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In this study, the burned areas and intensity of forest fires that 
occurred in the Samandağ region of Hatay between September 5-10, 
2020, are mapped. Analyses were carried out using deep learning, 
remote sensing, and satellite data from Sentinel 2. With Sentinel 2 
satellite photos of the research locations, an image dataset for deep 
learning was constructed. Then, using deep learning approaches, a 
deep learning model was developed, trained using the photos in the 
dataset, and successfully tested. Images from Sentinel 2 were used 
to produce the Normalized Burn Ratio(NBR) and Burned Area 
Index for Sentinel 2 (BAIS2) indices using the results of a new deep 
learning model. Calculating the Difference Normalized Burning 
Intensity (dNBR) and Burned Area Index for Difference Sentinel-2 
(dBAIS2) values for the discrepancies between these indices before 
and after the fire allowed for categorization and determination of the 
fire area. The deep learning approach burned area indexes, and 
General Directorate of Forestry (GDF) fire registration slips were 
compared, and it was established that the new deep learning model 
was more effective at locating burned forest areas than the indexes. 
In identifying the burnt forest areas, the new model has a 
proportionate accuracy of 98.36% in the Samandağ study region. 
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Bu çalışmada, 5-10 Eylül 2020 tarihleri arasında Hatay'ın Samandağ 
bölgesinde meydana gelen orman yangınlarının yanık alanları ve 
şiddeti haritalandırılmıştır. Derin öğrenme, uzaktan algılama ve 
Sentinel 2 uydu verileri kullanılarak analizler yapılmıştır. Araştırma 
bölgelerine ait Sentinel 2 uydu fotoğrafları ile derin öğrenme için 
bir görüntü veri seti oluşturulmuştur. Ardından, derin öğrenme 
yaklaşımları kullanılarak bir model geliştirilmiş, bu model veri 
setindeki fotoğraflarla eğitilmiş ve başarıyla test edilmiştir. Sentinel 
2'den elde edilen görüntüler, yeni derin öğrenme modelinin 
sonuçları kullanılarak Normalleştirilmiş Yanma Yoğunluğu (NBR) 
ve Yanık Alan İndeksi (BAIS2) değerleri hesaplanmıştır. Yangın 
öncesi ve sonrası bu indeksler arasındaki farklılıkların 
hesaplanmasıyla Farklı Normalleştirilmiş Yanma Yoğunluğu 
(dNBR) ve Farklı Yanık Alan İndeksi (dBAIS2) değerleri elde 
edilerek yangın alanı kategorize edilmiş ve belirlenmiştir. Derin 
öğrenme yaklaşımı, yanık alan indeksleri ve Orman Genel 
Müdürlüğü yangın kayıt fişleri karşılaştırılmış ve yeni derin 
öğrenme modelinin yanmış orman alanlarını belirlemede indekslere 
göre daha etkili olduğu tespit edilmiştir. Samandağ çalışma 
bölgesinde, yanık orman alanlarının belirlenmesinde yeni modelin 
doğruluk oranı %98,36 olarak hesaplanmıştır. 
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1. INTRODUCTION 
 
This article is based on the findings of the thesis titled 'Comparison of Deep Learning Methods with Burned 
Area Indices in the Detection of Burned Forest Areas: The Case of Hatay.  
 
Forest fires are among the natural events that most significantly affect the global ecosystem. While the 
incidence of fires has increased due to environmental climate changes, many fires are human-induced. The 
rise in the world's population has led to increased utilization of forest areas and a higher demand for forest 
products. Forest fires cause considerable damage to the geographies in which they occur and negatively 
impact all life forms. With climate changes, air temperatures are now frequently exceeding average levels 
compared to previous years, creating favorable conditions for forest fires. In a world where global warming 
has reduced precipitation and led to the formation of deserts, forest fires pose a significant threat to our 
ecosystem. According to the most recent statistics, the annual loss of forest area due to fires has risen to 13 
million hectares [1] In our country, only 1.6% of the total 27 million hectares of forest area is protected [2].  
 
On the other hand, the ecology of the Mediterranean basin has developed significant resilience against 
severe forest fires. In recent years, there has been an increase in the number of forest fires, which has the 
potential to disrupt this balance [3]. Forest fires are one of the most serious dangers threatening natural life 
and are a major cause of economic losses due to the disruption of forestry activities. Additionally, forest 
fires are a significant source of air pollution. 
 
Fires have the potential to adversely affect the natural environment, including flora, water, and air. They 
not only damage the forests in the vicinity but also threaten homes and farms in the area, causing both 
human and material losses [4]. The increase in forest fires complicates fieldwork, hence remote sensing 
techniques are crucial for identifying burned forest areas and formulating an emergency strategy. 
 
The detection and analysis of such fire-affected areas are critical for implementing accurate policies swiftly. 
Consequently, the use of remote sensing methods has gained significant importance in recent years due to 
their speed and cost-effectiveness in detection and data collection, becoming increasingly widespread. 
Remote sensing is a crucial factor in the detection and analysis of forest fires. In countries with vast 
territories like Australia and Russia, identifying fires or determining burn rates using traditional methods is 
very challenging and time-consuming. Therefore, remote sensing is the fastest method for assessing forest 
fires. Any type of earth observation tool capable of collecting data can be used in remote sensing; this tool 
could be an aircraft, satellite, or UAV. 
 
The use of aircraft in remote sensing methods for fighting forest fires can be extremely advantageous from 
many different aspects, from coordinating tactical operations and extinguishing activities to the rapid 
evacuation of the injured and the transport of personnel and materials. In Turkey, forest fires are a common 
occurrence during the summer months, especially in regions surrounding the Mediterranean and Aegean 
seas. Given the magnitudes of recent fires, disaster management requires meticulous attention [5]. 
 
In recent years, satellites have been extensively used for fire detection and analysis [6,7]. Satellites possess 
multiple and wide-range bands, enabling them to perform object classification based on different spectral 
reflectance values. The reflected radiation values from healthy vegetation, burned forest areas, soil, or water 
are distinct. Consequently, forest fires can be easily detected through certain calculations. Indices that 
identify burning or burned areas can be utilized in detection and analysis processes. 
 
Furthermore, with the advancement of computer learning methods like deep learning, fire detection and 
analysis operations have become faster and have shifted towards these technologies. Deep learning 
techniques leverage the multi-spectral data provided by satellites to effectively distinguish between burned 
and unburned areas, enhancing the accuracy and efficiency of fire mapping. These advancements not only 
improve response times but also help in better management and recovery planning in post-fire scenarios.  
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2. RELATED STUDIES  
 
In the past, burned forest areas were identified using ground surveys and maps; however, fires can now be 
rapidly monitored worldwide through remote sensing techniques [8]. 
 
Key and colleagues [9] developed a new index called the Normalized Burn Ratio (NBR) using bands 4 and 
7 from Landsat TM data. This index was applied to data from two fires in Montana's Glacier National Park 
in 1994, and it was found that NBR was more successful in detecting burn severity compared to the 
Composite Burn Index (CBI). 
 
Miller et al. [10] introduced the Difference Normalized Burn Ratio (dNBR) for mapping the burn severity 
of forest areas. This index was tested on 14 fires in California, USA, and its effectiveness was confirmed. 
 
Filipponi [11] developed a new burned area detection index for Sentinel-2 data. This new index was applied 
to a fire in Sicily, Italy, in 2017 and was found to be more successful than the NBR index. 
 
Mpakairi et al. [12] used six commonly employed indices along with Landsat 8-OLI data for two fires in 
northwestern Zimbabwe and classified them using the Random Forest (RF) machine learning algorithm. 
The Optimized Soil Adjusted Vegetation Index (OSAVI) and Normalized Burn Index (NBI) performed 
much better than any other spectral indices considered at both research locations. The Burned Area Index 
(BAI) was the third best performing spectral index. Both OSAVI and NBI showed better performance due 
to adjustments made for soil effects and the inclusion of the blue spectral band to account for atmospheric 
effects. 
 
Tanasse et al. [13] developed a locally adapted multi-temporal two-phase burn area (BA) algorithm. It uses 
shortwave and near-infrared band reflectance measurements from Sentinel-2 MSI and also active fire 
detections by the Terra and Aqua MODIS sensors. Covering an area of approximately 25 million km² in 
Sub-Saharan Africa, burned areas were detected using this algorithm with a spatial resolution of 20 m from 
January to December 2016, marking the first high-resolution BA study using Sentinel-2 for such an 
extensive area. 
 
Llorens et al. [14] developed and applied a technique to estimate the total area damaged by forest fires in 
Spain and Portugal in October 2017. MODIS (250 m) images were compared with the European Forest 
Fire Information System (EFFIS) database. Sentinel-2 and EFFIS showed a strong correlation for 
estimating burn severity as indicated by the separability index (SI) and kappa statistic (k), with all cases 
having SI values higher than one and k values greater than 0.69. This study concluded that Sentinel-2 dNBR 
is a suitable alternative to the EFFIS fire parameter, particularly in situations where it's crucial to identify 
details within the fire itself. 
 
Wang et al. [15] developed a new method involving the Vegetation Difference Index (VDI) and Burn 
Scarring Index (BSI) models for calculating burned crop areas. The VDI model can significantly reduce 
the confusing effect of background information related to vegetation (forests and grasslands), water bodies, 
and buildings. The combination of VDI and BSI allows for the reduction of the influence of non-agricultural 
information by VDI, thus enhancing the accuracy and speed of the BSI model. The effectiveness of the 
VDI and BSI models was tested for a winter wheat planting area in Central China. 

 
Ramo et al. [16] evaluated how four widely used remote sensing classification algorithms—Random Forest 
(RF), Support Vector Machine (SVM), Neural Networks (NN), and a well-known decision tree method 
(C5.0)—performed. Over 130 Landsat images were used to compile a database of burned and unburned 
pixels for training purposes. Due to the burned class constituting less than one percent of the total, the 
resulting database was found to be highly imbalanced. RF showed the best performance compared to 
reference data for the remaining regions (Angola, Sudan, and South Africa). In a study analyzing forest 
fires in the Manavgat region of Antalya province in 2021, Arıkan et al. [17] used the Burned Area Index 
(BAI), Relative Burn Ratio (RBR), Normalized Burn Ratio (NBR), Modified Soil Adjusted Vegetation 
Index (MSAVI), Normalized Vegetation Index (NDVI), and Soil Adjusted Vegetation Index (SAVI). 
Subsequently, Machine Learning (ML) classification tools such as Random Forest (RF) Algorithm, Support 
Vector Machine (SVM), and Classification Regression Tree (CART) were used to rank the data. The results 
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showed that the Random Forest (RF) was the most accurate algorithm with an overall accuracy of 98.57%, 
while Support Vector Machines (SVM) were the least accurate method. 
 
Seydi et al. [18] utilized the Deep Siamese Morphological Neural Network (DSMNN-Net) architecture, 
whose main theme is change detection. The proposed network integrates multi-scale convolution layers 
with morphological layers to generate deep features. The effectiveness of this approach was evaluated on 
two fire-damaged areas in Australian forests. The method, using multispectral Sentinel-2 and hyperspectral 
PRISMA datasets, found a general accuracy index of 98% and a Kappa value over 0.9. 
 
Belenguer-Plomer et al. [19] mapped burned areas (BA) using a deep learning approach that includes radar 
and optical data from Sentinel-1 and Sentinel-2 sensors. The observed land cover class and data type were 
primary criteria to determine the optimal CNN size and data normalization method. Using a well-defined 
CNN within a joint active/passive data combination, a DC value of 0.57 was found for Sentinel-1 and a DC 
of 0.7 for burned area mapping based on Sentinel-2, similar to or slightly higher in accuracy than previous 
approaches based on Sentinel-2. 
 
A multitude of methods have been developed to identify burned areas using satellite images. Most of these 
solutions require time-consuming preprocessing, and deep learning approaches have not yet been 
extensively explored [20]. Knopp et al. [20] combined current advancements in sensor technology and 
techniques to provide an autonomous process chain for burned area segmentation based on deep learning. 
A U-Net architecture was used to train a convolutional neural network (CNN). The final segmentation 
model had a general accuracy of 0.98 and a kappa correlation of 0.94. Arruda et al. [21] developed a new 
method for mapping burned areas in Brazil's Cerrado region using a Deep Learning algorithm to analyze 
Landsat images via Google's Earth Engine and Cloud Storage. The mapped areas were compared with the 
INPE Burned Area Product (30 m resolution) and the MODIS MCD64A1 Burned Area Product (500 m 
resolution), finding an accuracy rate of 97%. 
 
Hu et al. [22] demonstrated how deep learning (DL) models can autonomously map burned areas using 
single-time multi-band images. Sentinel-2 and Landsat-8 data were evaluated using machine learning 
techniques, and according to validation results, DL algorithms outperformed machine learning approaches. 
This study showed that combining contextual information from fire-sensitive spectral bands and geographic 
data allows deep learning algorithms to map burned spots effectively.    
 
Ghali and Akhloufi [23] provided a comprehensive review of deep learning models, emphasizing the 
effectiveness of CNNs, U-Net, and LSTMs for fire monitoring. Their findings indicate that CNN-based 
architectures achieve superior accuracy in fire detection, while hybrid models such as CNN-LSTM offer 
improved wildfire spread prediction. 
 
In addition to these remote sensing-based methods, recent research highlights the increasing effectiveness 
of deep learning methods in promptly and accurately detecting forest fires. Within this context, 
Sathishkumar et al. [24] integrated a “Learning Without Forgetting” (LwF) approach into deep learning-
based image classification models, proposing a novel framework for forest fire and smoke detection. Their 
study employed various pre-trained convolutional neural network (CNN) architectures, including VGG16, 
InceptionV3, and Xception, achieving an accuracy rate of approximately 98.72% with the Xception model. 
Furthermore, to address the issue of “catastrophic forgetting”—the loss of previously acquired knowledge 
when models are trained on new data—the authors utilized LwF. This technique not only preserved the 
performance on the original dataset but also yielded high accuracy on an additional fire/smoke dataset 
(BoWFire). As a result, this method effectively maintains performance on previously learned tasks while 
also learning new tasks, thereby enhancing both the accuracy and generalization capability of forest fire 
detection [24]. 
 
Chen et al. [7] conducted a comparative study using Sentinel-1B and 2A imagery and found that the Support 
Vector Machine (SVM) achieved the highest accuracy (93.52%) in the pre-fire period when combined with 
spectral and NDVI indices, whereas the Random Forest (RF) algorithm outperformed others during the fire 
event, reaching an overall accuracy of 95.43% when utilizing spectral and Normalized Burn Ratio (NBR) 
features. Moreover, in the post-fire stage, SVM again exhibited superior performance (94.97%) when 
incorporating spectral and radar backscatter coefficients, underscoring the importance of selecting optimal 
machine learning algorithms for different fire periods. 



 Reha PAŞAOĞLU, Ahmet Ertuğrul ARIK, Nuri EMRAHOĞLU 

 Ç.Ü. Müh. Fak. Dergisi, 40(1), Mart 2025 - 37 - 

3. MATERIALS AND METHODS  
 
3.1. Study Area 
 
In this study, the forest fire that occurred in the Samandağ region of Hatay between September 5 and 10, 
2020, was analyzed, as shown in Figure 1. Information on the fire-affected areas was obtained from the 
Ministry of Agriculture and Forestry and utilized in this research. 
 
According to the Ministry's reports, the fire in the Yeniköy area of the Samandağ district, Hatay province, 
was brought under control after five days. High temperatures and low humidity were among the key factors 
that exacerbated the fire's spread. These environmental conditions not only influenced fire behavior but 
also played a crucial role in shaping the strategy and effectiveness of the firefighting efforts. Given the 
impact of such factors, accurate post-fire analysis is essential for understanding the severity of the fire and 
guiding future prevention measures. 
 
To achieve this, remote sensing techniques were utilized to detect and analyze the burned areas. Fire indices, 
such as the Normalized Burn Ratio (NBR), offer valuable insights by highlighting changes in vegetation 
and soil conditions due to fire. These indices are particularly useful in assessing the extent and intensity of 
the damage in a quantitative manner, providing a clearer understanding of the affected area. 
 

 
Figure 1. Samandağ study area 

 

 
Figure 2. Samandağ fire satellite data before and after 

 
In Figure 2, the differences between the pre-fire and post-fire satellite data are easily noticeable, with the 
burned areas clearly distinguishable in dark brown on the second image. 
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3.1.1. Fire Indices Used During Fire Area Detection 
 
3.1.1.1. NBR and dNBR 
 
The Normalized Burn Ratio (NBR) utilizes Near-Infrared (NIR) and Short-Wave Infrared (SWIR) bands 
and is sensitive to changes in live vegetation, moisture content, and specific soil conditions [10]. Thus, the 
NBR index is used for detecting burned areas, and it is expressed using mathematical formulas derived 
from NIR and SWIR bands [10,25]. The value range for the NBR index spans from -1 to +1. 
 

𝑁𝐵𝑅 ൌ
  

ሺ୒୍ୖିୗ୛୍ୖሻ 
ሺ୒୍ୖାୗ୛୍ୖሻ 

 (1) 

 
To classify the severity of burned areas, the difference Normalized Burn Ratio (dNBR or ΔNBR) index is 
used, which is calculated by subtracting the pre-fire NBR index values from the post-fire NBR index values 
[26]. This index provides a clear distinction in the severity of the fire impact. 
 
The dNBR formula is expressed as: 

 
𝛥𝑁𝐵𝑅 ൌ  𝑁𝐵𝑅 ൫𝑃𝑟𝑒௙௜௥௘൯–  𝑁𝐵𝑅 ൫𝑃𝑜𝑠𝑡௙௜௥௘൯ (2) 

    
The use of dNBR is particularly effective because it quantifies the changes in reflectance characteristics 
before and after a fire, reflecting the degree to which the fire has altered the landscape. A higher dNBR 
value typically indicates greater fire severity, as more vegetation loss and soil exposure or charring are 
detected. The dNBR values are classified into categories to represent different levels of burn severity, from 
low to high, which helps in planning restoration activities and evaluating fire management effectiveness 
[10]. This method is widely utilized in ecological studies and forest management to assess fire damage and 
monitor the ecological recovery of burned areas over time. 
 
Theoretically, the range of the difference Normalized Burn Ratio (dNBR) should be between -2 and +2, but 
in practice, the range most commonly associated with burned areas is between 0.1 and 1.35. Areas that are 
unburned typically exhibit dNBR values between -0.1 and 0.1 [27,28]. 
 
3.1.1.2. BAIS2 and dBAIS2 
 
Filipponi developed a new approach called BAIS2 (Burned Area Index for Sentinel-2) based on the rich 
band resolution provided by Sentinel-2 data, accurately detecting burned areas [11]. This method was first 
employed by Filipponi in 2018. It is calculated using the following formula: 
 

𝐵𝐴𝐼𝑆2 ൌ ቆ1 െ ට஻଺∗஻଻∗஻଼஺

஻ସ
ቇ ∗ ቀ

஻ଵଶି஻଼஺

√஻ଵଶା஻଼஺
൅ 1ቁ   (3) 

 
Where B4 (0.665 µm), B6 (0.740 µm), B7 (0.783 µm), B8A (0.865 µm) and B12 (2.190 µm) are the spectral 
bands of the Sentinel 2 satellite image [29]. 
 
𝐵𝐴𝐼𝑆2ሺ𝑑𝐵𝐴𝐼𝑆2ሻ ൌ 𝐵𝐴𝐼𝑆2ሺ𝑃𝑟𝑒ி௜௥௘ሻ– 𝐵𝐴𝐼𝑆2 ሺ𝑃𝑜𝑠𝑡ி௜௥௘ሻ  (4) 
 
The BAIS2 value range for burn signs is from -1 to 1, while the range for actively burning flames is from 
1 to 6. It is possible to choose between various BAIS2 value thresholds to reflect various fire intensity 
densities. The available numbers have been chosen as they have been found to offer consistent results for 
fires in locations mostly located in the Mediterranean Sea. 
 
3.1.1.3. NDWI 
 
The Normalized Difference Water Index (NDWI), developed by McFeeters, is a tool used to enhance the 
detectability of water bodies in satellite imagery by leveraging the differential reflectance in the green and 
near-infrared (NIR) bands [30,31].This index effectively distinguishes water by increasing the reflection 
amount in the green band and decreasing it in the NIR band, making water bodies stand out due to their 
unique spectral properties. 
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The formula for calculating NDWI is as follows: 
 

𝑁𝐷𝑊𝐼 ൌ
ሺீ௥௘௘௡ିேூோሻ

ሺீ௥௘௘௡ାேூோሻ
 (5) 

 
Where "Green" refers to the wavelength range that covers green light, and "NIR" denotes the near-infrared 
spectrum. For the Sentinel-2 satellite, the Green is represented by Band 3 (B3), and NIR by Band 8 (B8) 
[32,33]. 
 
The NDWI values range from -1 to 1, with positive values typically indicating the presence of water. This 
index is particularly valuable for creating water masks in remote sensing applications, enabling the 
straightforward exclusion of water areas from land analysis. In your study, the NDWI index was utilized to 
identify water areas, which were easily masked out from the rest of the imagery, facilitating the focus on 
terrestrial features and phenomena without the interference of water bodies. This method is crucial for 
accurate environmental monitoring and management, particularly in areas where water presence 
significantly influences the ecological or hydrological dynamics. 
 
3.2. Method 
 
3.2.1. Obtaining Satellite Images 
 
Satellite data of the study areas were obtained by downloading Sentinel 2D satellite images from the 
Copernicus Open Access Hub of the European Space Agency (https://scihub.copernicus.eu). The closest 
time to the fire events and the clearest satellite images in terms of cloud cover were selected. The pre-fire 
and post-fire  
 
Sentinel 2D satellite images of Samandağ study areas were selected and downloaded from the European 
Space Agency open access data. 
 
Table 1 Study area satellite data 

Study 
area 

Satellite image 
Percent 

cloudiness (%) 
Image 

acquisition date 

Samandağ 
Study area 

S2B_MSIL2A_20200828T081609_N0214_R121_T36SYF 6.622 28/08/2020 

S2B_MSIL2A_20200917T081609_N0214_R121_T36SYF 12.727 17/09/2020 

 
Satellite data for the study areas are given in Table 1 Image acquisition dates and cloudiness percentages 
of the data are indicated. Pre-fire and post-fire images were selected to provide the best view of the study 
area. It was important that there were few areas in the fire areas that would be obstructed by clouds. Clouds 
and cloud shadows greatly affect the results. 
 
3.2.1.1. Fire Indices Application Steps 
 
Cloud and Water Masking 
 

In order to minimize classification errors in fire study areas and to obtain accurate Fire indices results, cloud 
and water masking operations were performed on the images. The effects of the atmosphere should also be 
taken into account when determining the appropriate ground reflectance value for satellite imagery [26].  
These operations were performed with the help of Snap 7.0 application. In order to perform cloud masking 
in pre-fire and post-fire images, scl_cloud_medium_proba, scl_cloud_high_proba, scl_thin_cirrus cloud 
mask bands from Sentinel 2 band data were collected using the BandMath operator with the Snap 7.0 
application, and a new cloud mask was created by specifying areas with pixel values less than 255 as black 
and pixel points greater than 255 as white in the new image band of the collection. 
 

In the new band created separately for the pre-fire and post-fire images, the image areas containing clouds 
were defined as white and the other areas were defined as black. Normalized Difference Water Index 
(NDWI) was used to mask the water areas in the images. 
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After finding the water areas for the pre- and post-fire images, a new band named "water_mask" was 
created. The water_mask band was then combined with the cloud masks to create a new band named 
"cloud_water_mask".   
 

This band of cloud and water masks was subtracted from the new image while finding the dNBR index. 
 
Image Preprocessing 

 
The resolution of the thirteen bands that make up the Sentinel-2 products is not the same everywhere. Since 
many operators do not accept data with bands of different sizes, the first step for us is to resample the bands 
so that they have the same resolution level. In the sampling process, using the "Resample" operator with 
the Snap 7.0 application, the images of the study areas were resampled to a resolution of 10 meters using 
the bilinear sampling method according to B2 at a resolution of 10 meters.  
 
In the second step, the "Subset" operator was used again with the Snap application to cut the previously 
selected study areas according to a geographic coordinate polygon and by selecting the bands to be used. 
This operator is used in the process of segmenting a data product along spatial or spectral dimensions. 
Subsets of the area can be specified by pixel coordinates or a geographic polygon.  
 
During this sampling process, bands B3, B4, B6, B7, B8, B8A, B12, cloud_mask and water_cloud_mask 
were selected and cut according to a polygon with geographic coordinates created for the study area.  

 
Fire Index Calculations 
 
Normalized burn rate (NBR) is the most widely used statistic for burn area and burn severity mapping 
produced from satellite data. In our study, in the first step, NBR and dNBR index values were calculated 
using pre-fire and post-fire satellite images for fire zone study areas and fire areas were identified and 
located. 
 
In the second step, the BAIS2 and dBAIS2 indices, called the Burned Area Index for Sentinel-2 developed 
by Filipponi, were calculated for the images of the study areas and fire zones were identified 
 
3.2.2. Deep Learning Implementation Steps 
 
3.2.2.1. Image Pre-Processing 
 
Post-fire satellite images of the fire zones study areas were resampled according to the B2 Band with a 
resolution of 10 m with the help of snap 7.0 application. For this sampling process, all bands were selected 
using the "Resample" operator. Unlike the fire index calculations, only the post-fire satellite image was 
used. In the next step, using the subset operator, the regions previously selected as the study area were cut 
by selecting all bands (B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B11 and B12) according to the polygons 
with geographic coordinates. 
 
3.2.2.2. Creation of Deep Learning Data Set 
 
In the process of creating the data set for the deep learning model, burnt and unburnt areas were determined 
by selecting the areas affected by the fire and the areas not damaged by the fire with geographical coordinate 
polygons with the help of the Snap 7.0 application. The pixels selected with polygons were then cut using 
the subset operator with the Snap 7.0 application and converted to data in tiff format. Selected areas are 
clearly seen in Figure 3 500 geographically coordinated polygons from burned areas and 300 from unburned 
areas were cut and prepared for the data set. The selection of pixels in the data set was made precisely to 
prevent classification errors. 
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Figure 3. Selection of burnt and unburnt areas 

 
3.2.2.3. Creating a Deep Learning Model 
 
The deep learning model was coded in Python programming language using TensorFlow and Keras libraries 
with Spyder 5.0 application on Anaconda application platform. While creating the deep learning model, we 
tried to create a model that we can use the data in our study in the most efficient way. The deep neural 
network model we created is input layer with 12 nodes, 5 hidden layers with 12 nodes per layer and output 
layer consists of a node. In our model, the data of the satellite image Since 12 bands were resampled after 
image preprocessing, nodes representing all bands were created in the input layer. Figure 4 shows the model 
in detail. In the deep learning model, Relu function was used in the hidden layers and sigmoid function was 
used as activation function in the output layer. 
 
Adam (Adaptive Moment Estimation) optimization was used as the optimization algorithm due to its 
success and ease of application in updating the weights when working with large data and parameters in 
deep learning. MSE (Mean Squared Error) was used as the loss function for the losses in the deep learning 
model. 
 

 
Figure 4. Deep learning model 

 
3.2.3. Training and Testing a Deep Learning Model 
 
For training, the images in the previously created dataset were processed using TensorFlow and Keras 
libraries in the Python programming language and then fed into the deep learning model. The maximum 
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number of training epochs was set to 300 as the most suitable for our model; however, this value may vary 
depending on the model architecture and dataset. 
 
To prevent overfitting, an early stopping mechanism was implemented in Python, ensuring that training 
halts when performance stabilizes. Overfitting can negatively impact model performance by reducing its 
generalization ability. The dataset was split into 70% for training and 30% for testing to evaluate the model 
effectively. During testing, the trained model was loaded and tested using a Python-based program, utilizing 
TensorFlow and Keras libraries once again. 
 
The model’s training performance is visualized in Figure 5 and Figure 6. Figure 5 presents the accuracy 
graph, demonstrating the model’s ability to classify burned and unburned pixels. The accuracy improves 
rapidly in the initial epochs and gradually stabilizes near 1.0, indicating successful learning. Figure 6 depicts 
the loss graph, representing the pixel-wise classification error between predicted and actual 
burned/unburned areas. The decreasing loss values over epochs suggest that the model effectively 
minimizes classification errors. The ‘Loss’ curve corresponds to the training dataset, while ‘val_loss’ 
represents the validation dataset. Together, these figures confirm the model’s convergence and 
effectiveness in distinguishing burned regions. 
 

 
Figure 5. Accuracy graph for the training process showing model performance over 300 epochs 

 

 
Figure 6 Loss graph for the training process showing model performance over 300 epochs. The loss 

represents the pixel-wise classification error between the predicted and actual burned/unburned areas, 
indicating the model’s accuracy in distinguishing between these classes 

 
3.2.4. Comparison of Deep Learning and Fire Indices with General Directorate of Forestry Data 
 
In the last step of the study, the deep learning and fire index data were compared with the data in the fire 
registration slips obtained from the General Directorate of Forestry. The General Directorate of Forestry 
data was taken as the success criterion. The results of GDF data, fire indices and deep learning method were 
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evaluated according to their proportional overlap rates. In addition, the data found with ArcGIS PRO 2.7 
application were converted into GeoTiff format and mapped spatially on the hybrid map and visually 
evaluated. Areas outside the fire zones and misclassifications were observed again on the map and their 
success was evaluated. 
 
4. RESULTS AND DISCUSSION 
 
4.1. Fire Indexes and Deep Learning Model Results: Samandağ Fire Findings 
 
The images of the study areas were processed according to the dates of occurrence of the fires and fire 
indices were applied, and then the burned areas were detected with the newly created deep artificial neural 
network model. 
 
4.1.1. dNBR 
 
The NBR and dNBR indices were first applied for the Samandağ fire, as shown in figure 7. Cloud and water 
masking were applied to avoid affecting the results of the fire indices.  
 
In the first step, the NBR index was applied on the pre-fire image and then applied on the post-fire image. 
As a result of these processes, two new bands named NBR (Before Fire) and NBR (After Fire) were formed. 
The dNBR value was calculated via the new bands and according to the burn severity in the Samandağ 
study area, the amount of high post-fire regeneration was 14.20 hectares, low post-fire regeneration was 
41.85 hectares, unburned area was 9638.20, low burn severity was 789.90 hectares, medium/low burn 
severity was 582.10 hectares, medium/high burning intensity was found to be 687.30 hectares and high 
burning intensity was found to be 1880.40 hectares. dNBR results are given in Table 2.  
 
Additionally, Figure 8 provides a detailed visualization of the dNBR index, illustrating the spatial 
distribution of burn severity (low, moderate/low, and high), helping to assess fire impact. 
 

 
Figure 7. Samandağ study area a) NBR index b) dNBR index result 

 
Table 2. Samandağ forest fire dNBR index results 

Result dNBR (hectare) 

Enchanged regrowth,high(post-fire) 14.20 

Enchanged regrowth,low(post-fire) 41.85 

Unburned 9638.20 

Low severity 789.90 

Moderate/Low severity 582.10 

Moderate/High severity 687.30 

High severity 1880.40 
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Figure 8. Samandağ study areas DNBR detailed index result 

 
4.1.2. dBAIS2 
 
Calculations for our other fire area identification indices, BAIS2 and dBAIS2, were also performed on pre- 
and post-fire images, as shown in Figure 9. These calculations generated the BAIS2 (Before Fire) and 
BAIS2 (After Fire) bands, from which the dBAIS2 index was derived to determine the burned area. 
 

 
Figure 9. Samandağ study area a) BAIS2 index b) dBAIS2 index result 

 

Figure 10 provides a geographic representation of the burned area, highlighting the extent of fire damage 
for clearer assessment. According to the dBAIS2 index, a total of 3528.60 hectares of burned land was 
identified in the Samandağ study area. 



 Reha PAŞAOĞLU, Ahmet Ertuğrul ARIK, Nuri EMRAHOĞLU 

 Ç.Ü. Müh. Fak. Dergisi, 40(1), Mart 2025 - 45 - 

 
Figure 10. Samandağ study areas detailed dBAIS2 index result 

 
4.1.3. Our Deep Learning Model 
 
With the new deep learning model designed, the image of the study area was classified as burned and 
unburned areas using the training dataset created with only post-fire data from the Samandağ study area, as 
shown in Figure 11. The accuracy rate of the new model was found to be 98.36%. According to the results 
found with the deep learning method, 3605.15 hectares of burned area was identified in the Samandağ study 
area. 
 

 
Figure 11. Samandağ region our deep learning model result 
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For the Samandağ study area forest fire, the dNBR index is 3939.70 hectares, the dBAIS2 index is 3528.60 
hectares and 3605.15 hectares of burnt forest area is calculated with the deep learning model. When we 
look at these values, considering the GDF (General Directorate of Forestry) data, which is 3664.9, as a 
criterion, dNBR index calculated 274.80 hectares more burned area, dBAIS2 index calculated 136.3 
hectares less burned area and deep learning data calculated 59.75 hectares less burned forest area when 
compared with GDF data. The study area is quite large compared to ordinary fires. dNBR index overlaps 
91.50%, dBAIS2 index overlaps 96.28%, deep learning model overlaps 98.36%. According to these values, 
the fact that the deep learning model finds values closer to the GDF data shows that it provides more 
consistent and accurate estimates than other indices.  
 

As summarized in Table 3, these values indicate that the deep learning model provides more consistent and 
accurate estimates compared to other indices. 
 
Table 2. Samandağ fire district burning rates 

Samandağ forest fire 

 dNBR index dBAIS2 index Deep learning model 
General directorate of 
forestry (GDF) data 

Burnt area 
(Hectare) 

3939.70 3528.60 3605.15 3664.9 

 
5. CONCLUSION AND SUGGESTIONS 
 
In this study, a new deep learning model was compared with conventional burned area indices (dNBR and 
dBAIS2) to detect forest fire damage in Hatay’s Samandağ region using Sentinel-2 satellite data. The 
findings demonstrated that the deep learning approach yielded a higher accuracy rate, with a near 98.36% 
match against the General Directorate of Forestry (GDF) records, surpassing the dNBR and dBAIS2 
indices. These results highlight the capacity of deep learning algorithms to more effectively capture and 
distinguish complex spectral signatures in burned and unburned surfaces, particularly when integrated with 
Sentinel-2’s fine spatial and temporal resolution. By leveraging information from multiple bands, the deep 
learning model mitigated classification errors more robustly than traditional index-based methods. 

 
The improved accuracy and reliability of the deep learning method bear significant implications for disaster 
response and forest management. Rapid and accurate assessment of burned areas is critical in devising 
immediate remediation strategies, guiding reforestation efforts, and optimizing resource allocation during 
wildfire emergencies. Moreover, the temporal proximity of satellite acquisitions to fire events was crucial 
in reducing observational gaps; thus, integrating real-time or near-real-time data from drones and ground 
sensors could further strengthen early detection and damage quantification. Expanding the model’s training 
datasets with diverse geographical regions and vegetation types would also enhance its generalizability. 
Incorporating a wider range of advanced machine learning architectures, such as convolutional neural 
networks (CNNs) or attention-based models, could provide even more detailed classifications of burn 
severity levels and expedite post-fire recovery planning. Consequently, this study underscores the growing 
importance of deep learning techniques in wildfire monitoring, emphasizing their role in developing more 
responsive and data-driven forest management policies. 
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