the operator B : M — M,
where M = {f € C (P;R?) : f(&0) = (h(§), ha(§)) V€ € [0,1]}, and it can be obtained as the uniform limit
of the sequence of successive approzimations {f"} 22, defined by f" = B(f") (n=0,1,2,...) as in ,
where fO = ( h ,ff) € M s a suitable chosen pair.

Proof. We choose as an initial approximation the pair f° = ( 19, fQO), defined as follows:
P06, m) = ha(€), £3(€.m) = ha(€) ¥(€,m) € P = [0,1] x [0, 0].

The functions f and f3 are continuous on the rectangle P, since, by the conformity condition ,
hi,hy € C([0,1]). Therefore fO € M and for every n = 0,1,2, ... the function f**! = B (f™") belongs to M,
as we have already shown above.

Let ag, a1 be such positive numbers that: po(0) < ag, p1(0) < a1 V0 € [0, 0]

(such constants exist by the continuity of fy, fi, fo on the rectangle P).

Qp + Qp— _
Define the sequence of real numbers {ay, };2q : ant1 = “n Tl fe 0_1, n=1,2,..., where A > 0

is the constant from Lemma (A =max{|al, 2(y+p)} > 0).
We will prove, by induction, the following estimates are valid for n =0,1,2,...:

pn(0) < ane’? Vo e 0,0]; a,< a*qL%J, (4.17)
where a* = max{ag, a1}, | %] = k,n =2k (k=0,1,2,...) is the integer part of & and
9 ’ 2 k’ n = Qk + 1 P R B

_2 —34 . 2 _2 34 ~ 21 —s} =241l o 2
=35+ Ae r3<q=35+Ae Sg—i-g-r;l%({se t=5+3-¢ — < <1,

Indeed, (4.17) are fulfilled by definition for n= 0,1 (349 > 1, Vo € [0, 0]). Next, if for a fixed n > 2 we
suppose that the inequalities (4.17)) are satisfied for every natural m < n, then for m = n+ 1, by Lemma
and the inductive assumption it follows (in the more general case: ¢ > 1 and 0 € (1,0]):

0
Pri1(60) < Alpar(0-1) + f (Po(7) + pua(7) ) dr] < Aay 13401 4 fatiant [ 347G (3.47) =
0

_ o340 [Ae_3Aan_1 + Lgnl(l —e3A0)| < 30| fom8Ag, | 4 Gntlaci) _ 346, .

-1 n

tny1 = D 4 AeB g,y < a%gl"T) [1 (quJ‘L i 1) +Ae‘3A} <arqgl T It = argl5 ]
which completes the proof of (4.17]).
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[e.9]
Thus we are ready to prove the convergence of the series Z H frtt— g
n=0

774 = 7 = AU ) = do (P = o) = nax pa(6) (1= 0,1,2, ).

} , Where

o0
Appling (4.17)), we first get that there exists the sum of the series Z G
n=0

i i FJ 2 6a* 6a* 2 4
<a* 21 =a*- = < < 10a* —<g<=<1).
nZ:;Jan_a Zq ¢ 1—¢q 1—3Ae*3A_1—e*1 ¢ (3 <3 )

n=0
Next, the inequalities e 347 || f1 — 7| < ax {e34%,(0)} < a, (Vn=0,1,2,...) imply:
g

0 0 ©
eSO [ = ]| = 347 S (o) < Zo@%{e "pu®)} <3 an
n=0 n=0 n= n=0
o0

0 1 o 34 6a*€3Aa
= ) = e =

n=0

Therefore the sequence {f"}o2, converges uniformly on P to some pair f € C(P;R?) and, in view of
Corollary . 4.6, there exists g € C'(P;R?) such that {g"}%2, converges uniformly on P to g.
Moreover, for any fixed £ € [0,1] : h_>m L, O) = h_}m g"(&,0) = (h1(§),h2(&)), consequently,

f(gvo) = (hl(g)a h?(&.)) = g(gao) v£ € [07 1]7 that iS, f7g eEM.

Finally, by taking the limits in (4.2)) — (4.4) above, we conclude that the uniform limit f € M is a fixed
point of the operator B, that is, f is a continuous solution of the equation (3.7, which completes the proof
of the “existence” part of Theorem The “uniqueness” part has already been proven (in Corollary .

Theorem [4.9] is thus proved.

Conclusion.

1) We have the following estimates:

fr=pgazas |-
- 2 m

fm+1 _ fOH — H Z (fk—H _ fk) H < 63Acf *Zq % 3Ao—a* . 7(1 _ quJ—H) (‘v’m — 2’3’ )7
k=0

< HfQ—le+Hfl—f0H < a1 +ag < 2a%;

1—g¢q

m m " k ,
= H Z (fk-i—l _ fk) H < Zpk 3AO' a* 2 q 5 < 63Aaa*qL%J L
k=n k=n ke

fm+1_fn
1-¢q

n
for any fixed natural n and for every m € {n,n+1,n+2,...}.
So, by taking the limit as m — oo we obtain as follows:

n n
2a* €3Aa \‘fJ 6a*€3AU 2 { 9 J
~ 1—g 1 1—3Ae34 <3+ ‘ > (n=012..)

|r-r

2) We can choose ao, a1 as follows: ag := 4 [[K||¢ (0 01) + 3;112%:5 [helleqoay) + 1, a1 = 3ao + 2.
Indeed, we have as follows: ’
|72 = max{|| Fllcpy: 15 ey} = Imax 1kl (o))
z ¢1(§§31 vzz)

1
Gilf )1, ) = | ) ( )sin (n J (hn(€) + a(§))dr) €| < 21 = B1(21,22) < 21 < 1
01 21,29
92 Zl 722) w2(§;21 7Z2)

’Gg[f 21, 29 ’ = ‘ sin (u [ () +h1(£))d7‘) d&‘ < Oy(z1,22) — 21 <1—21 < 1;

z, 0
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|90(21, 22) — [P(21, 22)| = |hi(z1 — 22) — ha(21)] ,V(21, 22) € Hin, 15

199 (21, 22) = fP(21, 22)| =
=[(1 = ) K(22 — 21) + ah2(0) — h1(z1)| < (1 — a) [K(22 — 21) = K(0)[ 4 |h1(0) — h1(z1)], V(21, 22) € o, 1.

Consequently, || f{ = f7{|o(p) < 200 = @) [Klleo,0p + 2 1alleo,) +1

9921, 22) — [9(21, 22)| = |ha(z1 + 22) — ha(21)|,V(21, 22) € Iip, 2

19921, 22) — f9(21, 22)| =
z2+zl—1
= [(h(1) + ho(1)e T2 — (1) + 2 (1) [ e ETATId(Byr) — ho(21)] =
0

= ’hQ( —Bv(z2+21—1) _ ho(z1) + hi(1 < ) 1— e—ﬁ’y(zg—i—zl—l))‘ <
2| |nte
B R+ Zo

Therefore, [|f3 = £l py < 2 Ih2lloqo,y + 1Malleqoy +1 < 3 max [yl ¢ o,y +1

2
B
< |hao(1)| + |ha(z1)| + |h1(1)],V(21, 22) € II1 2 (in view of

Thus, for every point 6 € [0, o] we obtain as follows
p0(68) = do(", £°) = pars |2 = Pl < mas |5 = ey <

k=12 k=12
< max{2(1 — &) [[Kl|¢(o,0) + 2}2% 1kl oy + 15 3&% 1lle o,y + 13 < ao
o 2%
inviewof 1 —a=——-— € (0,2)).
( e (0.2)
Moreover,
2 L .
|91 — g?HC(P) < |aao, ||g3 — HC(P <1 + ﬁ) ap < 3ap, which implies
p1(0) =do(f% f1) = pnax 17 - kac(P9 < Pt 117 - fMC(P) =

< max g — g8 + Gi[f°] — Gk[fl]“o(p) < Iax g7 — g,?HC(P) + 2 < ay, where a; = 3ag + 2.
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