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Abstract

Just like air, water is an essential component ]?If the environment and deterioration of
water sources threatens all living organisms. Hence, investigating the water pollution
problem is highly important. Lakes constitutes a big portion of water sources. The aim
of this study is to analyze the dynamics of pollution in a system colf three interconnected
lakes using the Gegenbauer wavelet method. The problem is modeled by three ordinary
linear differential equations representing the rate of pollution in each lake with respect
to time. Time derivates are approximated by the truncated Gegenbauer wavelet series
and the system of di];’ferentia equations are converted into a system of algebraic
equations. We show that the proposed technique is reliable and fast by comparing the
numerical results with other numerical results available in the literature. We also show
that the method is highly accurate and hence can also be used to solve other ecological
phenomena as well.

Keywords: Lake contamination, water pollution, gegenbauer wavelets.

G0l kirliligi probleminin ¢éziimii i¢in hizli ve giivenilir bir sayisal
yaklasim

Oz

Su, hava gibi ¢evrenin temel bilesenlerinden biridir ve su kaynaklarimin bozulmasi tiim
canli organizmalari tehdit etmektedir. Bu nedenle su kirliligi sorununu arastirmak biiyiik
onem tasimaktadwr. Goller, su kaynaklarimin biiyiik bir boliimiinii olusturmaktadir. Bu
calismanin amaci, ii¢ adet birbiriyle baglantili golden olusan bir sistemdeki kirlilik
dinamiklerini Gegenbauer dalgacik yontemi ile analiz etmektir. Problem, her bir goldeki
kirlilik oranmimin zamana gore degisimini temsil eden ti¢ dogrusal diferansiyel denklem
sistemi ile modellenmistir. Zaman tiirevierine, kesikli Gegenbauer dalgacik serisiyle
vaklasilmis  ve  diferansiyel denklem  sistemi, cebirsel denklem  sistemine
doniistiiriilmiistiir.
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Elde edilen sayisal sonuglar, literatiirde mevcut diger sayisal sonuglarla karsilastirilarak
onerilen teknigin giivenilir ve hizli oldugu gosterilmistir. Ayrica, yontemin yiiksek
dogruluk sagladigi ve bu nedenle diger ekolojik olaylarin ¢oziimiinde de kullanilabilecegi
ortaya konmustur.

Anahtar kelimeler: Gol kirlenmesi, su kirliligi, gegenbauer dalgaciklari.

1. Introduction

Water is a source of life and is one of the most important parts of the environment. We
can classify water sources as surface and ground water sources. Dams, rivers and lakes
can be listed among surface water sources, and they meet the industrial, agricultural, and
domestic water demand. The availability of these sources is diminishing due to
discharges of untreated wastewater. Thus, it is important to observe water pollutants and
their effects regularly. Since lakes constitutes a big portion of domestic water usage,
pollution of them may have devastating effects on daily life. Hence, this problem has
attracted attention of many researchers. Several numerical and analytical methods
are introduced for the solution of the problem. These methods can be listed as follows:
compartment modeling [1], g-homotopy analysis transform method [2], Bernoulli Ritz-
collocation method [3], homotopy perturbation method, Laplace transform and Padé
approximants [4], Bessel polynomials [5], Laplace transform method [6], Boubaker
collocation method [7], modified differential transform method [8], semianalytical
method [9], Laplace-Adomian decomposition method [10], Taylor series method [11] and
the variational iteration method [12].

'

Source of
polutant

Figure 1. System of three lakes with interconnecting channels [1].

In this study, we analyze a mathematical model that describes the dynamics of pollution
in a system of three inter-connected lakes given in Fig.1. Biazar et al. [1] introduced a
series of simplifying assumptions to provide a foundation for the development of the
governing equations. First, each lake is considered as a large and well-mixed separate
division connected by channels that are treated as pipes, facilitating fluid flow. The
direction of the fluid flow within these channels is indicated by arrows. It is assumed that
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the pollutant is uniformly distributed throughout each lake due to effective mixing
processes. The water volume (V) in each lake is considered to be constant over time.
The nature of the pollution is regarded as permanent, with no transformation into other
forms occurring. Initially, none of the lakes contain any pollution. The rate of change in
the concentration of pollutant in a lake is equal to the rate at which pollutants flow into
the lake minus the rate at which pollutants flow out of the lake.

The motivation of this study is to explore the levels of pollution in each lake at any
specified time. In order to do that, we solve the model by using the Gegenbauer wavelet
method. Wavelet methods are known to be effective methods and result in accurate
solutions [13-20]. In Section 2, we introduce the governing equations of the model and
explain the problem parameters. Section 3 is reserved for the definition and application
of the Gegenbauer wavelets. In the 4™ section, we give the numerical results and
discussion. Finally in section 5, we give the conclusion of the study.

1. Governing equations

The pollution dynamics within the three-lake system following the assumptions are given
asin[1]

N _Bayo-Biye ——x © +p(0)
dt 7 3 v, 1 1 p
% = %Xl(t) - F32X2(t) 0<t<bh (2.1)
dXs  Fy Fs, Fys
W_lel( ) + —Xz( )——Xs( )

with the initial conditions
X1(0) = n, X2(0) = T, X3(0) = 1s.

Here, p(t) represents the rate of pollutant discharged into Lake 1. This function may
remain constant or vary over time, reflecting changes in the pollutant input. X, (t) and V},

denote the amount of pollution in the lake k (k = 1,2,3) at any time t = 0 and the

Xp(t . .
I’i( ) represents the concentration of pollution in
k

volume of water, respectively. The term

lake k at any time. Furthermore F,,, represents the flow rate from lake k to lake m.
%Xk(t) is the pollutant flow that V, measures the rate at which the pollutant
k

concentration in the lake k flows into the lake m at time t.

Since the volume of each lake is assumed to remain constant, the inflow rate to each lake
must be equal to the outflow rate. Hence, the flow rate for each lake can be written as
follows

Lake 1: F13 = F21 + F31
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Lake 2: Fz]_ == F32
Lake 3: F13 = F31 + F32

The flow rate F;3, F,4, F31, F3, and the water volume V;, V,, V5 are appropriate
constants.

2.  Gegenbauer wavelets and their applications

Gegenbauer wavelet technique is a powerful numerical tool based on the Gegenbauer
polynomials and has a broad applicability across fields that require accurate solutions of
differential equations with complex boundary and initial conditions. Wavelet methods,
including the Gegenbauer wavelet approach, are quite popular to solve complex
problems requiring high precision.

2.1. Gegenbauer polynomials:
Gegenbauer polynomials, G,", (t), also known as the ultraspherical harmonic polynomials

of order m € Z™, are defined over the interval [—1,1] by using the following recurrence
formula [14]

1
Gl () = m—_l_l(Z(m + DEGH(E) — (m+ 27— 1G], (1)), form=12,..

where G} (t) = 1 and G (t) = 2yt. Here, m is the order of the polynomial, y > —1/2 is
the ultraspherical parameter. Different values of 7y offer different polynomials, i.e y =
1/2 refers to the Legendre polynomials,y = 0 and y = 1refer to the first and second
types of Chebyshev polynomials, respectively.  These polynomials satisfy the

1
Z)Y—(g)

orthogonality relation with respect to the weight function (1 —t¢ and form an

orthogonal basis for the Hilbert space L?[—1,1]

1 1
J —————GLOGL®)L = L (£) )
“1(1—-t2)2”

221727 m+2y)

Y —
where Ly, (t) = m!(m+y)(7(y))?

function, [14].

is the normalizing factor and 6 is the Kronecker delta

2.2. Gegenbauer wavelets

Gegenbauer wavelets are expressed as Yy, (t) = W rmy,) »Wherel =1,2,. . . isthe
level of resolution, r = 1,2,..., 2! is the translation parameter, and ¢ is the normalized
time. Gegenbauer wavelets are defined in [0,1] as follows [14]

\/;zl/zaln(zlt —r+ ), if Tr<esd
lpr,m(t) = Lin
0, otherwise.

The first few Gegenbauer wavelets calculated by taking [ = 1,M = 4 and y = 30 can
be listed as
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249122, 0<t<1
30 = ’ -
Pio(t) = {0, otherwise,

530 (8) = {39.2318t ~19.6159, 0<t<1
11 0, otherwise,

W3(t) = {447.481t2 —447.481t + 110.066, 0<t<1
- 0, otherwise,

4264.91t3 — 6397.36t% + 3148.7t —508.124, 0<t<1
0, otherwise.

¥ = |

2.3. Function approximation:
Any unknown function f(t) =€ L?(R) defined in [0,1] can be expanded by the
Gegenbauer wavelet series as follows:

£ = i i Ormtfrm(©), (3D
r=0m=0

where w,, is the Gegenbauer wavelet coefficient of the form w,,,, = < f(t), Y, 1, () >
and <.,.>is the inner product. Truncating the infinite series in Eq. (3.1) yields

2011

FO=) ) mibm(® = AT, (3:2)

r=1m=0

where Q and W(t) are the 2!"1M X 1 matrices given by
O =[W1,0, 01,15+ +) W1 M1, W20, W, 15+ 22y W =15+ ) Wplt g, Wpl=t 1,2+, Wl=1 1]
W) = [Y1,0(0), Y110, -, Y1m-1(0), Y2,0(), Y21 (8), -, Yo,m—1(E)

e P11 o (6 Wit 1 (6, pioa s (O]

2.4. Implementation of the method:

Gegenbauer wavelet method can be adapted to any system by expanding the solution in
terms of Gegenbauer polynomials, applying the system’s operator to the expansion, using
orthogonality to derive a system of equations, and solving for the coefficients. Due to
this flexibility and precision, it is a powerful method for approximating solutions of
complex differential equations across multiple fields. In order to solve the system, we
first approximate the unknown functions X (t), X,(t) and X5(t) by using Eq. (3.2) as
follows
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21—

HOEDY Z W1t () = QTP (D),

r=1m=

21—

X0 =) Z Wamibrm () = QTP (D), (3:3)

r=1m=

271 py—1

Xs(©) = Z W3 mibrm(©) = FWCO),

r=1ms=
and hence,

21—

X®O=) Z W1t m(©) = QTW(D),

r=1m=

271 y—q

X@® =) z Woml () = OPW' (D) (3:4)

r=1m=

21—

X =) Z W'y m(8) = OTW'(O),

r=1ms=

where W'(t) is the 2!"1M X 1 matrices given by
V') = [Y'10®)Y' 11(8) - W i m—1 (O, Y 20(8), Y 21 (), P 2 -1 (E)
., ll)’zl—1,0 (t), l/)'zl—1,1 (t), . l/)’21—1'M_1(t)].

Afterwards, we substitute the approximations in Eq. (3.3) and (3.4) into Eq. (2.1) and
we obtain

Fis F, F
QTw'(t) — QT‘P(t) + Vl QTw(b) + %Q{‘P(t) —p()=0
1 1

F32

Qfw'(t) — =2 LQTW (D) + 205D = 0 0<t<b (3.5)

F. F. F

QW () — 2 Tw() - 2 TW(0) + —l¥(D) = 0
Vi v, V3

with the initial conditions
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Qrw) =7, QW0O)=r, QW) =rs. (3.6)

To solve the system described by Eq. (3.5) with the initial conditions given in Eq. (3.6),
we need to solve 3(2""1M x 1) equations. This gives us the same number of unknown
coefficients. The first three equations are based on the initial conditions Eq. (3.6). The
remaining equations are obtained by substituting the standard collocation points,

tj = 220 where j = 1,2,...,M — 1, into Eq. (2.1).

aly(4) — VQT‘P( ,)+ QTW(t)+ QT‘P(t) p(t)=0

Qgtp’(tj)—"“nﬂp(t)+F3ZQTLP(t)_0 0<t<bh
(3.7)
QT‘P(t)— QT‘P( ])— QT‘P( j)+ QTlp(t)—o

Once we solve the system given in Eq. (3.7), we can determine the unknown coefficients.
Then, by substituting these coefficients back into Eq. (3.5), we can obtain the desired
solutions.

3. Numerical results and discussions

In this section, the numerical method explained in Section 3 is implemented by using
specific parameter values associated with problem (2.1), and results are presented in terms
of tables and graphs. All computations are conducted by using Mathematica 12.0 on a
computer with a Windows 10 64-bit operating system. The problem parameters are
taken as: p(t) = 1 + sin(t), F;3 = 38mi3/year, F,; = 18mi3/year, F;; = 20mi3/
year, F3, = 18mi3/year, V; = 2900mi3, V, = 850mi3, V; = 1180mi3. Since there
is no pollution at the beginning, initial conditions for each lake are zero, [1].

In the literature, this problem is solved by using 37¢, 6" and 10" degree polynomials.
Hence, we also solve the problem using the same degree polynomials for comparison
purposes. [ is taken as 1 and y is taken as 30 throughout the study. The 3"% degree
approximation polynomials

X13(t) = 2.77556 x 1077 + 0.995361t + 0.522067t* — 0.0626506¢>,

X,3(t) = —2.1684 x 107" — 0.0000119539¢ + 0.0031625¢* + 0.000904805¢°,
X33(t) = —2.1684 x 107" — 0.0000130571¢t + 0.00351245¢* + 0.00101764¢°,

the 6" degree approximation polynomials
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X16(t) = 1.21431 x 1077 + 0.1t + 0.493439t* — 0.0020665t> — 0.0417986t*
+ 0.00325774t> + 0.00124991¢t°,

X,6(t) = —1.87194 x 107" — 1.05987 x 10~°t + 0.00310359¢* +
0.0009981925¢*—.6.05712 x 107°t* — 0.0000558183¢> + 3.82419 x 10~ %%,
X36(t) = —6.43745 x 1072° — 1.18264 x 10~°t + 0.00344843¢* + 0.00111833¢* —
4.56587 x 107%t* — 0.0000620638¢t> + 4.18187 x 107°¢°,

and the 10¢" degree approximation polynomials are obtained as follows

X110(t) = —3.70255 x 1077 + 1.0t + 0.493448t2 — 0.00211828t> — 0.0416507t*
+0.000109127t5 + 0.00138829t° — 2.49434 x 107%t7 — 0.0000249136t5
+1.22844 x 1077t° 4+ 2.45148 x 1077¢19,

X210(t) = —2.26634 x 107"° — 3.70657 x 10~'*t + 0.00310345¢* + 0.000999021¢ —
8.57585 x 107°t* — 0.0000516683t> + 2.9605 x 1077t® + 1.22859 x 107%" —
3.30126 x 107%t®* — 1.86713 x 1078¢° + 7.99694 x 1071%¢1,
X310(t) = —2.14802 x 107*° — 4.13529 x 10~ "*t + 0.00344828¢* + 0.00111926¢* —
7.37414 x 107%t* — 0.0000574384¢> + 2.52255 x 1077t® + 1.36582 x 107°¢" —
2.29114 x 107%¢® — 2.07615 x 1078 + 8.75351 x 107101,

We compare the CPU time of the current method and the BRCM [3] both employing a
10" degree polynomial, along with the RK4 with step size At = 0.1 and Mathematica
default solver and present the results in Table 1. We can see from this table that, even
with a high-degree polynomial, the CPU time of the proposed method is quite small
compared to RK4 and Mathematica, but significantly smaller than the BRCM. This
demonstrates the high efficiency of the current method.

Table 1. Comparison of the CPU time

BRCM [3] |GWM RK4 Mathematic

d
CPU 4.29 0.080411]0.011045|0.104975

Table 2 represents the results of the GWM, the Bernoulli Ritz-collocation method
(BRCM) [3], the Bessel collocation method (BCM) [3] all using 10" degree polynomials
as well as the fourth order Runge Kutta method (RK4) with stepsize At = 0.1 and
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Mathematica default solver. One can see from the table that the solution of the current
method agrees well with the other numerical methods.

Table 2. Comparison of the BCM [5], the BRCM [3], the GWM all using 10" order
polynomials, together with the RK4 and Mathematica default solver for each lake

t=02 t=04 t=06 t=038 t=1

RK4 0.21965447 0.47775668 0.77185868 1.09805724 1.45114967

BCM [5] 0.21965447 0.47775668 0.77185867 1.09805723 1.45114965

Xi(t)] BRCM [3] 0.21965450 0.47775670 0.77185870 1.09805700 1.45115000
GWM 0.21965447 0.47775668 0.77185867 1.09805723 1.45114965

Mathematica|  0.21965442 0.47775665 0.77185865 1.09805724 1.45114961
RK4 1.321000 x 10™*| 5.597440x 10~* [1.327949x 1073| 2.477595 X 1073 | 4.043729% 1073
BCM [5] | 1.320999% 10~* | 5.597436% 10~* 1.327949 X | 2.477594x 1073 | 4.043728x 1073
Xo(t)] BRCM[3] |1.320999x 10~* | 5.597436Xx 10~* [1.327949x 1073| 2.477594 X 1073 | 4.043728% 1073
GWM 1.320999% 10™* | 5.597436% 107* | 1.327949Xx10-3 | 2.477595% 1073 | 4.043729x 1073
Mathematica| 1.321079%x10-4 | 5.597516x 10~* [1.327957% 1073| 2.477603x 1073 | 4.043736x 1073
RK4 1.468551x 10™% | 6.225831x 10™% |1.477767X10-3 | 2.758464x 103 | 4.504315x 103
BCM [5] [1.468549 x 10™*| 6.225828 x 10™* | 1.477766Xx10-3 | 2.758463% 1073 | 4.504314% 1073
Xs(t)] BRCM[3] [1.468549 x 10™*| 6.225828x 10™* | 1.477766x10-3 | 2.758463 x 1073 | 4.504314x 1073
GWM 1.468549 X 10™*| 6.225828 x 10™*| 1.477766X10-3 2.758463 x 1073| 4.504314x 1073
Mathematica| 1.468639x 10~ | 6.225917x 10~* |1.477775Xx10-3 | 2.758472x 1073 | 4.504323% 1073

In order to validate the proposed method, we calculate the residual error of the
approximate solution for each lake. REy, +), REx,) and REy,) represent the residual
error calculated by substituting the approximate solutions into Eq. (2.1)

tEx - Xl(ti)

1(t;) Xg( l) ( l) Xl(t) p(t) ; ’
E X E aX,(t;

REXz((ti)) | = 1((t )) =2 Xz ((t )) - _Z(t ) |,

RExy(eo) = 152 X1 () + 2 X ((6)) = 22 X3 ((8)) —

3(%) |

Table 3 presents the comparison of the residual error of the current technique, the
Boubaker polynomial method (BPM) [7] and BCM [5] using 3"¢ degree polynomials.
One can see that the results are quite close to each other. But at some points the residual
error of the current method is smaller.
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Table 3. Comparison of the residual errors for the BPM [7], the BCM [5] and the GWM
using 37 order polynomials for each lake
t=0[t=0.2 t=04 t=06 t=08 t=1
BPM [7] [0 1.96030 x 1073 [1.10160 x 1073 |1.61790 x 1073 |7.36010 x 1073 {3.18840 x 1072
REXy5(t) BCM [5] |0 1.96030 x 1073 |1.10160 x 1073 |1.61790 x 1073 |7.36010 x 1073 |3.18840 x 1072
GWM 0 5.67899 x 107 |6.60513 x 10~ |8.89004 x 10~* [2.07430 x 1073 |1.60792 x 1072
BPM[7] [0 [4.56380 x 107° [2.60790 x 107° [3.91180 x 10~° [1.82550 x 1075 [8.14960 x 1075
REX, (1) BCM[5] |0  [4.56380 x 107° [2.60790 x 107¢ |3.91180 x 1076 [1.82550 X 10~ [8.14960 x 10~>
GWM [0 |1.47272 x 1076 |1.74049 x 107° |2.39078 x 107° |5.71874 x 107° |4.56543 x 107>
BPM [7] [0  [4.97420 x 107° [2.84240 x 107° [4.26360 x 10~° [1.98970 x 105 [8.88260 x 1075
REXy (1) BCM[5] |0  |4.97420 x 107 [2.84240 x 107° |4.26360 x 107 |1.98970 x 1075 (8.88260 x 1075
GWM [0 |1.60864 x 1076 |1.90112 x 107 |2.61143 x 107° |6.24654 x 10~° |4.98679 x 107>

Once the degree of the approximation polynomial increases, the residual error of the
current method decreases. Table 4 shows that the residual error of the current method is
smaller than the other methods after t = 0.4 when the degree of the polynomial is 6. A
similar behavior is observed in Table 5. At t = 0, the residual error of the methods are
close to each other, but after this time the residual error of the current method is smaller
than the other methods. Hence, we may say that the proposed method is more accurate
than the BPM and the BCM.

Table 4. Comparison of the residual errors for the BPM [7], the BCM [5] and the GWM

using 6" order polynomials for each lake
t=0 |t=02 t =04 t=06 t=08 t=1
BPM[7] [0 42273010 [4.11970x10%  [6.56580 x10 [2.02930 x107 [1.04560 x 105
REX,o() [EEMIS) P 4.22730x10° 4.11970x10%  [6.56580 x10¢ [2.02930 x1077 (104560 x 105
GWM [0 6.64391 10 [2.11896x10®  |4.44089 x 1016 6.55893 x 10 [2.44337 x 10
BPM [7] [0 6.07690 x101° [5.54390 x100  [8.31580 x 1010 [2.43080 x 10 [1.18990 x 10”7
REX,o() [PEMIS] P 6.07690 x101° (554390 x100  [8.31580 x 1010 [2.43080 x 10 [1.18990 x 1077
GWM 0 9.59807 1010 [2.86258 x1010  [7.80964 x 101° [7.87210 x 1010 [2.78344 x 108
BPM [7] [0 6.78000 x 101° [6.18530 x10-10  [9.27790 x 100 [2.71200 x 10 [1.32750 x 10”7
REx,o() PCMIS] P 6.78000 x 101° [6.18530 x10-10  9.27790 x 1010 [2.71200 x 10 [1.32750 x 10”7
GWM [0 107099 x10° [3.19418 x100  [1.09606 x 108 [8.78399 x 101° [3.10587 x 108

Table 5. Comparison of the residual errors for the BPM [7], the BCM [5] and the GWM
using 10" order polynomials for each lake

t=0 |[t=0.2 t=04 t =06 t=0.8 t=1
BPM([7] [0 1.26760x10"3 [1.21070x10"13  [9.85880x10-4 [5.07370x10"4 [4.89280x10-11
BCMI[5] [0 1.24480x10°13 [2.53460x10"13  [3.91240x10°13 (541460 x103  |4.96510x10-11
REX;10(t) | GWM 0 1.15200x10"13 |4.38538x10°15  [5.55112x10"Y7 [1.13243x10"14  [2.08822x10"12
BPM[7] [0 6.61150x10-% [8.09190x10°16 [9.37060x10%6 [1.01970x10-5> |5.45960x10-23
BCM[5] [0 1.76210x10°%5 [3.45760x10"%5  |5.08630x10°15 |6.64640x10°%5  [5.38930x10-13
REX;10(t) | GWM 0 1.49896x10°15 [5.23647x10"17  [1.90972x10-18 [1.37462x10-16  [2.35596x10°14
BPM([7] [0 7.45460x10-16 [9.14160x10°16  [1.06390x10-15 [1.16670x10-%5 [6.09290x10-13
BCM[5] [0 1.52350x10715 [2.95500x10°15  |4.28400x107%5 [5.51610x10"15  |6.17950x10-13
REX310(t) | GWM 0 1.67600x10715 [6.12146x10"17  [1.07865x10-18 [1.54378x10-16  [2.63161x10°14
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Fig. (2) represents the residual error for the lake pollution model of a three-lake
interconnected system, solved by using the Gegenbauer Wavelet Method (GWM) with
polynomial degrees of 3, 6, and 10. Each curve in the graph corresponds to the residual
error for a different polynomial, allowing a clear comparison of the solution accuracy
across varying levels of approximation. The figure demonstrates that as the degree of
the polynomial increases, the residual error decreases significantly, highlighting the ability
to provide precise and refined solutions for the interconnected lake pollution model.
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~ -14
10712 10

10_15 10717

0.0 0.2 0.4 0.6 0.8 Lo 0.0 0.2 0.4 0.6 0.8 1.0

t t

a) Residual errors of X;(t) b) Residual errors of Xz (t)
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Figure 2. Residual error of REy, (1), REx,r)y and REx i for M =4,M =7 and M =
11on 0 <t <1 for Lake 1, Lake 2, Lake 3, respectively.

Fig. (3) illustrates the level of pollution in three lakes (Lake 1, Lake 2, and Lake 3) over
a longer period of time. We compare the solution curves for the lake pollution model
obtained by using 10" degree polynomial and the RK4 method with step size At = 0.1 .
These graphs show the pollution dynamics over an extended time. Both methods exhibit
excellent agreement throughout the time period, demonstrating that the GWM and the
RK4 maintain high accuracy even over the extended time frame. This highlights the

robustness and reliability of the current approach in modeling the interconnected lake
pollution system.

One can see from Fig. (3) that the increase of the contamination in the first lake is
significant with a sinusoidal behaviour, while the second and third lakes are contaminated
as well with an exponential behaviour but the level of pollution at these lakes are much
smaller than the first lake, and nearly equal to each other.
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Figure 3. X;(t), X,(t) and X5(t) of the GWM solutions with 10" degree polynomials
with [ = 1 and RK4 At = 0.1 for 0 <t < 12 for each of the lakes.

4. Conclusion

In this study, we investigated the pollution dynamics within a system of three
interconnected lakes, employing the Gegenbauer wavelet method to effectively solve
this system. Our approach is notable for its dual application across both short-term (t =
0to t = 1) and extended time intervals (t = 0 to t = 12), offering a novel perspective
on long- term pollutant behavior modeling. Comparative analysis with Mathematica
default solver, the 4" order Runge-Kutta method, and other techniques demonstrates the
superior accuracy of the Gegenbauer wavelet method, with minimized residual errors
confirming its robustness. The residual error graphs further validate the method’s
effectiveness, high- lighting its potential for precise long-term pollution forecasting in
environmental models.  Additionally, the Gegenbauer wavelet method exhibits
considerable = computational efficiency, even when utilizing high-degree
polynomials. Despite the inherent complexity of high-degree expansions, our approach
maintains practical CPU time, underscoring its suitability for large-scale or real-time
applications. This computational efficiency, combined with the stability and adaptability,
makes it a highly practical choice in the solution of complex systems with high precision
while minimizing computational demands. This work underscores the versatility and
effectiveness of the Gegenbauer wavelet method in addressing complex environmental
systems, paving the way for future research on adaptive wavelet techniques in similar
applications.
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