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ABSTRACT. In this study, firstly, we investigate curvature conditions of non-
null AW (k)—type curves (1 < k < 3) in E}. Morever, we give a classification
for W—curves of type AW (k) in Ef Secondly, according to types of non-
null Mannheim partner curves in E$, we obtain conditions to be AW (k)—type
curve.

1. INTRODUCTION

The notion of AW (k)—type submanifols was defined by Arslan and West
in [1]. After, many works related to AW (k)—type submanifolds had been studied
by several authors, [2], [4] and [5]. Then, many studies on curves of AW (k)—type
have been done by many mahematicians. For example, the authors gave curvature
conditions and characterizations related to these curves in E™ [3, 6]. Furthermore,
Kilahgr et al. studied the curves of AW (k)—type in 3—dimensional null cone
and null curves of the AW (k)—type in Lorentzian space [7, 8]. Ersoy et al. studied
Mannheim partner curves of AW (k)—type in E® [9]. Considering Mannheim curves,
they investigated the necessary and sufficent conditions for Mannheim curve to be
AW (k)—type in E3. However, in the literature, there is no studies related with
Mannheim partner curves of AW (k)—type in Ef. Therefore, it is necessary to
research Mannheim partner curves of AW (k)—type in E3.

The main purpose of this paper is to carry out some results which were
given in [3] and [6] to non-null curves of AW (k)—type and to obtain conditions to
be AW (k)—type for any types of non-null Mannheim partner curves, in E3.

2. PRELIMINARIES

The Minkowski 3-space E is the real vector space E® provided with the
standard flat metric given by

(,) = —da? + dz3 + da?
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where (71, 72,73) is a rectangular coordinate system of E?. According to this
metric, in B an arbitrary vector v = (vy, v2,v3) can have one of three Lorentzian
causal characters: it can be spacelike if (v,v) > 0 or v = 0, timelike if (v,v) < 0
and null (ligthlike) if (v,v) = 0 and v # 0. Similarly, an arbitrary curve a = a(s)
can locally be spacelike, timelike or null (lightlike) if all of its velocity vectors o/(s)
are spacelike, timelike or null (lightlike), respectively. The vector product of x and
y is defined by

T Xy = (T2y3 — T3Y2, T1Y3 — T3Y1, T2Y1 — T1Y2)

for the vectors z = (21,72, 23) and y = (y1,y2, y3) in E} [14].

Denote by {T'(s), N (s),B(s)} the moving Frenet frame along the curve
a(s). Then T, N and B are the tangent, the principal normal and the binormal
vector of the curve «, respectively. Depending on the causal character of the non-
null curve «, we have the following Frenet formulae [12, 13]:

T'=kN,N =—xT+7B,B'=1N
(T,T) =(N,N)=1,(B,B) = -1,(T,N) = (I, B) = (N,B) =0

if « is a spacelike curve with a spacelike principal normal N,

T'=kN,N =xT+7B,B'=1N
(I'T)=(B,B)=1,(N,N)=-1,({T,N) =(I,B) = (N,B) =0

if « is a spacelike curve with a timelike principal normal N,

T' =kN,N' = N,B' = —xT — 7B
(T,T) =1,(N,N) = (B,B) = 0,(T,N) = (T, B) = 0, (N, B) = 1

and finally

T'=kN,N =xkT+7B,B'=—-1N
(I'T)=-1,(B,By=(N,N)=1,(T,N) =(I,B) = (N,B) =0

if a is a timelike curve. The functions k = k(s) and 7 = 7(s) are called the
curvature and the torsion of «, respectively.

3. AW (k)—TyPE CURVES IN E}

Let a: I C E — E3 be a unit speed curve in E5. The curve « is a Frenet
curve of osculating order 3 when its higher order derivatives &/(s), o’ (s),a’’(s)
are linearly independent, and o (s),a”(s), o (s),a’" (s) are linearly dependent for
all s € I. To each Frenet curve of osculating order 3 one can associate an frame
{T, N, B} along « called the Frenet frame and curvature functions s and 7.

A regular curve o : I C E — E} is called a W—curve of rank 3, if « is a
Frenet curve of osculating order 3 and the Frenet curvatures k and 7 are non-zero
constants.

In this section, we consider a non-null a curve of osculating order 3 and
investigate conditions to be of AW (k)—type curve of o, in E. Then, we have the
following cases:

Case 1. Let a be a spacelike curve with a spacelike principal normal.
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Proposition 3.1. Let a be a spacelike curve with a spacelike principal normal of
osculating order 3 in E}. Thus, we have

o(s) = T(s),
a’(s) = Drd/(s) =r(s)N(s),
a(s) = DrDrd/(s) = —r*(s)T(s) + &'(s)N(s) + r(s)7(s)B(s),
o"(s) = DrDrDrd/(s) = =3r(s)r'(s)T(s) + (k" (s) = K°(s) + K(s)7*(5)) N (s)

)k (s)
+(2r'(5)7(s) + K()7'(5)) B(s)-
Notation 1. Let us write
(3.1) Ni(s) = &(s)N(s),
(3.2) Na(s) K (s)N(s) + K(s)7(s)B(s),
(3.3) Ns(s) = (k"(s) = &(s) + w(s)7°(5)) N (s)

+(26/(s)7(s) + K(5)7'(5)) B(5).

Corollary 3.1. {o/(s),o/’(s), o (s), e (s)} is linearly dependent if and only if
{N1(s), Na(s), N5(s)} is linearly dependent.

As in Euclidean 3—space, we give the following definition for AW (k)—type
curves in Minkowski 3—space.

Definition 3.1. [1]A regular curve of osculating order 3 in E} is
i) of type AW (1)—type if they satisfy N5(s) =0,
i) of type AW (2) if they satisfy || Na(s)||* Ns(s) = (Ns(s), Na(s)) Na(s),
iii) of type AW (3) if they satisfy || N1(s)||* Na(s) = (Ns(s), Ny (s)) Ni(s).

Theorem 3.1. Let « be a spacelike curve with a spacelike principal normal of
osculating order 3 in E}. Then, a is AW (1)—type curve if and only if .

»

(3.4) K"(s) — K3(s) + k(s)T%(s) =0
and
(3.5) 7(s) = H%(S)(c = constant)

Proof. Let a be an AW (1)—type curve. From Definition 3.1, N3(s) = 0. Then, we
have

(5"(s) = K°(5) + 1(5)7%(5))N () + (26 (5)7(s5) + (5)7'(5)) B(s) = 0.

Furthermore, since N and B are linearly independent, one can obtain (3.4) and
(3.5).The converse statement is trivial. The proof is completed. ]

Corollary 3.2. Spacelike W —curves with spacelike principal normal with the cur-
vature k = || are AW (1)—type curves in Ej.

Theorem 3.2. Let o be a spacelike curve with a spacelike principal normal of
osculating order 3 in E}. Then, a is AW (2)—type curve if and only if .

(3.6)  2(K'(5))*7(s) + k() (5)7'(5) = k(s)K" (8)T(s) — k* ()7 (5) + K*(s)T3(5).
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Proof. Let o be an AW (2)—type curve. From Definition 3.1, || No(s)||* N3(s) =
(N3(s), Na(s)) Na(s). Then, we have

o - [ OGS |,
2(K"(8))37(s) + (K'(3))2k(s)T'(s)
(3.7) + [ 22 (8)K'(8)73(s) — K3(8)T2(s)T'(5) } B(s) (1)
and
(No(s), Na()) Na(5) = [('(5))2K" (5) — (' (5))%3(5)
—(K'(5))%k(s)T2(s) — &/ (5)k?(s)7"(s)7(5)| N (s)
K (8)k" (s) Kk (8) T (s) — k' (s) k* (5) T (5)
(38) + [ —k' () k2 (8) T3 (8) — K3 (8) T2 (8) T/ (5) ] B(s)-(2)

and
2(K'(5))°7(s) + (W'(5))*K(5)7'(5) — 267 (s)K'(5)T 3( )
(3.10) = K'(s)r" (S)H(S)T(S) K (s) 6" (5) 7 (5) — &' (s) &2 (5) 7° () . (4)
If we multiply by H(S)T(S) both sides of (3), we obtain (3.6). The contrary is clearly
established. Thus, our theorem is proved. (Il

Corollary 3.3. Spacelike W —curves with spacelike principal normal with the cur-
vature k = || are AW (2)—type curves in Ej.

Example 3.1. Let a be defined by a(s) = (—gs*, —£5° + 5, 15%) in E}. Then, a

is a AW (2)—type curve with the curvatures k = 7 = 1.

Corollary 3.4. From Corollary 3.2 and Corollary 3.3, every spacelike W —curves
with spacelike principal normal of type AW (2) with the curvature k = |7| are
AW (1)—type curves in Ef.

Theorem 3.3. Let a be a spacelike curve with a spacelike principal normal of
osculating order 3 in E}. Then, a is AW (3)—type curve if and only if

(3.11) T(s) = (c = constant)

_c
r2(s)
Proof. Let o be an AW (3)—type curve. From Definition 3.1, ||Ny(s)||> Ns(s) =
(N3(s), N1(s)) N1(s). Then, we have

[Ny (s)[ Na(s) = [w2(s)K"(s) — K°(s) + K7 (s)72(s)] N(s)
(3.12) + [2/{ (s)K'(s)7(s) + /<a3(s)7"(s)] B(s) (5)
and
(N3(s), N1(s)) Nu(s) = [K*(s)K"(s) — K°(s)
(3.13) +13(s)72(5)]N(s) (6)

By virtue of (5) and (6), we get

262(s)K(s)7(s) + K3(s)7'(5) = 0.
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Thus, we obtain (3.11). O

Corollary 3.5. All spacelike W —curves with spacelike principal normal are AW (3)—type
curves in Ef.

Corollary 3.6. From Corollary 3.4 and Corollary 3.5, we get
AW (1) C AW (2) C AW(3)

for every spacelike W —curves with spacelike principal normal with the curvature
Kk=|1|

For the other cases, the proof can be shown similarly.
Case 2. Let a be a spacelike curve with a timelike principal normal.

Proposition 3.2. Let a be a spacelike curve with a timelike principal normal of
osculating order 3 in E3. Thus, we have

o(s) = T(s),

a’(s) = K(s)N(s),

a(s) = K(s)T(s) + ' (s)N(s) + K(s)7(s) B(s),

a”"(s) = 3r(s)K()T(s) + (K"(5) + K°(5) + K(s)7*(5)) N (s)

3
+(2'(5)7(s) + K(s)7'(5)) B(s)-

Notation 2. Let us write

Ni(s) = K(s)N(s),
Na(s) = w'(s)N(s) + r(s)7(s)B(5),
N3(s) = (K"(s) + &(s) + £(s)7%(5)) N (5) + (26" (5)7(s) + w(5)7'(5)) B(s)-

111

Corollary 3.7. {a’(s),a”(s),a’”(s),a
{N1(s), Na(s), N5(s)} is linearly dependent.

(5)} is linearly dependent if and only if

Theorem 3.4. Let a be a spacelike curve with a timelike principal normal of os-
culating order 3 in E3. Then, o is AW (1)—type curve if and only if .

K"(s) + K3(s) + K(s)T%(5) =0

and .

T(s) = /127(3)(6 = constant).
Theorem 3.5. Let o be a spacelike curve with a timelike principal normal of os-
culating order 3 in E}. Then, o is AW (2)—type curve if and only if

2(k'(5))%7(s) + w(s)r" ()7 (5) = w(s)8" (s)7(s) + K" (5)7(5) + K7 (5)7°(5).

Corollary 3.8. As a result of Teorem 4 and Teorem 5, there are no W—curves of
AW (1)—type and of AW (2)—type.

Theorem 3.6. Let o be a spacelike curve with a timelike principal normal of os-
culating order 3 in EY. Then, o is AW (3)—type curve if and only if

T(s) = I{%(S)

Corollary 3.9. All spacelike W —curves with timelike principal normal are AW (3)—type
curves in Ef.

(c = constant).
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Example 3.2. Let a be defined by
a(s) = (ﬂ Loviny L omve Y200 L v V2, ﬁ)

—S _+_ —e —

e ,—=S$ evo?, - —=e
V3 2v5 3v/5 V3 2v6 V3 3V5
in E}. Then, o is a AW (3)—type curve with the curvatures x = 1, 7 = 2.
Case 3. Let a be a timelike curve.

Proposition 3.3. Let a be a timelike curve of osculating order 3 in E3. Thus, we
have

I
X
N~
V)
=
=
»
=

Notation 3. Let us write

Ni(s) = K(s)N(s),
No(s) = K (s)N(s)+ rk(s)7(s)B(s),
Ni(s) = (K"(s) + £(s) = 6(s)7>(5))N(5) + (26'(s)7(s) + K(s)7'(5)) B(s).

1111

Corollary 3.10. {o/(s), o’ (s), " (s), a (s)} is linearly dependent if and only if
{N1(s), Na(s), N3(s)} is linearly dependent.

Theorem 3.7. Let a be a timelike curve of osculating order 3 in E3. Then, « is
AW (1)—type curve if and only if

K" () + K3(s) — K(s)T%(s) = 0

and
c

T(S) = K,T(S)

(¢ = constant)

Corollary 3.11. W— timelike curves with the curvature x = |7| are AW (1)—type
curves in Ef.

Theorem 3.8. Let o be a timelike curve of osculating order 3 in ES. Then, « is
AW (2)—type curve if and only if

—2('())*7(s) — K(s) ()7 (5) = —r(s)K" (5)7(s) — K" (5)7(5) + 17 (5)7°(5).

Corollary 3.12. W—timelike curves with the curvature x = |7| are AW (2)—type
curves in Ef.

Corollary 3.13. From Corollary 3.11, and Corollary 3.12, every W —timelike
curves of type AW (2)—type with the curvature x = |7| are AW (1)—type curves in
£,

Theorem 3.9. Let a be a timelike curve of osculating order 3 in E3. Then, « is

AW (3)—type curve if and only if

7(s) = ,%T(s)(c = constant).
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Corollary 3.14. All W—timelike curves are AW (3)—type curves in E3.

Example 3.3. Let « be defined by a(s) = (2 sinh s, 2 cosh s, \/35) in F}. Then, a
is a AW (3)—type curve with the curvatures k = 2, 7 = /3.

Corollary 3.15. From Corollary 3.13 and Corollary 3.14, we get
AW (1) c AW (2) c AW (3)

for every W—timelike curves with the curvature x = |7| in E.

4. MANNHEIM PARTNER CURVES OF AW (k)—TYPE IN MINKOWSKI 3—SPACE

Definition 4.1. [10]Let o and a* be two curves in the Minkowski 3—space given
by the parametrizations «(s) and o* (s*), respectively, and let them have at least
four continous derivatives. If there exist a correspondence between the space curves
«a and a* such that the principal normal lines of a coincide with the binormal lines
of a* at the corresponding points of curves, then « is called a Mannheim curve
and a* is called a Mannheim partner curve of a. The pair {a, a*} is said to be a
Mannheim pair.

By considering the casual characters of the non-null curves, it is easily seen
from Definition 4.1 that there are five different types of the Mannheim partner
curves in the Minkowski 3—space. Let the pair {«, @*} be a Mannheim pair. Then,
according to the characters of the curves o and o* we have the following cases [11]:

Case 4. The curve o* is timelike. Then, there are two cases.

e The curve « is a spacelike curve with a timelike principal normal. In this
case, we say that the pair {«, a*} is a Mannheim pair of type 1.

e The curve « is a timelike curve. In this case, we say that the pair {a, a*}
is a Mannheim pair of type 2.

Case 5. The curve a* is spacelike. Then, there are three cases.

e The curve o* is spacelike curve with a timelike binormal vector and the
curve « is a spacelike curve with a timelike principal normal vector. In this
case, we say that the pair {«, a*} is a Mannheim pair of type 3.

e The curve o is spacelike curve with a timelike binormal vector and the
curve « is a timelike curve. In this case, we say that the pair {o,a*} is a
Mannheim pair of type 4.

e The curve o is spacelike curve with a timelike principal vector and the
curve « is a spacelike curve with a timelike binormal vector. In this case,
we say that the pair {«, @} is a Mannheim pair of type 5.

Theorem 4.1. [11]Let « be a curve in E3.

i) o If a is a Mannheim curve of type 1,2 or 5, then the relationship between
the curvature and torsion of the curve « is given as follows:

ut(s) + Ak(s) = 1.
e If o is a Mannheim curve of type 3 or 4, then the relationship is given by
ut(s) — Ak(s) =1,

where A and p are nonzero real numbers.
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i1) Let {a, a*} be a Mannheim pair. Then, we have
a* =a—cN
for a nonzero constant c.

As a result of Theorem 4.1, we have the following corollaries:
Corollary 4.1. Let {a, a*} be Mannheim pair in E3.
i) If the pair {a, a*} is a Mannheim pair of type 1,2,3 or 4, then we have
a’=(1—-ck)T+crB

and
ii) If the pair {o, a*} is a Mannheim pair of type 5, then we have

o’ =(1+ck)T+cTB
where c is a nonzero real number.
Corollary 4.2. Let a be a curve of osculating order 3 in Ef. Then,

i) «is a Mannheim curve of type 1,2 or 5 if and only if there is a nonzero real
number A such that

(4.1) At —K'T)—7' =0
and

it) a is a Mannheim curve of type 3 or 4 if and only if there is a nonzero real
number A such that

(4.2) A(K'T— k7)) =7 =0.

Theorem 4.2. Let o be a Mannheim curve of osculating order 3 in E}.If o is a
AW (1)—type Mannheim curve, then « is of type 2,4 or 5.

Proof. Let a be a AW (1)—type Mannheim curve of type 1 in E?. Then, « is a
spacelike curve with a timelike principal normal. From Theorem 3.4, we have

(4.3) K" () + K3(s) + K(s)T%(s) = 0
and
c
(4.4) T(s) = 205) (¢ = constant).
By differentiating the equation (4.4), we get
2K'(s)
4. '(5) = — L)
(45) (s) =~ e
If we substitute the equations (4.4) and (4.5) in the equation (4.1), we obtain
2
(4.6) k(s) = o
Moreover; from the equations (4.3), (4.4) and (4.6), we find
64
A=
(27¢)?

which gives us A® < 0. Since )\ is a real number, contraction is obtained. Thus, «
can’t be a AW (1)—type Mannheim curve of type 1.
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Now assume that « is a AW (1)—type Mannheim curve of type 2 in E$. Then,
« is a timelike curve. From Theorem 3.7, we have the equations

(4.7) K"(s) + K3(s) — k(s)T%(5) =0

and (4.4). After substituting the equations (4.4) and (4.5) into (4.1), we obtain the
equation (4.6). From the equations (4.7), (4.4) and (4.6), we find

2
A=t—+.
27013
For the other types, the proof can be given similarly. 0

Theorem 4.3. Let o be a Mannheim curve of osculating order 3 in E3.

i) Let @ be a Mannheim curve of type 1. Then, « is a AW (2)—type curve if
and only if

(K'(8))27(5)(2—A6(5)) +A2(8)K ()7 (8) = K(s)K" (5)T(s) +K*(5)T(s) + K (5)T3(s).

i1) Let a be a Mannheim curve of type 2. Then, « is a AW (2)—type curve if
and only if

(K (8))27(8)(—24+Xk(5))=AK2(s)K ()T (5) = —k(8)K" (8)T(s)—k*(8)T(5)+K>(s)T>(5).

i11) Let a be a Mannheim curve of type 3. Then, « is a AW (2)—type curve if
and only if

('(5))77(5)(2+ Ai(5)) = A2 (s) (5)7"(5) = K(s)K" (5)7(s) + " (5)7(5) + K7 (5)7°(5).

iv) Let o be a Mannheim curve of type 4. Then, « is a AW (2)—type curve if
and only if

—(K'(8))*7(8) (246 (8))+A&2(8)K' (8)7(8) = —r ()K" (s)T(8) =K (5)T(8)+K2(5)T3(s).

v) Let @ be a Mannheim curve of type 5. Then, « is a AW (2)—type curve if
and only if

(K'(5))%7(8) (2= k() + A6 (s)K ()7 (5) = K(s)K" (5)7(8)+, K" (s)7(5) + K7 (5)7°(5).

Proof. i) Let a be a Mannheim curve of type 1. From Theorem 3.5, we have
2(r'(5))*7(s) + w(s)'(s)7(s) = K(s)K" (s)7(s) + K1 (s)7(5) + &2 (5)7°(5).

If we substitute (4.1) into the last equation, it is easily seen that

(K'(5))?7(5)(2= Ak(5)) + AR (s)K' (5)7" (s) = K(s)K" (s)7 () + K" (s)7() + K% (5)7% (s).

The converse assertion is trivial. Thus, the proof is completed.
The proofs of the statements i), i), ), and v) in Theorem 3 can be given in
a similar way of the proof of statement 7). O

Theorem 4.4. Let a be a Mannheim curve of osculating order 3 in E. The curve
a is of type AW (3) if and only if « is a circular heliz.

Proof. Let a be a AW (3)—type Mannheim curve of type 1 in E}. Then, « is a
spacelike curve with a timelike principal normal. From Theorem 3.6, we have

(4.8) T(s) = ¢ (¢ = constant).

r2(s)
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By differentiating the equation (4.8) and using the equation (4.1), we find

Su

2
k(s) = — = constant.
3A

bstituting the last equation in (4.8), the following equation is obtained

9NZe
7(s) = 4 = constant.

Since x(s) and 7(s) are nonzero constants, « is a circular helix.

1
[2

3

[4

5

[10

[11

[12

[13

[14

The converse statement is trivial. Hence, theorem is proved.

For the other types, the proof can be given similarly. O
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