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Abstract

This paper investigates the coset complexes of p-subgroups in finite groups. Given a
finite group G' and a prime p, we define €,(G) as the poset of all cosets of p-subgroups
of G. We construct a probability function P,(G,s) with group-theoretic connections,
strengthen the congruence formula of the p-local Euler characteristic of 6,(G), and analyze
the connectivity of €,(G).
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1. Introduction

All groups considered in this paper are finite. Let G be a group and p a prime. Given
a positive integer s, we write

(G, 38) = |{(91,,95) | gi € G,1 <i<sand (gi,....,gs) is a p-group}|.

Then a probability function that randomly selects s-elements from G to generate p-
subgroups can be defined by

op(G,s)
P,(G,s) = ———.
8 GJ*
Obviously, G is a p-group if and only if P,(G,s) = 1. For a prime p and a group G, we
denote by 8,(G) the poset of all nontrivial p-subgroups of G. Let

5p(G)={PLN Py NPy | P € Syl,(G) forall 1 <i<s, and s >1}
be the set of all intersections of some Sylow p-subgroups of G.

Theorem 1.1. Let G be a group and p a prime. Suppose that G is not a p-group. The
probability function Py(G,s) is given by:
u(H, G) u(H, G)
Py(Gs)=~ )

nes @y 1€ I (e |G AP

where s the Mobius function of the poset 8,(G) U {1,G}.
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It is easily observed that P, (G, s) belongs to the ring of finite Dirichlet series
C[1/287 1/357 1/587 o ']a

which is a unique factorization domain and it is interesting to study the factorization of
P,(G,s) as in [1,2]. We denote by |G|, the largest positive integer that is coprime to p
and divides the order of the group G. Theorem 1.1 implies that 1/|G|[}, divides Pp(G, s)
for each finite group G and each prime p. Throughout this paper, we define

Z,(G,s) = |Gl Py(G, 5).

In fact, we can observe that Z,(G, s) € Z[1/p®], that is, Z,(G, s) is a polynomial function
of 1/p® with integer coefficients.
In [3], we denote by

¢p(G) ={Hz | H is a p-subgroup of G,z € G}

the set of all right cosets Hz with p-subgroups H (including the identity subgroup) of G.
Let A%,(G) be the order complex of €,(G). We study the p-local Euler characteristic of
A%,(G), which is defined by

_ x(6(G))
Xp(G) = W7

where x(%,(G)) denotes the Euler characteristic of A%, (G).
It easily follows from [3, Theorem A] that

XP(G) = ZP(G7 —1).

It is worth noting here that if G is p-closed then x,(G) = 1, and the converse is not
true in general, for example, G = S3 X S3 and p = 2 (see detail in [3, Theorem C]). Here
we give a description on p-closed groups and p-TI-groups G with the function Z,(G, s).
Recall that for a prime p, a group G is said to be a p-TI-group if for every g € G, either
PNPI=1or P= P9 where P is a Sylow p-subgroup of G. Such class of groups has
been described in [5, 8].

Theorem 1.2. Let G be a group and p a prime. Then

1) 7,(G,s) =1 if and only if G is p-closed;
P
(2) Z,(G,s) =np — Tfé—? if and only if G is a p-TI-group.

where ny, is the number of all Sylow p-subgroups of G.

In [3, Theorem D], we prove that x,(G) = 1 (mod p?), where p? is the smallest index
of the intersection of two distinct Sylow p-subgroups P, @ of G in P. In fact, we can show
a slight further result.

Theorem 1.3. Let p be a prime and let G be a non-p-closed group. Then
Xp(G) = |Sy1,(G)]  (mod p™),
where p? = min{|P : PN Q|| P,Q € Syl,(G) with P # Q}.

In [3, Theorem B], it is shown that a group G is p-closed if and only if %,(G) has exactly
|G|,y connected components. Denote the set of connected components of the poset €, (G)
by m0%,(G), for which a detailed definition can be found in Section 4. In fact, we have

Theorem 1.4. Let G be a group and let P be a Sylow p-subgroup of G for some prime p.
Then |mo6,(G)| = |G : PY|, where P = (P*|x € G), the normal closure of P in G.
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2. Probability function P,(G, s)
Let % be a finite poset and denote by
(€)={(z,y) €e € x€ |z <y}

the subset of € x € consisting of all pairs x,y in € with = < y. Recall that the Mobius
function p of € is a function from I(%) to Z such that for each pair (z,y) € I(%),

Z,uxz-é:vy Z,uzy

r<z<ly r<z<ly

where 0(x,y) =1 if z = y; and §(z,y) =0 if 2 < y.
The following lemma was described in [4, Theorem 2.3]. For the sake of completeness,
we present a proof.

Lemma 2.1. Let X be a poset consisting of some subgroups of a group G such that G ¢ X
and all meets of some members of X exist in X. Let pu be the Mébius function of X =
XU{G}. Let H € X with n(H,G) # 0. Then H is the meet of a certain number of
mazimal members of X.

Proof. Assume that H is not the meet of a certain number of maximal members of X.
We work by induction on |G : H|. Let M be the meet of all maximal members of X which
contain H. Then we have H < M. Write Y = {K € X | H < K and u(K,G) # 0}.
For each K € Y with Y # G, applying the induction, we get that K is the meet of some
maximal members of X. Note that such maximal members also contains H. Hence M < K
by the choice of M. Now, by the definition of u,

- > wK.G=- > ukKQG)

H<KeX H<KcY
- > wWKG=- > wKG) =0
M<KeY M<KeX

O

Proof of Theorem 1.1. We may assume that G is not a p-group and write X = §,(G)U
{1} and X = X U {G}. Recall that ¢,(G,s) is the number of s-tuple elements in G
generating p-groups. For K € X, we set
Yp(K,s) = [{(k1,-- ,ks) | ki € K and K = (k1,--- , ks) is p-group}|.
Note that ,(G, s) = 0 as G is not a p-group. For each K € X, by definition,
¢p(K7 S) = Z wp(Hv S)’
H<K in X
Note that the above equation also holds for K = G as 9,(G,s) = 0. Applying Mobius
inversion formula [9, Proposition 1.2.5], we obtain that
wp(Ka 3) = Z ¢p(H7 S)IU’(H7 K)7
H<K in X
where p is the Mébius function on X. In particular, for K = G, it follows that
0:¢p(G73) = Z ¢p(H7 S)M(Hv G) = ¢p(G7 8) + Z QSP(H? S)IU(H7 G)7
H<G in X Hex

as Yp(G,s) = 0. For each H € X, H is a p-group, which implies that ¢,(H,s) = |H|* by

definition. Hence

- Z ¢P(H> S)M(Ha G) = - Z :U(H7 G)‘H’S

HeX HeXx



4 H. Gu, H. Meng, X. Guo

Then it easily follows from that

_ ¢p(Ga S) _ (Hv G) _ H(Ha G)
Pp(G,5) = IGls |G : H|s ) |G H|s

HeX He,(G

The last equation follows from Lemma 2.1.
O

Proof of Theorem 1.2. We will first prove Part (1). If G is p-closed, J,(G) contains
only the Sylow p-subgroup of G. It easily from Theorem 1.1 and the definition of Z,(G, s)
that Z,(G,s) = 1, as desired. Conversely, we may assume that Z,(G,s) = 1. If G is not
p-closed, then, by Theorem 1.1,

p(H, G) p(H, G)
1=7,(G,s) =— Z G HJs - Z |G HJ? +|Sy1p(G)|’
Hel(q) ' lp HeT,(Q)\Syl, (@) ' " 1P

where p is the Mobius function of the poset 8,(G) U {1,G} and pu(H,G) = —1 for H €
Syl,(G). Comparing the coefficients of Z,(G,s) as a polynomial of 1/p®, we conclude
| Syl,(G)| =1, which is a contradiction. Hence G is p-closed, as desired.

Next we show the sufficiency of Part (2). If G is p-closed, n, = 1. As in the sufficiency
proof of Part (1), Z,(G, s) = 1 = n,, as required.

Assume G is not p-closed. Since G is a p-TI-group, J,(G) = Syl,(G)U{1}. Consequently,
according to Theorem 1.1,
(H,G) u(1,G)

ZP<G7S):_ . s — s
. G H Gl

HeD,

where p is the Mobius function of the poset 8,(G) U {1,G} and pu(H,G) = —1 for H €
Syl,(G). By definition of 1 and Lemma 2.1,

w(l,G) = — Z (K, G) =— Z p(K,G)—1=mn,—1.
1<K €S8, (G)U{G} 1<K€T,(G)

Hence Z,(G,s) = np — (np — 1)/|G]3, as desired.

Finally, we show the necessity of Part (2). We assume that Z,(G, s) = n,—(n,—1)/|G|;,
where n;, = | Syl,(G)|. We will assume that G is not p-closed. Then X = J,(G)\Syl,(G) #
2. Write p' = min{|G|,/|H| | H € X} and B = {H € X | |G|,/|H| = p'}. Clearly p’ > 1.

For each H € B and H < K € J,(G), the minimality of |G|,/|H| implies that K €
Syl,(G) and so u(K,G) = —1. By definition of 4 and Lemma 2.1,

wH,G) = — Z WK, G) = — Z WK, G)—1=ng—1,
H<KeS,(G)U{G} H<KeT(G)

where ny is the number of Sylow p-subgroups of G containing H. Since H is the inter-
section of at least two Sylow p-subgroups, nyg > 2. Hence u(H,G) > 1 for each H € B.
Viewing Z,(G, s) as a polynomial in Z[1/p®], the coefficients of the term (1/p®)! in
Zp(G,s) is
> u(H,G) > 0.
HeB
Since Z,(G, s) = ny — (np — 1)/|G|;, comparing the non-zero coefficients, we have that
p' = |G|p. The minimality of p* implies that X = {1}. This means that J,(G) = Syl,(G)U
{1} and so G is a p-TI-group by definition. O
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3. p-local Euler characteristic of %,(G)
Lemma 3.1. [7, Theorem| Let K be a subgroup of G of order p™, where p is a prime.

If m < n and p" dividing |G|, the number of subgroups of order p" in G containing K is
congruent to 1 modulo p.

Proof of Theorem 1.3. Write X = 8,(G) U {1,G}. Let
p’ =min{|P: PNQ|| P,Q € SyL,(G), P # Q}.

Since G is not p-closed, p? > 1. Write A = {PNQ | P,Q € Syl,(G) and |P : PNQ| = p?}.
For each H € A, as u(K,G) = 0 for all K € X\ (J,(G) U {G}) by Lemma 2.1, we have
that

H<KeX H<KeI,(G) H<KeI,(G)

Since H € A, H is the largest intersection of at least two distinct Sylow subgroups.
Hence, for each H < K € J,(G), K € Syl,(G) and u(K,G) = —1 Now we will obtain

IU(H7G):_1_ Z M<K7G>:_1_ Z (_1):nH_17
H<KeIy(G) H<KeI,(G)

where ny is the number of Sylow p-subgroups of G containing H. Applying Lemma 3.1,
we have that p divides ny — 1 = u(H, G) for each H € A.

Note that for each K € J,(G) \ (A U Syl,(G)), the minimality of p? implies that pd+!
divides |G|,/|K|. Then we have

G
Xp(G)=— > p(H, G)||H|1|D
Hea,(G)
G G
== Y WHG)TE - S WHG) G (mod )
HeSyl,(G) HeA
=— > (=)= uHGp" (modp™
HeSyl, (G) HeA
= [SyL,(G)| — Y w(H,G)p"  (mod p™1)
HeA
= |Syl,(G)| (mod p&.
The last equality hold since p divides u(H, G) for each H € A. O

4. Connectivity of %,(G)

Recall that, in a finite poset (X, <), we say there is a path from = to y (written by
x ~y) for z,y € X if there exist xg,z1,...,2, € X such that z = x¢,x,, = y and either
x; < xjy1 or x; > xi41 for each ¢ = 0,1,...,n. Denote by

[z]={ye X |y ~x}

the connected component containing x of X and by mo(X) = {[z] | x € X} the set of

all connected components of X. In particular, X is called connected if X has only one

connected component; otherwise X is called disconnected, as studied in [6, section 5.
Now, let us consider the set of all connected components of €, (G).

Lemma 4.1. Let G be a group and P be a Sylow p-subgroup of G for some prime p. Then
106,(G) = {[Pz] | x € G}.
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Proof. Since G is the union of all cosets Pz with x € G, for each Qy € %,(G), there
exists some x € G such that Qy N Px # . Let z € Qy N Px. We obtain that Qy = Qz
and Pz = Pz, moreover, Qy N Py = Qz N Pz = (Q N P)z € ¢,(G). This implies that
there is a path Qy O Qy N Pz C Pz in ¢,(G). Thus [Qy] = [Pz], and consequently
106,(G) = {[Pz] | x € G}. O

Proof of Theorem 1.4. By Lemma 4.1, my%,(G) = {[Pz] | = € G}. We consider the
action of G on m%,(G) defined by [Px]-g £ [Pxg]. It is not difficult to check that
such action is well-defined and transitive. Now let S be the stabilizer of [P] in G. The
transitivity of this action implies that |G : S| = |m%,(G)|. We only have to show that
S = PC, the normal closure of P in G.

For any ¢ € P%, we can express g as a product ¢ = x12s - - - x,, where each z; is a
p-element of G for 1 < i < r. Write P; = (z;),y; = Tijt1---x, for 1 <i <r —1 and set
Yo = 122 -2, = g and y, = 1. It is easy to see that {y;—1} C Piy; 2 {yi} C Piy1Yit1
for each ¢ > 1. Hence there exists a sequence of inclusions in €,(G) as follows:

Pgo{g=y} CPyi2nn CPy 2 Dy1 C P D{y, =1} C P,

which implies that [P] = [Pg] = [P]g and so g € S.
Conversely, for any g € S, we have [Pg| = [P]. It implies the existence of a sequence of
vertices T;y; in 6,(G) such that:

Pg=Tiy1 2Toys CT3y3 2 --- CToy_1Yy2n—1 = P.

From this, we can deduce that:
97" = Yo Wan—1Yan o) - (ysyz Ny2g™") € (10, T, ..., Ton—1) < P

Thus we have shown that S = P%, as desired.
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