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Abstract  Öz 

In this paper, mathematical modeling and dynamic decoupler design 
of a temperature and flow rate process with a continuously stirred 
tank (CST) is presented. A dynamic mathematical model of the process 
that consists of two nonlinear differential equations is developed. The 
multivariable (MV) system model is linearized to make the elimination 
of loop interaction easier through dynamic decoupling and expressed 
in terms of system transfer functions. Dynamic decoupling is designed 
using obtained linearized model and it is shown that loop interactions 
are eliminated making the process suitable for decomposed single loop 
feedback controllers. 

 Bu makalede, bir sürekli karıştırılan tank (SKT) içeren sıcaklık ve debi 
sürecinin matematiksel modeli ve dinamik etkileşim giderici tasarımı 
sunulmuştur. İki doğrusal olmayan diferansiyel denklemden oluşan 
dinamik matematiksel model geliştirilmiştir. Çok değişkenli (ÇD) 
sistem modeli, döngü etkileşimlerini dinamik yöntemle gidermeyi 
kolaylaştırmak için doğrusallaştırılarak transfer fonksiyonlarıyla ifade 
edilmiştir. Dinamik etkileşim giderme tasarımı elde edilen 
doğrusallaştırılmış model yardımıyla gerçekleştirilmiş ve döngülerin 
etkileşimlerinin ortadan kaldırılarak sürecin ayrıştırılmış tek döngülü 
geri beslemeli denetim için uygun hale getirildiği gösterilmiştir. 

Keywords: Mathematical Modelling, CST, Dynamic Decoupling  Anahtar kelimeler: Matematiksel modelleme, SKT, Dinamik 
Etkileşim giderme 

1 Introduction 

Control of a continuously stirred tank (CST) is a benchmark 
process control problem, which can be utilized to describe and 
suggest control solutions to many industrial and domestic 
chemical and temperature processes [1]-[7]. One possible 
domestic use of a CST is related with continuous supply of 
water at a desired regulated temperature with regulated flow 
rate.  

Many authors have studied and proposed control methods for 
multi-input-multi-output (MIMO) temperature and flow rate 
processes with a CST. These control methods vary in terms of 
being linear or nonlinear depending on the physical plant 
structure and assumptions. Often in MV control processes 
various control objectives interact with each other. Processes 
that involve CST usually have loop interactions where it is 
necessary to control both the flow rate and composition of the 
outlet stream. There are many studies that aim to accomplish 
this objective through decoupling the interacting loops 
statically via relative gains and dynamically using decoupler 
dynamics. Since most processes are considered as nonlinear 
MV systems with mutual interactions, the good control 
performance cannot be obtained by simple controllers. 
Makoto, Toru and Yoshimi have used a designed decoupler 
which has been generated by the sum of a static decoupler and 
a neural-net based decoupler [8]. Then, the former has been 
used so as to approximately decouple the controlled object. 
Arjin, Theerachai, Tianchai, Phongchai and Jutarut have used 
conventional decoupling method for diagonalization of a plant 

[9]. [10] Qinling and Zhiqiang have proposed a decoupler to 
reduce the interactions of two control loops [10]. 

The current research idea is using a CST as a blender for cold 
and hot water through two control valves escorted with a 
pump to achieve a desired temperature and flow rate at the 
outlet of a domestic shower system as shown the system 
scheme in Figure 1. 

 

Figure 1: MV process with a CST: piping and instrumentation 
diagram. 

The process is in multivariable (MV) structure with three 
control inputs and two outputs with four major disturbances 
as the block diagram shown in Figure 2. Reducing the 
interaction of loops in the process and making it compatible 
for single input single output (SISO) decomposed control is the 
main goal of the study. This is achieved via dynamic decoupler 
design and verified using simulation tests.  
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Figure 2: MV process with a CST: block diagram. 

2 Mathematical modeling 

Considering current system as described above, the 
thermodynamic and fluidic equations may be used to find the 
equations of system dynamics. The mathematic dynamical 
models of two sub-processes of temperature and flow rate can 
be developed starting from a balance equation on a conserved 
quantity, which are energy and mass, respectively [11]: 

(
𝑓𝑙𝑜𝑤 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦

𝑖𝑛𝑡𝑜 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
) − (

𝑓𝑙𝑜𝑤 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦
𝑜𝑢𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

)

= (
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦
𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

) 
(1) 

2.1 Temperature process model  

Current research focuses on building the mathematical model 
that describes the variation of the outlet temperature, 𝑇𝑜(𝑡), in 
response to the variations of inlet temperatures, 𝑇1(𝑡) and 
𝑇2(𝑡), taking the contents of the tank as the control volume, an 
unsteady state energy balance presents the desired 
mathematical link between the inlets and outlet temperature. 
Applying (1) yields: 

𝑑[𝑉𝜌𝐾𝑣𝑇𝑜]

𝑑𝑡
= 𝑓1(𝑡)𝜌𝐾𝑝𝑇1 + 𝑓2(𝑡)𝜌𝐾𝑝𝑇2  

– 𝑓𝑜(𝑡)𝜌𝐾𝑝𝑇𝑜–  𝑄(𝑡) 
(2) 

where 𝑉 is liquid volume in CST, 𝜌 is liquid density, 𝐾𝑣 is liquid 
heat capacity at constant volume, 𝐾𝑝 is liquid heat capacity at 

constant pressure, 𝑓1(𝑡), 𝑓2(𝑡) are volumetric inflow rates, 
𝑓𝑜(𝑡) is volumetric outflow rate, 𝑇1, 𝑇2 are inflowing liquid 
temperatures, 𝑇𝑜 is outflowing liquid temperature, and 𝑄(𝑡) is 
heat loss to environment [12]. 

In this process chemical reactions do not exist. When we 
assume that densities and heat capacities are constant and 
equal over the temperature range of operation, (2) can be 
written as: 

𝑉𝜌 𝐾𝑣
𝑑[𝑇𝑜]

𝑑𝑡
= 𝑓1(𝑡)𝜌𝐾𝑝𝑇1 + 𝑓2(𝑡)𝜌𝐾𝑝𝑇2  

– 𝑓𝑜(𝑡)𝜌𝐾𝑝𝑇𝑜–  𝑄(𝑡) 
(3) 

According to the material balance with constant density and 
volume, total inflow rate must be equal to total outflow rate, 
which yields the following equation: 

𝑉𝜌𝐾𝑣
𝑑[𝑇𝑜]

𝑑𝑡
= 𝑓1(𝑡)𝜌𝐾𝑝𝑇1 + 𝑓2(𝑡)𝜌𝐾𝑝𝑇2 

– 𝑓1(𝑡)𝜌𝐾𝑝𝑇𝑜– 𝑓2(𝑡)𝜌𝐾𝑝𝑇𝑜–𝑄(𝑡) 
(4) 

Heat loss can be expressed as: 

𝑄(𝑡) = 𝑈𝐴[𝑇𝑜–𝑇𝑎] (5) 

Where 𝑈 is heat transfer rate to the environment, 𝐴 is heat 
transfer area, and 𝑇𝑎 is the environmental temperature. 
Substituting (5) in (4): 

𝑑[𝑇𝑜]

𝑑𝑡
=

𝑓1(𝑡)𝜌𝐾𝑝

𝑉𝜌 𝐾𝑣
[𝑇1– 𝑇𝑜] 

+
𝑓2(𝑡)𝜌𝐾𝑝

𝑉𝜌 𝐾𝑣
[𝑇2– 𝑇𝑜]–

𝑈𝐴[𝑇𝑜–𝑇𝑎]

𝑉𝜌 𝐾𝑣
 

(6) 

2.2 Pump speed model 

In the CST process of interest, a centrifugal pump powered by 
a variable speed DC electric motor is considered, which pumps 
out from the constant volume tank. The tank receives liquid 
through two intakes 𝑓1(𝑡) and 𝑓2(𝑡) through two control 
valves as described. Building the mathematical model of the 
plant involves deriving the mathematical description of 
centrifugal pump operation in addition to that of CST [13]. The 
equation that describes the behavior of the motor-pump set is 
given by: 

𝐽
𝑑𝑤

𝑑𝑡
= 𝑀𝑎–𝑀𝑝 = 𝑀𝑀𝑇– (𝑀𝑝 + 𝑀𝜁) (7) 

Where 𝑤 is the rotational speed, 𝐽 is the moment of inertia, 𝑀𝑎 
is the applied torque, 𝑀𝑀𝑇 is the active torque from the DC 
motor, 𝑀𝑝 is the passive torque of the pump, and 𝑀𝜁  is the 

viscous torque. The pump viscous torque can be expressed in 
terms of pump speed 𝑤 and viscous torque constant 𝑘𝜁  [13]: 

𝑀𝜁 = 𝑘𝜁𝑤 (8) 

and passive torque can be written as:  

𝑀𝑝 =
𝜌𝑔𝐻𝑁

𝜂𝑤𝑁
2 𝑓𝑜(𝑡)𝑤 = 𝑘𝑟𝑓𝑜(𝑡)𝑤 (9) 

Where 𝐻𝑁 and 𝑤𝑁 are nominal head and speed, respectively, η 
is the pump efficiency and 𝑘𝑟  is constant. Pump characteristics 
(𝑓𝑜(𝑡) − 𝐻 and 𝑓0(𝑡) − 𝜂 curves) are set by suppliers for a 
nominal speed 𝑛, where 𝐻 is the pump head. Since centrifugal 
pump dynamics are highly complicated, it is assumed that 
𝑓𝑜(𝑡) − 𝐻 curve describes the behavior of the pump with 
sufficient accuracy in transitional regimes, which results in the 
use of static characteristics of the pump. A centrifugal pump 
characteristic can be described as an approximation by the 
quadratic equation given below [13]: 

𝐻 = 𝐴𝑤2 + 𝐵𝑤𝑓𝑜(𝑡)+𝐶𝑓𝑜
2(𝑡) (10) 

Where 𝐴, 𝐵 and 𝐶 are pump constants that vary for different 
pumps. Using (10), and expressing 𝑓𝑜(𝑡) and 𝑤 as their 
nominal values, the pump head can be expressed as [13]: 

𝐻 = (𝐴 +
𝑓𝑜(𝑡)𝑁

𝑤𝑁
+ 𝐶

𝑓𝑜(𝑡)𝑁
2

𝑤𝑁
2 )𝑤2 = 𝑘𝑤𝑤2 (11) 

Where 𝑘𝑤 is constant assuming a limitation for the pump 
speed and flow. Another expression of the generated pump 
head in terms of inlet and outlet pressures 𝑃 and 𝑃3 for 
average axial liquid flow speed of 𝑆 is: 

𝐻 =
𝑃3– 𝑃

𝜌𝑔
+

𝑆2

2𝑔
 (12) 

From equations (11) and (12) we can derive 
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𝑃3–𝑃

𝜌𝑔
+

𝑆2

2𝑔
= 𝑘𝑤𝑤2 (13) 

𝑃 = 𝑃3 +
𝜌𝑆2

2
– 𝜌𝑔𝑘𝑤𝑤2 (14) 

Centrifugal pump is assumed to be driven by an armature 
controlled DC motor in the examined process. In modeling the 
armature controlled DC motor for this study, simple electrical 
circuit diagram as shown in Figure 3 is employed [14],[15]. 

 

Figure 3: Separately excited armature controlled DC motor 
diagram. 

Dynamic of the electrical side of DC motor is derived for 
applied armature voltage 𝑉𝑎  and current 𝑖𝑎  using Kirchoff’s 
voltage law as: 

𝑉𝑎 = 𝑖𝑎𝑅𝑎 + 𝑒𝑎 + 𝐿𝑎

𝑑𝑖𝑎
𝑑𝑡

 (15) 

Where 𝐿𝑎   and 𝑅𝑎  are the armature inductance and resistance, 
respectively. The motor back emf is expressed as: 

𝐸𝑏 = 𝑘𝑛𝑤𝑎  (16) 

Where 𝑘𝑛  is motor voltage constant. In assumptions that the 
field excitation circuit is constant and under steady state 
operation the time derivative is zero, assuming the motor is 
not saturated. 

𝑉𝑎 = 𝑖𝑎𝑅𝑎 + 𝐸𝑏 (17) 

The torque developed by the motor and armature current are 
related as follows: 

𝑀𝑀𝑇 = 𝑖𝑎𝑘𝑇 → 𝑖𝑎 =
𝑀𝑀𝑇

𝑘𝑇
 (18) 

Where kT is the torque constant. 𝑀𝑀𝑇 can be rewritten by 
substituting (18) and (15) into (17): 

𝑀𝑀𝑇 =
𝐾𝑇𝑉𝑎
𝑅𝑎

–
𝐾𝑇𝐾𝑛

𝑅𝑎
𝑤 (19) 

The speed of DC motor can simply be set by applying the 
correct voltage. In assumption that simple term 𝑚3(𝑥) is a 
motor setting point voltage, the equation (19) will be: 

𝑀𝑀𝑇 =
𝐾𝑇𝑉𝑎𝑚3(𝑥)

𝑅𝑎
–
𝐾𝑇𝐾𝑛

𝑅𝑎
𝑤 (20) 

2.3 Control valve model 

A control valve can roughly be described as an orifice with 
ability to alter its cross-sectional area in accordance with the 
control input signal. Depending on the coefficient 𝐶𝑣, 
regulation of flow through this variable area orifice can be 
mathematically expressed using the following formula of the 
valve behavior [16]: 

𝑓(𝑡) = 𝐶𝑣 𝑚(𝑥)√
∆𝑃𝑣

𝑠. 𝑔
 (21) 

Where 𝑓 is the liquid flow rate, ∆𝑃𝑣 is the pressure drop 
across the valve, 𝑠. 𝑔 is the specific gravity of liquid, 𝑚(𝑥) is 
the flow characteristic, 𝑥 is the valve stem position or valve 
lift, and 𝐶𝑣 is the valve coefficient. The above equation is a 
general equation which is used to describe flow through a 
valve. In this study, linear valve characteristic is assumed, 
which means flow is directly proportional to the valve lift. 
Using (14) with (21), mathematical models of the two linear 
valves in the process are obtained as follows: 

𝑓1(𝑡) = 𝐶𝑠𝑚1(𝑥)√𝑃1 − 𝑃3  +
𝜌(𝑆1

2 − 𝑆3
2)

2
+ 𝜌𝑔𝑘𝑤𝑤2 (22) 

𝑓2(𝑡) = 𝐶𝑠𝑚2(𝑥)√𝑃2 − 𝑃3  +
𝜌(𝑆2

2 − 𝑆3
2)

2
+ 𝜌𝑔𝑘𝑤𝑤2 (23) 

where 𝐶𝑠 =
𝑐𝑣

√1/𝑠.𝑔
, 𝑃1, 𝑃2, 𝑃3 and 𝑃 are static pressures in front 

of the two valves, outtake of pump and inside the tank 
followed by 𝑆1, 𝑆2 and 𝑆3, which are the liquid speeds, 
respectively. 

2.4 Combined system equations 

By substituting (22) and (23) in (1) with the assumption of 
constant liquid volume in the CST, 

𝑓𝑜(𝑡) = 𝐶𝑠𝑚1(𝑥) (𝑃1 − 𝑃3  +
𝜌(𝑆1

2 − 𝑆3
2)

2
+ 𝜌𝑔𝑘𝑤𝑤2)

1/2

 

+𝐶𝑠𝑚2(𝑥) (𝑃2 − 𝑃3  +
𝜌(𝑆2

2 − 𝑆3
2)

2
+ 𝜌𝑔𝑘𝑤𝑤2)

1/2

 

(24) 

and by substituting (24) into (9), 

𝑀𝑝 = 𝐶𝑠𝑘𝑟𝑤(𝑚1(𝑥)√𝐺1 + 𝑚2(𝑥)√𝐺2) (25) 

Where 

𝐺1 = 𝑃1 − 𝑃3 +
𝜌(𝑆1

2 − 𝑆3
2)

2
+ 𝜌𝑔𝑘𝑤𝑤2 (26) 

𝐺2 = 𝑃2 − 𝑃3  +
𝜌(𝑆2

2 − 𝑆3
2)

2
+ 𝜌𝑔𝑘𝑤𝑤2 (27) 

Substituting (8), (20) and (25) into (7) gives: 

𝐽
𝑑𝑤

𝑑𝑡
=

𝐾𝑇𝑉𝑎𝑚3(𝑥)

𝑅𝑎
−

𝐾𝑇𝐾𝑛

𝑅𝑎
𝑤 

−(𝐶𝑠𝑘𝑟𝑤(𝑚1(𝑥)√𝐺1 + 𝑚2(𝑥)√𝐺2)) + 𝑘𝜁𝑤 

(28) 

Dividing all terms of (28) by the moment of inertia and 
substituting (22) and (23) into (6), nonlinear differential 
equations of the process dynamics are obtained as follows: 

𝑑𝑇𝑜

𝑑𝑡
=

𝐶𝑠𝑚1(𝑥)√𝐺1 𝜌𝐾𝑝

𝑉𝜌 𝐾𝑣
[𝑇1– 𝑇𝑜] 

+
𝐶𝑠𝑚2(𝑥)√𝐺2 𝜌𝐾𝑝

𝑉𝜌 𝐾𝑣
[𝑇2– 𝑇𝑜]–

𝑈𝐴 [𝑇𝑜 − 𝑇𝑎] 

𝑉𝜌 𝐾𝑣
 

(29) 
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𝑑𝑤

𝑑𝑡
=

𝐾𝑇𝑉𝑎𝑚3(𝑥)

𝐽𝑅𝑎
−

𝐾𝑇𝐾𝑛

𝐽𝑅𝑎
𝑤 

−(
𝐶𝑠𝑘𝑟𝑤

𝐽
(𝑚1(𝑥)√𝐺1 + 𝑚2(𝑥)√𝐺2)) +

𝑘𝜁

𝐽
𝑤 

(30) 

2.5 Linearization of dynamic equations 

Nonlinear mathematical model of the CST process given in 
(29) and (30) has three control inputs of 𝑚1(𝑥),𝑚2(𝑥) and 
𝑚3(𝑥), outputs that are the state variables of the state-space 
model given by To and w, and six disturbance inputs of 𝑇1,
𝑇2,  𝑇𝑎,  𝑃1,  𝑃2,  𝑃3 as shown in Figure 2. The aim in linearizing 
this model is to put it into a more suitable form that eases the 
procedure of decoupling the loops for possible MV control 
design. The aimed linearized model is in the following form: 

𝐗 ̇ = 𝐀𝐗 + 𝐁𝐔 + 𝐕𝐙 (31) 

Where 𝐗 = [𝑥1  𝑥2]
𝑇 = [𝑇𝑜 𝑤]𝑇 is the state vector, 𝐔 =

[𝑢1 𝑢2 𝑢3]𝑇 = [m1 m2 m3]𝑇 is the vector of inputs, and 
𝐙 = [𝑧1  𝑧2  𝑧3  𝑧4  𝑧5  𝑧6]

𝑇 = [𝑇1  𝑇2  𝑇𝑎  𝑃1  𝑃2  𝑃3]
𝑇 is the vector 

of disturbance inputs. Coefficient matrices in the model given 
in (31), which are 𝐀 ∈ 𝑅2×2, 𝐁 ∈ 𝑅2×3, and 𝐕 ∈ 𝑅2×6 are 
obtained using Jacobian linearization technique around the 
nominal operating points or steady-state values given in Table 
1. Numerical values of considered process are given in Table 2.  

Table 1: Nominal values of process variables. 

 s.s value  s.s value  s.s value 
T1S 9.44 OC P2 16.8 psi 𝑚2(𝑥) 0.8 
T2S 48.8 OC P3 36.2 psi 𝑚3(𝑥) 1 
TOS 42 OC 𝑤 1700 rpm 𝑉𝑎  36 V 
P1S 14 psi 𝑚1(𝑥) 0.2   

Table 2: Numerical values of process parameters. 

 value  value  value 
𝜌 1000 kg/m3 𝐽 0.05512 kg.m2 𝑘𝑛  0.0182 
V 0.018 m3 𝑔 9.81 m s2⁄  𝑘𝑝 4.181 

𝑅𝑎 0.6758 Ω 𝑘𝑇 0.1527 N mA⁄  𝑘𝑟  0.926 
𝐶𝑠 0.67 𝑘𝑤 0.000010935   

Values in Table 1 and Table 2 are obtained from a real process 
with a CST designed for domestic use, which supplies hot 
water to a bathroom shower system. The process has the same 
structure as given schematically in Figure 1. Resulting 
linearized model in matrix equation form is given by: 

[

𝑑𝑇𝑜

𝑑𝑡
𝑑𝑤

𝑑𝑡

] = [
−0.01174 −0.000038

0 −0.0932
] [

𝑇𝑜

𝑤
] 

+[
−0.3628 0.08 0
−5.728 −6.08 147.57

] [

𝑚1(𝑥)

𝑚2(𝑥)

𝑚3(𝑥)
] 

+

[
 
 
 
 
 

0.0022 0
0.0094 0

0.000055
−0.0015
0.00126
0.00025

0
−0.025
−0.0958
0.1212 ]

 
 
 
 
 
𝑇

[
 
 
 
 
 
𝑇1

𝑇2

𝑇𝑎

𝑃1

𝑃2

𝑃3]
 
 
 
 
 

 

(32) 

Outputs of the process are selected to be the CST outlet 
temperature 𝑇𝑜 and flow rate 𝐹. The equation that relates state 
variables and control inputs to the outputs is called the output 

equation. Output equation of the MV CST process is given in 
matrix form as follows: 

𝐘 = 𝐂𝐗 + 𝐃𝐔 (33) 

Where 𝐘 = [𝑦1  𝑦2]
𝑇 = [𝑇𝑜 𝐹]𝑇 is the output vector, 𝐂 ∈ 𝑅2×2, 

𝐃 ∈ 𝑅2×3 are coefficient matrices.  Deriving the output 
equation requires knowing the relation between pump speed 
and flow rate, which can be approximated by a linear 
characteristic with pure time delay. The actual pump speed-
flow rate characteristic for the current system and 
approximate plot obtained by curve fitting are presented in 
Figure 4. Using numerical values in Table 2 with approximate 
linear curve and a pure time delay of 3 seconds between pump 
speed and flow rate, following output equation is obtained: 

[
𝑇𝑜

𝐹
] = [

1 0
0 0.0017

] [
𝑇𝑜

𝑤
] 

+[
0 0 0

3.2 × 1(𝑡 − 3) 3.2 × 1(𝑡 − 3) 0
] [

𝑚1(𝑥)

𝑚2(𝑥)

𝑚3(𝑥)
] 

(34) 

Where 1(𝑡) is the unit step function. 

 

Figure 4: Flow rate (m3 s⁄ ) versus pump speed (rpm) within 
constant valve position approximated to a linear change 

through curve fitting. 

Obtaining a linear approximation of physical process model 
allows us to consider the use of the Laplace transformation. 
Linearized state space model given in (31) and (33) can be 
converted into a transfer function model from input Uij to 
output Yij using the formula [17]: 

Nij(s) =
Yij(s)

Uij(s)
= [φ(s)𝐁 + 𝐃] (35) 

where φ(s) = (s𝐈 − 𝐀)−1. Recalling equation (34) and 
substituting A, B, C and D matrices, the transfer matrix N that 
consists of transfer functions between control inputs and 
outputs is obtained as follows: 

𝐍(s) = [
N11(s) N21(s) N31(s)
N12(s) N22(s) N32(s)

]
𝑇

 (36) 

Where  N11(s) =
−0.3628s−0.034

 s2+0.1049s+0.0011 
, N21(s) =

0.08s+ 0.00768

  s2+0.1049s+0.0011 
, 

N31(s) =
   0.0056

  𝑠2+0.1049𝑠+0.0011
, N12(s) = N22(s) =

0.99𝑠2+0.1𝑠+0.00106

  𝑠3+0.4349𝑠2+0.035717𝑠+0.000363 
, N32(s) =

 0.25𝑠+0.0025

  𝑠2+0.1049𝑠+0.0011 
. 

The transfer functions relating process disturbance inputs to 
the outputs can be obtained using the same method: 

Gij(s) = [φ(s)𝐕 + 𝐃] (37) 

𝐆(s) = [
G11(s) ⋯ G16(s)
G21(s) ⋯ G26(s)

] (38) 
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Where, G11(s) =
0.0023s+0.0002

  s2+0.1049s+0.0011 
, G12(s) =

 0.0094s+0.0009

  s2+0.1049s+0.0011 
, 

G13(s) =
(0.558s+0.052)e−04

  s2+0.1049s+0.0011 
, G14(s) =

−0.0015s−0.0001

  s2+0.1049s+0.0011 
, G15(s) =

0.0013s+0.0001

  s2+0.1049s+0.0011 
, G16(s) =

0.0002

  s2+0.1049s+0.0011 
, G21(s) =

G22(s) = G23(s) = 0, G24(s) = G25(s) =
−5×10−7s2−1.65×10−7s−1.15×10−12

  s3+0.4349s2+0.035717s+0.000363
, G26(s) =

 s+2.42×10−5

  s2+0.1049s+0.0011 
.

  

3 Decoupling interacting loops 

Loop interactions that occur in the MV CST process need to be 
reduced or eliminated with the purpose of minimizing the 
counter effect of interaction on control performance. This 
effort is necessary for the fact that changes in one loop might 
result in destabilizing another loop. For avoiding loop 
interactions, multi input multi output (MIMO) systems can be 
decoupled, which makes it possible to design two control 
loops for two sub-processes independently. Decouplers can be 
designed using block diagram representations or basic 
mathematical principles of engineering. The basic advantage 
of block diagram method is being able to integrate decouplers 
into feedback control loops. Consequently decouplers become 
part of the control system and need to be designed with 
caution. Static decoupling is possible by ruling out the 
dynamics in plant model. This approach has the advantage of 
using steady-state gains of the transfer functions only. In 
current study, dynamic decoupling is preferred for its ability 
to cover dynamic terms of the closed-loop system too 
[16],[18]. 

The block diagram of current MIMO system is given in Figure 
5. In this diagram, the manipulated variable inputs U1, U2 and 
U3 are the first instream flow rate, the second instream flow 
rate, and the pump speed at the outstream, respectively. The 
outputs To and F are the outstream liquid temperature and 
outstream flow rate, respectively. This block diagram reveals 
that the loop interactions are caused by “cross” blocks with 
transfer functions N12(s), N21(s) and N31(s). To eliminate this 
interaction, three decoupler transfer functions of D12(s), 
D21(s) and D31(s) are employed, as given in Figure 5. The 
decouplers are aimed to cancel the impact of cross blocks so 
that all controlled variables remain unaffected by variations of 
the manipulated variables of other loops. Decoupler with 
transfer function D12(s) is expected to cancel the impact of 
manipulated variable U1(s) on controlled variable F(s), and 
D21(s) and D31(s) are expected to cancel the effect of 
manipulated variable U2(s) and U3(s) on controlled 
variable To(s) respectively. Using block diagram algebra, one 
can derive the conditions for eliminating these effects in terms 
of aforementioned transfer functions as follows: 

F(s)

U1(s)
= D12(s)N32(s) + N12(s) = 0 (39) 

To(s)

U2(s)
= D21(s)N11(s) + N21(s) = 0 (40) 

To(s)

U3(s)
= D31(s)N11(s) + N31(s) = 0 (41) 

The design formulae for the decouplers are obtained and 
solved from the decoupler transfer functions given in 
(39),(40) and (41) as follows: 

D12(s) =
−N12(s)

N32(s)
 (42) 

D21(s) =
−N21(s)

N11(s)
 (43) 

D31(s) =
−N31(s)

N11(s)
 (44) 

 

Figure 5: Open loop MIMO plant block diagram. 

4 Simulation results 

Decoupler design depicted in Figure 6 and given by the 
formulae in (42-44) is tested via computer simulations. 
Simulation tests are conducted by applying step inputs to all 
inputs successively and observing the responses at the 
outputs with and without dynamic decoupling. Results are 
given in Figures 7 and 8, where Figure 7a, 7b, and 7c present 
the flow rate response of the temperature process to a step 
change in manipulated variable inputs of U1, U2 and U3, 
respectively. Similarly, Figures 8a, 8-b, and 8c depict the 
response of the flow process to the same input changes. The 
function of the decoupler is to eliminate the effect of a cross 
transfer function as mentioned in the previous section. This 
means a reduction in the effect of U1 on F and that of U2 and U3 
on To. Figures 7b and 7c show clearly the performance of the 
decoupler in reducing the interaction of U2 and U3 with 𝑇𝑜, and 
Figure 8a proves that designed decoupler eliminates the 
interaction of U1 with 𝐹. The three figures mentioned above 
show a significant discrepancy between responses with and 
without decoupling, which is not observed in Figures 7a, 8b 
and 8c as expected. 

 

Figure 6: Open loop MIMO plant with proposed decoupler 
design. 
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Figure 7a: Simulation test results for the 
variation of process output in response 

to a step change in first manipulated 
variable input for the temperature 

process. Reference temperature is given 
in solid red line. 

Figure 7b: Simulation test results for the 
variation of process output in response 
to a step change in second manipulated 

variable input for the temperature 
process. Reference temperature is given 

in solid red line. 

Figure 7c: Simulation test results for the 
variation of process output in response to 

a step change in third manipulated 
variable inputs for the temperature 

process. Reference temperature is given 
in solid red line. 

   

Figure 8a: Simulation test results for the 
variation of process output in response 

to a step change in first manipulated 
variable input for the flow process. 

Reference flow rate is given in solid red 
line. 

Figure 8b: Simulation test results for the 
variation of process output in response 
to a step change in second manipulated 

variable input for the flow process. 
Reference flow rate is given in solid red 

line. 

Figure 8c: Simulation test results for the 
variation of process output in response to 

a step change in third manipulated 
variable input for the flow process. 

Reference flow rate is given in solid red 
line. 

 

The main issue addresses by the proposed decoupler design is 
the undesirable interaction between specific inputs and 
outputs of the process. The decoupler is expected to isolate the 
flow rate output from the first valve position input and 
temperature output from the second valve position and pump 
speed inputs. These two requirements cannot be achieved 
without decoupling as presented in Figures 7 and 8, and the 
same figures depict the loop interaction elimination 
performance of proposed dynamic decouplers. To reveal 
decoupler performances in reducing loop interactions, steady-
state per cent change in temperature and flow rate outputs in 
response to a step change of magnitude 0.2 in all three 
manipulated variable inputs are graphically presented in 
Figures 9 and 10, respectively. In Figure 9, input U1 and 
temperature output are highly correlated in both non-
decoupled and decoupled cases. U2 and temperature are 
minimally correlated also for the two cases. The main 
contribution of the decoupler becomes obvious in the 
correlation of the pump speed input, i.e. U3 with the 
temperature. The effect of U3 on temperature output is around 
12 per cent without decoupling,  whereas decoupler reduces 
this effect to approximately zero. A similar decoupler 
performance is also visible in Figure 10 in representation of 
correlation between three manipulated variable inputs and 
the flow rate output. Although there is no improvement in the 
correlation of U2 with flow rate in the system with decoupling, 
decoupler performance is prominent in the response of flow 

rate to U1 and U3. Flow rate is more sensitive to the pump 
speed input as desired. More importantly, the first valve 
position is almost completely isolated from the flow rate, 
which is the most significant contribution of designed 
decoupler. 

 

Figure 9: Simulation test results for the variation of process 
output in response to a step change in three manipulated 

variable inputs for the temperature process. 

 

Figure 10: Simulation test results for the variation of process 
output in response to a step change in three manipulated 

variable inputs for the temperature process. 
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5 Conclusion 

The objective of this study is to develop a mathematical model 
of the considered CST process in MV structure and design a 
dynamic decoupler. The dynamics of the CST process are 
derived and a MV nonlinear mathematical model is developed. 
Then this model is linearized and reexpressed in transfer 
matrix form with the purpose of proper decoupler design. 
Using transfer functions in the linearized model of the MV CST 
process, a dynamic decoupler is designed and integrated into 
the open-loop plant dynamics. Simulation tests are 
implemented to visualize the decoupling performance of 
proposed system. Results reveal good decoupling of 
interacting loops, which is a useful outcome for future study of 
MV control design for the CST process. 
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