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Abstract: This paper aims to investigate the Kairat-X equation in the context of the ferromagnetic

materials, optical fibers, differential geometry of curves, and equivalence aspects. Two efficient techniques

are used to obtain new solutions: the modified extended tanh expansion method and the ( G′

G2 ) -expansion

function method. By applying these methods, the nonlinear ordinary differential form of the analyzed

equation is obtained using the appropriate wave transform. The effective application of the proposed

approaches has yielded a substantial number of analytical solutions for the model, including hyperbolic,

bright-dark soliton, W-shaped soliton, and mixed-type trigonometric, rational, and trigonometric solutions.

These methods are advantageous in deriving a wide variety of exact solutions; however, they can also

present limitations in terms of computational complexity and the scope of applicable equations. Various

graphical representations are given to enhance the understanding of the obtained solutions. To the best

of our knowledge, all derived solutions are novel. Furthermore, the correctness of each solution has been

verified using Maple software.

Keywords: Kairat-X equation, the modified extended tanh expansion method, the ( G′

G2 ) -expansion

function method.

1. Introduction

Nonlinear partial differential equations (NLPDEs) are used to model complex physical phenomena

in physics, mechanics, biology, chemistry, and engineering [8, 10, 26, 30]. The study of nonlinear

wave phenomena has attracted significant attention in recent years, including breathing waves,

rogue waves, and solitons. The derivation of soliton solutions for NLPDEs has become an extremely

fascinating and active field of research for many scientists working in engineering and applied

sciences. Solitons, which are widely used in science and engineering, play a crucial technological

role in enabling the transmission of digital information through optical fibers. In electromagnetics,
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solitons are also studied, such as transverse electromagnetic waves between two superconducting

metal strips. Optical solitons are an important area of study in nonlinear optics, covering a wide

range of topics such as metasurfaces, crystals, birefringence, magneto-optics, optical fibers, and

optical couplers [27]. Optical solitons, also known as soliton wave packets, are characterized by

their stability over long propagation distances. High-speed data transmission over optical fibers

and the operation of technologies such as all-optical switches depend on this property. For modern

telecommunications to be reliable and efficient, optical solitons and their stability are crucial

[31]. Researchers are increasingly recognizing the significant contributions that mathematical

approaches and computational technologies make to science, especially in areas where technological

advancements and real-world applications are involved [28].

In recent years, finding exact solutions to NLPDEs has become crucial. Many direct and

effective approaches have been developed to help engineers and physicists better understand the

mechanisms governing these physical models, as well as the associated challenges and potential

applications. Several efficient methods have been proposed for determining the implicit soliton

solutions of nonlinear equations, including the tanh-function method [19], the modified simplest

equation approach [18], the sine-cosine method [5, 29], the complete discriminant system method

[3], the Jacobi elliptic function method [12, 14, 15], the first integral method [6], the modified sub-

equation method [11, 24], the modified expansion rational function method [7] and the sub-equation

method [1, 22].

This paper focuses on the Kairat-X equation (K-XE), a NLPDE that emerges in contexts

such as nonlinear optics, ferromagnetic media, and optical fiber systems. The K-XE is given by

[13, 23]:

ρtt + ρxxxt − 3 (ρxρt)x = 0, (1)

where ρ = ρ(x, t) denotes the real wave function, with the nonlinear interaction and dispersion ef-

fects represented by the terms (ρxρt)x and ρxxxt , respectively. The K-XE was initially formulated

by Myrzakulova, who studied its Lax pair representation in order to demonstrate its integrable

properties [23]. Faridi et al. employed the new auxiliary equation method to derive new soliton

solutions for the same equation [13]. In their study, numerous soliton solutions with diverse char-

acteristics such as complex waves, plane waves, shock waves, and exponential wave forms were

obtained. Iqbal et al. investigated the fractional form of this equation and applied the extended

simple equation method to obtain various solutions in trigonometric, exponential, and rational

forms [17]. Ahmad et al. utilized the unified method to derive several exact analytical solutions

for the same model [2]. Samina et al. used the generalized auxiliary equation method to obtain

soliton solutions of the (1) and also performed a detailed analysis of its bifurcation structure,

219



Fatma Nur Kaya Sağlam / FCMS

chaotic dynamics, and sensitivity characteristics [25].

The aim of this work is to improve wave behavior through study and enhance its practical

applications, particularly in the field of telecommunications [9]. It takes an interdisciplinary

approach by combining physics, computer science, and mathematics, emphasizing the role of active

scientific research in solving real-world problems and advancing technology.

The existence of a Lax pair implies that the model possesses infinitely many conservation

laws and can admit soliton-type solutions. This feature justifies the use of powerful analytical

techniques such as the modified extended tanh expansion method (METEM) and the ( G′
G2 ) -

expansion function method, as applied in this study. By utilizing different solution prototypes for

the considered model, new approaches are presented to improve data transmission rates, optimize

optical systems, and advance nonlinear optics toward more reliable and efficient communication

technologies.

2. Methodology

Suppose that the presence of a NLPDE of the form:

N(ρ, ρx, ρt, ρxx, ρxt, ρtt,⋯) = 0, (2)

in which ρ = ρ(x, t) is an arbitrary function of x and t with its partial derivatives.

Applying the next wave transformation

ρ(x, t) = V (ξ), ξ = (κx − ηt), (3)

then (2) reduces to the following form:

O(V,V ′, V ′′, V ′′′,⋯) = 0. (4)

Here, η and κ are real constants different from zero.

2.1. Basic Steps of the METEM

This section presents the fundamental steps of the METEM approach [20].

Step 1: Consider the general solution of (4) in the form:

V (ξ) =M0 +
R

∑
s=1
(MsΦ

s(ξ) +LsΦ
−s(ξ)) (MR ≠ 0 or LR ≠ 0), (5)

where Φ(ξ) defined as follows:

dΦ(ξ)
dξ

= Θ + (Φ(ξ))
2

, (6)
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in which Θ is arbitrary constant. The following expressions represent the general solutions of (6):

Case 1: When Θ < 0, the corresponding hyperbolic solutions can be written as follows:

Φ1(ξ) = −
√
−Θtanh (

√
−Θ (ξ + ξ0)) , (7)

Φ2(ξ) = −
√
−Θcoth (

√
−Θ (ξ + ξ0)) , (8)

Φ3(ξ) = −
√
−Θ (tanh (2

√
−Θ (ξ + ξ0)) + iε sech (2

√
−Θ (ξ + ξ0))) , (9)

Φ4(ξ) =
−
√
−Θtanh (

√
−Θ (ξ + ξ0)) +Θ√

−Θtanh (
√
−Θ (ξ + ξ0)) + 1

, (10)

Φ5(ξ) =
√
−Θ (−4 cosh (2

√
−Θ (ξ + ξ0)) + 5)

4 sinh (2
√
−Θ (ξ + ξ0)) + 3

, (11)

Φ6(ξ) =
ε
√
−Θ (c2 + d2) − c

√
−Θcosh (2

√
−Θ (ξ + ξ0))

c sinh (2
√
−Θ (ξ + ξ0)) + d

, (12)

Φ7(ξ) = ε
√
−Θ
⎡⎢⎢⎢⎢⎣
1 − 2c

c + cosh (2
√
−Θ (ξ + ξ0)) − ε sinh (2

√
−Θ (ξ + ξ0))

⎤⎥⎥⎥⎥⎦
. (13)

Case 2: If Θ > 0, the desired trigonometric solutions can be expressed as follows:

Φ8(ξ) =
√
Θtan (

√
Θ (ξ + ξ0)) , (14)

Φ9(ξ) = −
√
Θcot (

√
Θ (ξ + ξ0)) , (15)

Φ10(ξ) =
√
Θ (tan (2

√
Θ (ξ + ξ0)) + ε sec (2

√
Θ (ξ + ξ0))) , (16)

Φ11(ξ) = −
√
Θ (1 − tan (

√
Θ (ξ + ξ0)))

1 + tan (
√
Θ (ξ + ξ0))

, (17)

Φ12(ξ) =
√
Θ (−5 cos (2

√
Θ (ξ + ξ0)) + 4)

5 sin (2
√
Θ (ξ + ξ0)) + 3

, (18)

Φ13(ξ) =
ε
√
Θ (c2 + d2) − c

√
Θcos (2

√
Θ (ξ + ξ0))

c sin (2
√
Θ (ξ + ξ0)) + d

, (19)

Φ14(ξ) = iε
√
Θ

⎡⎢⎢⎢⎢⎣
1 − 2c

c + cos (2
√
Θ (ξ + ξ0)) − iε sin (2

√
Θ (ξ + ξ0))

⎤⎥⎥⎥⎥⎦
. (20)

Case 3: For Θ = 0, the relevant rational solution can be derived as follows:
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Φ15(ξ) = −
1

ξ + ξ0
. (21)

Here, ε = ±1, c ≠ 0, d, Θ, ξ0 are real arbitrary parameters.

Step 2: By taking the homogeneous balance between the highest order derivative and the most

considerable nonlinear term in (4), the value of R is obtained.

Step 3: Inserting (5) and its derivatives into (4), with respect to (6), we obtain a polynomial in

terms of V (ξ) . By setting the coefficients of each power of V (ξ) to zero, we obtain a system of

equations involving the unknown parameters Θ, Ms, Ls (s = 1,2, . . . ,R) . By solving this system,

we derive the analytical solutions of (4).

Step 4: Lastly, the application of the transformation in (3) to the solutions of (4) enables the

construction of several analytical solutions for (2). Under three distinct cases, the corresponding

solutions to (6) have been obtained.

2.2. Description of the ( G′
G2 )Expansion Function Method

The principal steps of the ( G′
G2 ) -expansion function method is specified in this subsection [21].

To solve (1), we assume a solution of the form:

H (ξ) =m0 +
K

∑
i=1

⎛
⎝
mi (

G′

G2
)
i

+ ni (
G′

G2
)
−i⎞
⎠
(mi ≠ 0 or ni ≠ 0) , (22)

where G = G(ξ) defined as follows:

(G
′

G2
)
′
= τ + φ(G

′

G2
)
2

. (23)

Here, the constants φ ≠ 0 and τ ≠ 1 are assumed, and the unknown constants m0, mi, ni

(i = 1,2,3,⋯,K) will be defined later. The corresponding three families of solutions to (22) are as

follows:

When τφ > 0, we have the following trigonometric solution:

(G
′

G2
) =
√

τ

φ

⎛
⎝
A1 cos (

√
τφξ) +A2 sin (

√
τφξ)

A2 cos (
√
τφξ) −A1 sin (

√
τφξ)

⎞
⎠
. (24)

When τφ < 0, we derive the subsequent hyperbolic solution:

(G
′

G2
) = −

√
τφ

φ

⎛
⎝
A1 sinh (2

√
τφξ) +A1 cosh (2

√
τφξ) +A2

A1 sinh (2
√
τφξ) +A1 cosh (2

√
τφξ) −A2

⎞
⎠
. (25)
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When φ ≠ 0, τ = 0, we have the next rational solution:

(G
′

G2
) = (− A1

φ (A1ξ +A2)
) . (26)

Here, A1, A2 are constants. Substituting (22) and (23) into (4), and equating the coefficients

of like powers of ( G′
G2 ) to zero, yields a system of algebraic equations solved via Maple software

program.

3. Application of the Offered Methods

Consider the wave transformation given by:

ρ(x, t) = V (ξ), ξ = κx − ηt. (27)

Substituting (3) into (1), then we reach

ηV ′′ (ξ) − κ3V (ξ)′′′′ + 3κ2 (V ′2 (ξ))′ = 0. (28)

When integrating (28) with respect to ξ , we obtain

ηV ′ (ξ) − κ3V (ξ)′′′ + 3κ2 (V ′2 (ξ)) + c0 = 0. (29)

where suppose that the integration constant c0 is zero. Assuming V ′(ξ) = S , where S(ξ) is

real-valued, (1) reduces to the following ODE:

ηS (ξ) − κ3S (ξ)′′ + 3κ2S2 (ξ) = 0. (30)

3.1. The Solutions to the Proposed Model Using the METEM

Applying the equilibrium principle to (30) yields n = 2. Therefore, the (5) turns into

S (ξ) =M0 +M1Φ (ξ) +M2Φ
2 (ξ) + L1

Φ (ξ) +
L2

Φ2 (ξ) . (31)

In this case, M0 , M1 , M2 , L1 and L2 are parameters. Adhering to the suggested method,
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then we reach the subsequent equation system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηM0 − κ3 (2M2Θ
2 + 2L2) + 3κ2 (2L2M2 + 2L1M1 +M2

0 ) = 0,

ηL2 − 8κ3L2Θ + 3κ2 (L2
1 + 2L2M0) = 0,

ηL1 − 2κ3L1Θ + 3κ2 (2L1M0 + 2L2M1) = 0,

6κ2M1M2 − 2κ3M1 = 0,

3κ2M2
2 − 6κ3M2 = 0,

ηM2 − 8κ3M2Θ + 3κ2 (2M0M2 +M2
1 ) = 0,

ηM1 − 2κ3M1Θ + 3κ2 (2L1M2 + 2M1M0) = 0,

− 6κ3L2Θ
2 + 3κ2L2

2 = 0,

− 2κ3L1Θ
2 + 6κ2L2L1 = 0.

Solving the above system of algebraic equation, we obtain the following sets:

Set 1:

M0 = −
4κΘ

3
, M1 = 0, M2 = 2κ, L1 = 0, L2 = 2κΘ2, η = 16κ3Θ. (32)

Set 2:

M0 =
2κΘ

3
, M1 = 0, M2 = 2κ, L1 = 0, L2 = 0, η = 4κ3Θ. (33)

By using Set 1, we get the following solutions:

Case 1: If Θ < 0, then the kink type solution obtained as

ρ1,1(x, t) = −
4κΘ

3
− 2κΘtanh (

√
−Θ (κx − ηt))

2
− 2κΘ

tanh (
√
−Θ (κx − ηt))2

. (34)

The solitary wave solution reached as

ρ1,2(x, t) = −
4κΘ

3
− 2κΘcoth (

√
−Θ (κx − ηt))

2
− 2κΘ

coth (
√
−Θ (κx − ηt))2

. (35)

The mixed complex bright-dark soliton solution attained as

ρ1,3(x, t) = −
4κΘ

3
− 2κΘ(tanh (2

√
−Θ (κx − ηt)) + i sech (2

√
−Θ (κx − ηt)))

2

− 2κΘ

(tanh (2
√
−Θ (κx − ηt)) + i sech (2

√
−Θ (κx − ηt)))2

. (36)

224



Fatma Nur Kaya Sağlam / FCMS

The kink type solution reached as

ρ1,4(x, t) = −
4κΘ

3
+
2κ(−Θ +

√
−Θtanh (

√
−Θ (κx − ηt)))2

(1 +
√
−Θtanh (

√
−Θ (κx − ηt)))2

+
2κΘ2(1 +

√
−Θtanh (

√
−Θ (κx − ηt)))2

(−Θ +
√
−Θtanh (

√
−Θ (κx − ηt)))2

. (37)

The solitary wave solutions obtained as

ρ1,5(x, t) = −
4κΘ

3
−
2κΘ(5 − 4 cosh (2

√
−Θ (κx − ηt)))2

(3 + 4 sinh (2
√
−Θ (κx − ηt)))2

−
2κΘ(3 + 4 sinh (2

√
−Θ (κx − ηt)))2

(5 − 4 cosh (2
√
−Θ (κx − ηt)))2

, (38)

ρ1,6(x, t) = −
4κΘ

3
+
2κ(
√
−Θ (c2 + d2) − c

√
−Θcosh (2

√
−Θ (κx − ηt)))

2

(c sinh (2
√
−Θ (κx − ηt)) + d)2

+
2κΘ2(c sinh (2

√
−Θ (κx − ηt)) + d)2

(
√
−Θ (c2 + d2) − c

√
−Θcosh (2

√
−Θ (κx − ηt)))

2
, (39)

ρ1,7(x, t) = −
4κΘ

3
−
2κΘ(−c + cosh (2

√
−Θ (κx − ηt)) − sinh (2

√
−Θ (κx − ηt)))2

(c + cosh (2
√
−Θ (κx − ηt)) − sinh (2

√
−Θ (κx − ηt)))2

−
2κΘ(c + cosh (2

√
−Θ (κx − ηt)) − sinh (2

√
−Θ (κx − ηt)))2

(−c + cosh (2
√
−Θ (κx − ηt)) − sinh (2

√
−Θ (κx − ηt)))2

. (40)

Case 2: If Θ > 0, then we reached the following singular periodic wave solutions:

ρ1,8(x, t) = −
4κΘ

3
+ 2κΘtan (

√
Θ (κx − ηt))

2
+ 2κΘ

tan (
√
Θ (κx − ηt))2

, (41)

ρ1,9(x, t) = −
4κΘ

3
+ 2κΘcot (

√
Θ (κx − ηt))

2
+ 2κΘ

cot (
√
Θ (κx − ηt))2

. (42)

The mixed type trigonometric soliton solutions attained as

ρ1,10(x, t) = −
4κΘ

3
+ 2κΘ(tan (2

√
Θ (κx − ηt)) + sec (2

√
Θ (κx − ηt)))

2

+ 2κΘ

(tan (2
√
Θ (κx − ηt)) + sec (2

√
Θ (κx − ηt)))2

. (43)
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The explicit periodic type solution reached as

ρ1,11(x, t) = −
4κΘ

3
+
2κΘ(1 − tan (

√
Θ (κx − ηt)))2

(1 + tan (
√
Θ (κx − ηt)))2

+
2κΘ(1 + tan (

√
Θ (κx − ηt)))2

(1 − tan (
√
Θ (κx − ηt)))2

, (44)

ρ1,12(x, t) = −
4κΘ

3
+
2κΘ(4 − 5 cos (2

√
Θ (κx − ηt)))2

(3 + 5 sin (2
√
Θ (κx − ηt)))2

+
2κΘ(3 + 5 sin (2

√
Θ (κx − ηt)))2

(4 − 5 cos (2
√
Θ (κx − ηt)))2

, (45)

ρ1,13(x, t) = −
4κΘ

3
+
2κ(
√
Θ (c2 − d2) − c

√
Θcos (2

√
Θ (κx − ηt)))

2

(c sin (2
√
Θ (κx − ηt)) + d)2

+
2κΘ2(c sin (2

√
Θ (κx − ηt)) + d)2

(
√
Θ (c2 − d2) − c

√
Θcos (2

√
Θ (κx − ηt)))

2
, (46)

ρ1,14(x, t) = −
4κΘ

3
− 2κΘ

⎛
⎝
1 − 2c

c + cos (2
√
Θ (κx − ηt)) − i sin (2

√
Θ (κx − ηt))

⎞
⎠

2

− 2κΘ

(1 − 2c

c+cos(2√Θ(κx−ηt))−i sin(2√Θ(κx−ηt)))
2
. (47)

Case 3: If Θ = 0, then we get the rational solution as below:

ρ1,15(x, t) =
2κ

(κx − ηt)2
. (48)

For Set 2, we reach the next solutions:

Case 1: If Θ < 0, then the kink type solution obtained as

ρ2,1(x, t) = −
2κΘ

3
(3 tanh (

√
−Θ (κx − ηt))

2
− 1) . (49)

The solitary wave solution obtained as

ρ2,2(x, t) = −
2κΘ

3
(3 coth (

√
−Θ (κx − ηt))

2
− 1) . (50)
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The mixed complex bright-dark soliton solution attained as

ρ2,3(x, t) =
2κΘ

3
− 2κΘ(tanh (2

√
−Θ (κx − ηt)) + i sech (2

√
−Θ (κx − ηt)))

2
. (51)

The kink type solution reached as

ρ2,4(x, t) =
2κΘ

3
+
2κ(−Θ +

√
−Θtanh (

√
−Θ (κx − ηt)))2

(1 +
√
−Θtanh (

√
−Θ (κx − ηt)))2

. (52)

The mixed type hyperbolic solutions obtained as

ρ2,5(x, t) =
2κΘ

3
−
2κΘ(5 − 4 cosh (2

√
−Θ (κx − ηt)))2

(3 + 4 sinh (2
√
−Θ (κx − ηt)))2

, (53)

ρ2,6(x, t) =
2κΘ

3
+
2κ(
√
−Θ (c2 + d2) − c

√
−Θcosh (2

√
−Θ (κx − ηt)))

2

(c sinh (2
√
−Θ (κx − ηt)) + d)2

, (54)

ρ2,7(x, t) =
2κΘ

3
−
2κΘ(−c + cosh (2

√
−Θ (κx − ηt)) − sinh (2

√
−Θ (κx − ηt)))2

(c + cosh (2
√
−Θ (κx − ηt)) − sinh (2

√
−Θ (κx − ηt)))2

. (55)

Case 2: If Θ > 0, then we get as follows:

The singular periodic wave solutions obtained as

ρ2,8(x, t) =
2κΘ

3
(3 tan (

√
Θ (κx − ηt))

2
+ 1) , (56)

ρ2,9(x, t) =
2κΘ

3
(3 cot (

√
Θ (κx − ηt))

2
+ 1) . (57)

The combo trigonometric soliton solution attained as

ρ2,10(x, t) =
2κΘ

3
+ 2κΘ(tan (2

√
Θ (κx − ηt)) + sec (2

√
Θ (κx − ηt)))

2
. (58)

The explicit periodic type solution reached as

ρ2,11(x, t) =
2κΘ

3
+
2κΘ(−1 + tan (

√
Θ (κx − ηt)))2

(1 + tan (
√
Θ (κx − ηt)))2

. (59)

The combo trigonometric soliton solution obtained as

ρ2,12(x, t) =
2κΘ

3
+
2κΘ(4 − 5 cos (2

√
Θ (κx − ηt)))2

(3 + 5 sin (2
√
Θ (κx − ηt)))2

, (60)
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ρ2,13(x, t) =
2κΘ

3
+
2κ(
√
Θ (c2 − d2) − c

√
Θcos (2

√
Θ (κx − ηt)))

2

(c sin (2
√
Θ (κx − ηt)) + d)2

. (61)

The complex trigonometric wave solutions attained as

ρ2,14(x, t) =
2κΘ

3
− 2κΘ

⎛
⎝
1 − 2c

c + cos (2
√
Θ (κx − ηt)) − i sin (2

√
Θ (κx − ηt))

⎞
⎠

2

. (62)

Case 3: If Θ = 0, then we have the following rational solution:

ρ2,15(x, t) =
2κ

(κx − ηt)2
. (63)

3.2. Utilizing the ( G′
G2 )Expansion Function Method

Using the homogenous balance principle, (22) is as follows:

H (ξ) =m0 +m1 (
G′

G2
) +m2 (

G′

G2
)
2

+ n1 (
G′

G2
)
−1
+ n2 (

G′

G2
)
−2
. (64)

When (64) is inserted into (30) with all coefficients set to zero, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2κ3n2φ
2 − 2κ3m2τ

2 + 3κ2m2
0 + 6κ2m1n1 + 6κ2m2n2 + ηm0 = 0,

− 8κ3φτm2 + 6κ2m0m2 + 3κ2m2
1 + ηm2 = 0,

− 2κ3φτm1 + 6κ2m0m1 + 6κ2m2n1 + ηm1 = 0,

− 2κ3τφn1 + 6κ2m0n1 + 6κ2m1n2 + ηn1 = 0,

− 8κ3φτn2 + 6κ2m0n2 + 3κ2n2
1 + ηn2 = 0,

− 2κ3φ2m1 + 6κ2m1m2 = 0,

− 2κ3τ2n1 + 6κ2n1n2 = 0,

− 6κ3φ2m2 + 3κ2m2
2 = 0,

− 6κ3τ2n2 + 3κ2n2
2 = 0.

By solving above the algebraic system, we get the following solution sets:

Set 1:

η = 4κ3φτ, m0 =
2κφτ

3
, m1 = 0, m2 = 2κφ2, n1 = 0, n2 = 0.

Set 2:

η = 16κ3φτ, m0 = −
4κφτ

3
, m1 = 0, m2 = 2κφ2, n1 = 0, n2 = 2κτ2.
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By using Set 1, we have the following soliton solutions:

If τφ > 0, then the trigonometric solution is given by the following form:

ρ1 (x, t) =
2κτφ

3
+
2κτφ(A1 cos (

√
τφξ) +A2 sin (

√
τφξ))2

(A2 cos (
√
τφξ) −A1 sin (

√
τφξ))2

. (65)

If τφ < 0, then the hyperbolic solution is found as follow:

ρ2 (x, t) =
2κτφ

3
−
2κτφ(A1 sinh (2

√−τφξ) +A1 cosh (−
√
τφξ) +A2)

2

(A1 sinh (2
√−τφξ) +A1 cosh (2

√−τφξ) −A2)
2

. (66)

If τ = 0, φ ≠ 0, then the rational solution is given by the following form:

ρ3 (x, t) =
2κA2

1

(ξA1 +A2)2
. (67)

For Set 2, we reach the following solutions:

If τφ > 0, then the trigonometric solution is given by the following form:

ρ1,0 (x, t) = −
4κτφ

3
+
2κτφ(A1 cos (

√
τφξ) +A2 sin (

√
τφξ))2

(A2 cos (
√
τφξ) −A1 sin (

√
τφξ))2

+
2κτφ(A2 cos (

√
τφξ) −A1 sin (

√
τφξ))2

(A1 cos (
√
τφξ) +A2 sin (

√
τφξ))2

. (68)

If τφ < 0, then the hyperbolic solution is found as below:

ρ2,0 (x, t) = −
2κτφ

3
−
2κτφ(A1 sinh (2

√−τφξ) +A1 cosh (
√−τφξ) +A2)

2

(A1 sinh (2
√−τφξ) +A1 cosh (2

√−τφξ) −A2)
2

−
2κτφ(A1 sinh (2

√−τφξ) +A1 cosh (
√−τφξ) −A2)

2

(A1 sinh (2
√−τφξ) +A1 cosh (2

√−τφξ) +A2)
2

. (69)

If τ = 0, φ ≠ 0, then the rational solution is given by the following form:

ρ3,0 (x, t) =
2κA2

1

(ξA1 +A2)2
. (70)

4. Graphical Explanation

This section demonstrates the structural properties of the obtained soliton solutions using various

graphical representations. Specifically, 3D, contour, and 2D graphs corresponding to analytical

solutions derived in previous sections are presented. These visualizations help demonstrate the
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localization, amplitude, and wave propagation properties of the solutions more intuitively and

comprehensively.

Figure 1. 3D, 2D, and contour plots of the bright soliton solution for ρ1,1(x, t) are pre-

sented when Θ = −0.5, κ = 0.5.

Figure 2. The W-shaped soliton solution of ∣ρ1,3(x, t)∣ is illustrated using 3D, 2D, and

contour plots for Θ = −0.5, κ = 0.5.

Figure 3. The singular solitary wave structure of ρ1,8(x, t) is depicted through 3D, 2D,

and contour plots for Θ = 1, κ = 1.

Figure 4. The dark soliton solution of ρ2,1(x, t) is illustrated using 3D, 2D, and contour

plots for Θ = −0.5, κ = 1.

The solutions in this study have characteristic graphical properties of nonlinear wave sys-

tems. These solutions are bright, dark, W-shaped soliton and singular solitary wave solutions.

A bright soliton is a smooth, bell-shaped peak that does not change as it moves. In contrast, a

W-shaped soliton has two peaks, meaning the wave amplitude differs between the peak and trough,

forming a profile that resembles the letter “W”. A singular solitary wave solution differs in that

it has infinite or undefined amplitude at certain points, resulting in sharp discontinuities or sin-

gularities in the wave profile. Conversely, a dark soliton appears as a localized notch (or trough)

on a smooth background wave with a phase shift and stable motion. Dark and bright solitons

have smooth, localized forms at the graphical level, while W-shaped soliton and singular solitary

wave introduce more complex dynamics into the wave profile. This impacts applications in fluid

dynamics, optics, and Bose-Einstein condensates.

(a) 3D (b) Contour (c) 2D

Figure 1: Graphs of ρ1,1(x, t)
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(a) 3D (b) Contour (c) 2D

Figure 2: Graphical representations of ∣ρ1,3(x, t)∣

(a) 3D (b) Contour (c) 2D

Figure 3: Graphical representations of ρ1,8(x, t)

(a) 3D (b) Contour (c) 2D

Figure 4: Graphical representations of ρ2,1(x, t) .

5. Conclusion

In this study, METEM and the ( G′
G2 ) -expansion function method were used to derive new analytical

solutions of nonlinear K-XE. The results include a wide range of exact solutions, such as W-

shaped solitons, singular solitary waves, bright and dark solitons, as well as rational, hyperbolic,
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and trigonometric forms. Several of these solutions were visualized using 3D, contour, 2D plots

generated via Maple software. These graphical representations effectively capture the physical

behavior of the solutions and validate their consistency. According to the obtained results, these

two approaches provide highly accurate analytical solutions for K-XE. Another advantage of these

methods is their proven ability to efficiently generate solutions. These solutions are crucial for

understanding the wave dynamics of the model. All solutions have been verified using software

programs. In the future, the study will be expanded to include the fractional and variable-

coefficient forms of the K-XE. These efforts are expected to further enhance the model’s physical

interpretability and applicability in nonlinear science.
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