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Abstract 

 
                 Just like air, water is an essential component of the environment and deterioration of 

water sources threatens all living organisms. Hence, investigating the water pollution 
problem is highly important. Lakes constitutes a big portion of water sources.  The aim 
of this study is to analyze the dynamics of pollution in a system of three interconnected 
lakes using the Gegenbauer wavelet method.  The problem is modeled by three ordinary 
linear differential equations representing the rate of pollution in each lake with respect 
to time. Time derivates are approximated by the truncated Gegenbauer wavelet series 
and the system of differential equations are converted into a system of algebraic 
equations.  We show that the proposed technique is reliable and fast by comparing the 
numerical results with other numerical results available in the literature.  We also show 
that the method is highly accurate and hence can also be used to solve other ecological 
phenomena as well. 
 

Keywords: Lake contamination, water pollution, gegenbauer wavelets. 

 

 

Göl kirliliği probleminin çözümü için hızlı ve güvenilir bir sayısal 

yaklaşım 
 

 

Öz 

 

Su, hava gibi çevrenin temel bileşenlerinden biridir ve su kaynaklarının bozulması tüm 

canlı organizmaları tehdit etmektedir.  Bu nedenle su kirliliği sorununu araştırmak büyük 

önem taşımaktadır.  Göller, su kaynaklarının büyük bir bölümünü oluşturmaktadır.  Bu 

çalışmanın amacı, üç adet birbiriyle bağlantılı gölden oluşan bir sistemdeki kirlilik 

dinamiklerini Gegenbauer dalgacık yöntemi ile analiz etmektir.  Problem, her bir göldeki 

kirlilik oranının zamana göre değişimini temsil eden üç doğrusal diferansiyel denklem 

sistemi ile modellenmiştir.  Zaman türevlerine, kesikli Gegenbauer dalgacık serisiyle 

yaklaşılmış ve diferansiyel denklem sistemi, cebirsel denklem sistemine 

dönüştürülmüştür.   
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Elde edilen sayısal sonuçlar, literatürde mevcut diğer sayısal sonuçlarla karşılaştırılarak 

önerilen tekniğin güvenilir ve hızlı olduğu gösterilmiştir. Ayrıca, yöntemin yüksek 

doğruluk sağladığı ve bu nedenle diğer ekolojik olayların çözümünde de kullanılabileceği 

ortaya konmuştur. 

 

Anahtar kelimeler: Göl kirlenmesi, su kirliliği, gegenbauer dalgacıkları. 

 

 

1. Introduction  

Water is a source of life and is one of the most important parts of the environment. We 

can classify water sources as surface and ground water sources.  Dams, rivers and lakes 

can be listed among surface water sources, and they meet the industrial, agricultural, and 

domestic water demand.  The availability of these sources is diminishing due to 

discharges of untreated wastewater.  Thus, it is important to observe water pollutants and 

their effects regularly.   Since lakes constitutes a big portion of domestic water usage, 

pollution of them may have devastating effects on daily life.  Hence, this problem has 

attracted attention of many researchers.  Several numerical and analytical methods 

are  introduced for the solution of the problem.  These methods can be listed as follows: 

compartment modeling [1], q-homotopy analysis transform method [2], Bernoulli Ritz-

collocation method [3], homotopy perturbation method, Laplace transform and Padé 

approximants [4], Bessel polynomials [5], Laplace transform method [6], Boubaker 

collocation method [7], modified differential transform method [8], semianalytical 

method [9], Laplace-Adomian decomposition method [10], Taylor series method [11] and 

the variational iteration method [12].  

 

                       Figure 1. System of three lakes with interconnecting channels [1].  

In this study, we analyze a mathematical model that describes the dynamics of pollution 

in a system of three inter-connected lakes given in Fig.1. Biazar et al. [1] introduced a 

series of simplifying assumptions to provide a foundation for the development of the 

governing equations.  First, each lake is considered as a large and well-mixed separate 

division connected by channels that are treated as pipes, facilitating fluid flow.  The 

direction of the fluid flow within these channels is indicated by arrows.  It is assumed that 
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the pollutant is uniformly distributed throughout each lake due to effective mixing 

processes.  The water volume (𝑉𝑘) in each lake is considered to be constant over time. 

The nature of the pollution is regarded as permanent, with no transformation into other 

forms occurring.  Initially, none of the lakes contain any pollution. The rate of change in 

the concentration of pollutant in a lake is equal to the rate at which pollutants flow into 

the lake minus the rate at which pollutants flow out of the lake.  

The motivation of this study is to explore the levels of pollution in each lake at any 

specified time.  In order to do that, we solve the model by using the Gegenbauer wavelet 

method.  Wavelet methods are known to be effective methods and result in accurate 

solutions [13–20].  In Section 2, we introduce the governing equations of the model and 

explain the problem parameters.  Section 3 is reserved for the definition and application 

of the Gegenbauer wavelets.  In the 4th section, we give the numerical results and 

discussion. Finally in section 5, we give the conclusion of the study. 

 

1. Governing equations  

 

The pollution dynamics within the three-lake system following the assumptions are given 

as in [1] 

 

  
𝑑𝑋1

𝑑𝑡
=

𝐹13

𝑉3
𝑋3(𝑡) −

𝐹31

𝑉1
𝑋1(𝑡) −

𝐹21

𝑉1
𝑋1(𝑡) + 𝑝(𝑡) 

 

  
𝑑𝑋2

𝑑𝑡
=

𝐹21

𝑉1
𝑋1(𝑡) −

𝐹32

𝑉2
𝑋2(𝑡)                        0 ≤ 𝑡 ≤ 𝑏                                                        (2.1) 

 
𝑑𝑋3

𝑑𝑡
=

𝐹31

𝑉1
𝑋1(𝑡) +

𝐹32

𝑉2
𝑋2(𝑡) −

𝐹13

𝑉3
𝑋3(𝑡) 

          
with the initial conditions  

𝑋1(0) = 𝑟1,    𝑋2(0) = 𝑟2,     𝑋3(0) = 𝑟3. 

Here, 𝑝(𝑡) represents the rate of pollutant discharged into Lake 1. This function may 

remain constant or vary over time, reflecting changes in the pollutant input. 𝑋𝑘(𝑡) and 𝑉𝑘 

denote the amount of pollution in the lake 𝑘 (𝑘 = 1,2,3) at any time 𝑡 ≥ 0  and the 

volume of water, respectively.  The term 
𝑋𝑘(𝑡)

𝑉𝑘
 represents the concentration of pollution in 

lake 𝑘 at any time. Furthermore 𝐹𝑚𝑘 represents the flow rate from lake 𝑘 to lake 𝑚. 
𝐹𝑚𝑘

𝑉𝑘
𝑋𝑘(𝑡) is the pollutant flow that 𝑉𝑘 measures the rate at which the pollutant 

concentration in the lake 𝑘 flows into the lake m at time 𝑡. 

 

Since the volume of each lake is assumed to remain constant, the inflow rate to each lake 

must be equal to the outflow rate.  Hence, the flow rate for each lake can be written as 

follows  

𝐿𝑎𝑘𝑒 1: 𝐹13 = 𝐹21 + 𝐹31 
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𝐿𝑎𝑘𝑒 2: 𝐹21 = 𝐹32 

𝐿𝑎𝑘𝑒 3: 𝐹13 = 𝐹31 + 𝐹32 

The flow rate 𝐹13, 𝐹21, 𝐹31, 𝐹32 and the water volume 𝑉1, 𝑉2, 𝑉3 are appropriate 

constants.  

  

2. Gegenbauer wavelets and their applications 

 Gegenbauer wavelet technique is a powerful numerical tool based on the Gegenbauer 

polynomials and has a broad applicability across fields that require accurate solutions of 

differential equations with complex boundary and initial conditions.  Wavelet methods, 

including the Gegenbauer wavelet approach, are quite popular to solve complex 

problems  requiring high precision.  

2.1. Gegenbauer polynomials:  

Gegenbauer polynomials,  𝐺𝑚


(𝑡), also known as the ultraspherical harmonic polynomials 

of order 𝑚 𝜖 ℤ+, are defined over the interval [−1,1 ]  by using the following recurrence 

formula [14] 

𝐺𝑚+1
 (𝑡) =

1

𝑚 + 1
(2(𝑚 + )𝑡𝐺𝑚

 (𝑡) − (𝑚 + 2 − 1)𝐺𝑚−1
 (𝑡)) ,      for 𝑚 = 1,2, …     

where 𝐺0
(𝑡) = 1 and 𝐺1

(𝑡) = 2𝑡.   Here, 𝑚 is the order of the polynomial,  > −1/2 is 

the ultraspherical parameter.  Different values of    offer different polynomials, i.e  =
1/2  refers to the Legendre polynomials,  = 0  and   = 1 refer to the first and second 

types of Chebyshev polynomials, respectively.  These polynomials satisfy the 

orthogonality relation with respect to the weight function (1 − 𝑡2)−(
1

2
)
 and form an 

orthogonal basis for the Hilbert space 𝐿2[−1,1]  

∫
1

(1 − 𝑡2)
1
2

−

1

−1

𝐺𝑚
 (𝑡)𝐺𝑛

(𝑡)𝑑𝑡 = 𝐿𝑚
 (𝑡)𝑚𝑛, 

where 𝐿𝑚
 (𝑡) =

21−2(𝑚+2)

𝑚!(𝑚+)(())2
  is the normalizing factor and δ is the Kronecker delta 

function, [14]. 

2.2. Gegenbauer wavelets 

Gegenbauer wavelets are expressed as 𝜓𝑟,𝑚(𝑡) = Ψ(𝑙,𝑟,𝑚,𝛾,𝑡)  , where 𝑙 = 1,2,.  .  .  is the 

level of resolution, 𝑟 = 1,2, . . . , 2𝑙−1 is the translation parameter, and 𝑡 is the normalized 

time.  Gegenbauer wavelets are defined in [0,1] as follows [14]  

 𝜓𝑟,𝑚(𝑡) = {

1

√𝐿𝑚


2𝑙/2𝐺𝑚
 (2𝑙𝑡 − 2𝑟 + 1),    𝑖𝑓  

2𝑟−2

2𝑙 ≤ 𝑡 ≤
2𝑟

2𝑙

0 ,                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.           

 

The first few Gegenbauer wavelets calculated by taking  𝑙 = 1, 𝑀 = 4 and  𝛾 = 30 can 

be listed as  
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                        𝜓1,0
30 (𝑡) = {

2.49122,   0 ≤ 𝑡 ≤ 1
0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

   

𝜓1,1
30 (𝑡) = {

39.2318𝑡 − 19.6159, 0 ≤ 𝑡 ≤ 1
0,                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

𝜓1,2
30 (𝑡) = {

447.481𝑡2 − 447.481𝑡 + 110.066,     0 ≤ 𝑡 ≤ 1
0,                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

𝜓1,3
30 (𝑡) = {

4264.91𝑡3 − 6397.36𝑡2 + 3148.7𝑡 − 508.124,      0 ≤ 𝑡 ≤ 1 
0,                                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.    

 

 

2.3. Function approximation: 

Any unknown function 𝑓(𝑡) =∈  𝐿2(ℝ) defined in [0,1] can be expanded by the 

Gegenbauer wavelet series as follows:  

 𝑓(𝑡) = ∑ ∑ 𝜔𝑟𝑚𝜓𝑟,𝑚(𝑡),                                                                                            (3.1)

∞

𝑚=0

∞

𝑟=0

 

 

where 𝜔𝑟𝑚 is the Gegenbauer wavelet coefficient of the form 𝜔𝑟𝑚 = < 𝑓(𝑡), 𝜓𝑟,𝑚(𝑡) > 

and  <. , . > is the inner product.  Truncating the infinite series in Eq. (3.1) yields  

𝑓(𝑡) = ∑ ∑ 𝜔𝑟𝑚𝜓𝑟,𝑚(𝑡) = Ω𝑇Ψ(t),                                                                       (3.2)

𝑀−1

𝑚=0

2𝑙−1

𝑟=1

 

 

where Ω and Ψ(t) are the 2𝑙−1𝑀 × 1 matrices given by  

Ω𝑇 =[𝜔1,0, 𝜔1,1, . . . , 𝜔1,𝑀−1, 𝜔2,0, 𝜔2,1, . . . , 𝜔2,𝑀−1, . . . , 𝜔2𝑙−1,0, 𝜔2𝑙−1,1, . . . , 𝜔2𝑙−1,𝑀−1] 

Ψ(t) = [𝜓1,0(𝑡), 𝜓1,1(𝑡), . . . , 𝜓1,𝑀−1(𝑡), 𝜓2,0(𝑡), 𝜓2,1(𝑡), . . . , 𝜓2,𝑀−1(𝑡) 

                    , . . . , 𝜓2𝑙−1,0(𝑡), 𝜓2𝑙−1,1(𝑡), . . . , 𝜓2𝑙−1,𝑀−1(𝑡)]. 

2.4. Implementation of the method: 

Gegenbauer wavelet method can be adapted to any system by expanding the solution in 

terms of Gegenbauer polynomials, applying the system’s operator to the expansion, using 

orthogonality to derive a system of equations, and solving for the coefficients.  Due to 

this flexibility and precision, it is a powerful method for approximating solutions of 

complex differential equations across multiple fields.   In order to solve the system, we 

first approximate the unknown functions 𝑋1(𝑡), 𝑋2(𝑡)  and 𝑋3(𝑡)  by using Eq. (3.2) as 

follows  
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𝑋1(𝑡) = ∑ ∑ 𝜔1,𝑚𝜓𝑟,𝑚(𝑡) = Ω1
𝑇Ψ(t),                                                                                 

𝑀−1

𝑚=0

2𝑙−1

𝑟=1

 

 𝑋2(𝑡) = ∑ ∑ 𝜔2,𝑚𝜓𝑟,𝑚(𝑡) = Ω2
𝑇Ψ(t),                                                                        (3.3)

𝑀−1

𝑚=0

2𝑙−1

𝑟=1

 

𝑋3(𝑡) = ∑ ∑ 𝜔3,𝑚𝜓𝑟,𝑚(𝑡) = Ω3
𝑇Ψ(t),                    

𝑀−1

𝑚=0

2𝑙−1

𝑟=1

 

and hence, 

𝑋1′(𝑡) = ∑ ∑ 𝜔1,𝑚𝜓′𝑟,𝑚(𝑡) = Ω1
𝑇Ψ′(t),                                                                          

𝑀−1

𝑚=0

2𝑙−1

𝑟=1

 

𝑋2′(𝑡) = ∑ ∑ 𝜔2,𝑚𝜓′𝑟,𝑚(𝑡) = Ω2
𝑇Ψ′(t),                                                                     (3.4)

𝑀−1

𝑚=0

2𝑙−1

𝑟=1

 

𝑋3′(𝑡) = ∑ ∑ 𝜔3,𝑚𝜓′𝑟,𝑚(𝑡) = Ω3
𝑇Ψ′(t),                                                                             

𝑀−1

𝑚=0

2𝑙−1

𝑟=1

 

where Ψ′(t) is the 2𝑙−1𝑀 × 1 matrices given by 

Ψ′(t) = [𝜓′1,0(𝑡), 𝜓′1,1(𝑡), . . . , 𝜓′1,𝑀−1(𝑡), 𝜓′2,0(𝑡), 𝜓′2,1(𝑡), . . . , 𝜓′2,𝑀−1(𝑡) 

                    , . . . , 𝜓′2𝑙−1,0(𝑡), 𝜓′2𝑙−1,1(𝑡), . . . , 𝜓′2𝑙−1,𝑀−1(𝑡)]. 

Afterwards, we substitute the approximations in Eq. (3.3) and (3.4) into Eq. (2.1) and 

we obtain  

 

Ω1
𝑇Ψ′(t) −

𝐹13

𝑉3
Ω3

𝑇Ψ(t) +
𝐹31

𝑉1
Ω1

𝑇Ψ(t) +
𝐹21

𝑉1
Ω1

𝑇Ψ(t) − 𝑝(𝑡) = 0 

 

Ω2
𝑇Ψ′(𝑡) −

𝐹21

𝑉1
Ω1

𝑇Ψ(t) +
𝐹32

𝑉2
Ω2

𝑇Ψ(t) = 0                        0 ≤ 𝑡 ≤ 𝑏                              (3.5) 

 

 Ω3
𝑇Ψ′(𝑡) −

𝐹31

𝑉1
Ω1

𝑇Ψ(t) −
𝐹32

𝑉2
Ω2

𝑇Ψ(t) +
𝐹13

𝑉3
Ω3

𝑇Ψ(t) = 0 

          

with the initial conditions  
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Ω1
𝑇Ψ(0) = 𝑟1,    Ω2

𝑇Ψ(0) = 𝑟2,      Ω3
𝑇Ψ(0) = 𝑟3.                                                               (3.6) 

To solve the system described by Eq. (3.5) with the initial conditions given in Eq. (3.6), 

we need to solve 3(2𝑙−1𝑀 × 1) equations.  This gives us the same number of unknown 

coefficients.  The first three equations are based on the initial conditions Eq. (3.6).  The 

remaining equations are obtained by substituting the standard collocation points,       

    𝑡𝑗 =
(2𝑗−1)ℎ

2𝑙𝑀
, where 𝑗 = 1,2, . . . , 𝑀 − 1, into Eq. (2.1). 

 

 Ω1
𝑇Ψ′( 𝑡𝑗) −

𝐹13

𝑉3
Ω3

𝑇Ψ( 𝑡𝑗) +
𝐹31

𝑉1
Ω1

𝑇Ψ( 𝑡𝑗) +
𝐹21

𝑉1
Ω1

𝑇Ψ(𝑡𝑗) − 𝑝( 𝑡𝑗) = 0             

 

Ω2
𝑇Ψ′( 𝑡𝑗) −

𝐹21

𝑉1
Ω1

𝑇Ψ( 𝑡𝑗) +
𝐹32

𝑉2
Ω2

𝑇Ψ( 𝑡𝑗) = 0                        0 ≤ 𝑡 ≤ 𝑏                           

(3.7) 
 

  Ω3
𝑇Ψ′( 𝑡𝑗) −

𝐹31

𝑉1
Ω1

𝑇Ψ( 𝑡𝑗) −
𝐹32

𝑉2
Ω2

𝑇Ψ( 𝑡𝑗) +
𝐹13

𝑉3
Ω3

𝑇Ψ( 𝑡𝑗) = 0. 

Once we solve the system given in Eq. (3.7), we can determine the unknown coefficients.   

Then, by substituting these coefficients back into Eq. (3.5), we can obtain the desired 

solutions.  

 

3. Numerical results and discussions 

In this section, the numerical method explained in Section 3 is implemented by using 

specific parameter values associated with problem (2.1), and results are presented in terms 

of tables and graphs.  All computations are conducted  by using Mathematica 12.0 on a 

computer with a Windows 10 64-bit operating system.  The problem parameters   are 

taken as: 𝑝(𝑡) = 1 + sin(𝑡), 𝐹13 = 38𝑚𝑖3/𝑦𝑒𝑎𝑟, 𝐹21 = 18𝑚𝑖3/𝑦𝑒𝑎𝑟,  𝐹31 = 20𝑚𝑖3/
𝑦𝑒𝑎𝑟, 𝐹32 = 18𝑚𝑖3/𝑦𝑒𝑎𝑟,  𝑉1 = 2900𝑚𝑖3, 𝑉2 = 850𝑚𝑖3, 𝑉3 = 1180𝑚𝑖3.  Since there 

is no pollution at the beginning, initial conditions for each   lake are zero, [1].  

In the literature, this problem is solved by using 3𝑟𝑑, 6𝑡ℎ and 10𝑡ℎ  degree polynomials.  

Hence, we also solve the problem using the same degree polynomials for comparison 

purposes. 𝑙 is taken as 1 and γ is taken as 30 throughout the study.  The 3𝑟𝑑 degree 

approximation polynomials 

𝑋1,3(𝑡) = 2.77556 × 10−17 + 0.995361𝑡 + 0.522067𝑡2 − 0.0626506𝑡3, 

𝑋2,3(𝑡) = −2.1684 × 10−19 − 0.0000119539𝑡 + 0.0031625𝑡2 + 0.000904805𝑡3, 

𝑋3,3(𝑡) = −2.1684 × 10−19 − 0.0000130571𝑡 + 0.00351245𝑡2 + 0.00101764𝑡3, 

the 6𝑡ℎ degree approximation polynomials 
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𝑋1,6(𝑡) = 1.21431 × 10−17 + 0.1𝑡 + 0.493439𝑡2 − 0.0020665𝑡3 − 0.0417986𝑡4

+ 0.00325774𝑡5 + 0.00124991𝑡6, 

      𝑋2,6(𝑡) = −1.87194 × 10−19 − 1.05987 × 10−8𝑡 + 0.00310359𝑡2 +

                  0.0009981925𝑡3−. 6.05712 × 10−6𝑡4 − 0.0000558183𝑡5 + 3.82419 × 10−6𝑡6, 

𝑋3,6(𝑡) = −6.43745 × 10−20 − 1.18264 × 10−8𝑡 + 0.00344843𝑡2 + 0.00111833𝑡3 −

                4.56587 × 10−6𝑡4 − 0.0000620638𝑡5 + 4.18187 × 10−6𝑡6, 

and the 10𝑡ℎ degree approximation polynomials are obtained as follows 

𝑋1,10(𝑡) = −3.70255 × 10−17 + 1.0𝑡 + 0.493448𝑡2 − 0.00211828𝑡3 − 0.0416507𝑡4

+ 0.000109127𝑡5 + 0.00138829𝑡6 − 2.49434 × 10−6𝑡7 − 0.0000249136𝑡8

+ 1.22844 × 10−7𝑡9 + 2.45148 × 10−7𝑡10, 

  𝑋2,10(𝑡) = −2.26634 × 10−19 − 3.70657 × 10−14𝑡 + 0.00310345𝑡2 + 0.000999021𝑡3 −

8.57585 × 10−6𝑡4 − 0.0000516683𝑡5 + 2.9605 × 10−7𝑡6 + 1.22859 × 10−6𝑡7 −

3.30126 × 10−9𝑡8 − 1.86713 × 10−8𝑡9 + 7.99694 × 10−10𝑡10, 

𝑋3,10(𝑡) = −2.14802 × 10−20 − 4.13529 × 10−14𝑡 + 0.00344828𝑡2 + 0.00111926𝑡3 −

                      7.37414 × 10−6𝑡4 − 0.0000574384𝑡5 + 2.52255 × 10−7𝑡6 + 1.36582 × 10−6𝑡7 −

                      2.29114 × 10−9𝑡8 − 2.07615 × 10−8𝑡9 + 8.75351 × 10−10𝑡10, 

 

 

We compare the CPU time of the current method and the BRCM [3] both employing a 

10𝑡ℎ degree polynomial, along with the RK4 with step size Δ𝑡 = 0.1 and Mathematica 

default solver and present the results in Table 1.  We can see from this table that, even 

with a high-degree polynomial, the CPU time of the proposed method is quite small 

compared to RK4 and Mathematica, but significantly smaller than the BRCM.  This 

demonstrates the high efficiency of the current method. 

Table 1. Comparison of the CPU time 

 BRCM [3] GWM RK4 Mathematic
a 

CPU 4.29 0.080411 0.011045 0.104975 

 

Table 2 represents the results of the GWM, the Bernoulli Ritz-collocation method 

(BRCM) [3], the Bessel collocation method (BCM) [3] all using 10𝑡ℎ degree polynomials 

as well as the fourth order Runge Kutta method (RK4) with stepsize Δ𝑡 = 0.1 and 
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Mathematica default solver.  One can see from the table that the solution of the current 

method agrees well with the other numerical methods.  

 

Table 2. Comparison of the BCM [5], the BRCM [3], the GWM all using 10𝑡ℎ  order 

polynomials, together with the RK4 and Mathematica default solver for each lake 
 

 

 

In order to validate the proposed method, we calculate the residual error of the 

approximate solution for each lake. 𝑅𝐸𝑋1(𝑡),   𝑅𝐸𝑋2(𝑡)  and 𝑅𝐸𝑋3(𝑡) represent the residual 

error calculated by substituting the approximate solutions into Eq. (2.1)  

 

 𝑅𝐸𝑋1(𝑡𝑖) = |
𝐹13

𝑉3
𝑋3(𝑡𝑖) −

𝐹31

𝑉1
𝑋1(𝑡𝑖) −

𝐹21

𝑉1
𝑋1(𝑡𝑖) + 𝑝(𝑡𝑖) −

𝑑𝑋1(𝑡𝑖)

𝑑𝑡
|, 

 

 𝑅𝐸𝑋2((𝑡𝑖)) = |
𝐹21

𝑉1
𝑋1((𝑡𝑖)) −

𝐹32

𝑉2
𝑋2((𝑡𝑖)) −

𝑑𝑋2(𝑡𝑖)

𝑑𝑡
 |,                                

 

𝑅𝐸𝑋3((𝑡𝑖)) = |
𝐹31

𝑉1
𝑋1((𝑡𝑖)) +

𝐹32

𝑉2
𝑋2((𝑡𝑖)) −

𝐹13

𝑉3
𝑋3((𝑡𝑖)) −

𝑑 𝑋3(𝑡𝑖)

𝑑𝑡
|. 

 

Table 3 presents the comparison of the residual error of the current technique, the 

Boubaker polynomial method (BPM) [7] and BCM [5] using 3𝑟𝑑 degree polynomials. 

One can see that the results are quite close to each other.  But at some points the residual 

error of the current method is smaller. 

 

 

  t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1 

 RK4 0.21965447 0.47775668 0.77185868 1.09805724 1.45114967 

 BCM [5] 0.21965447 0.47775668 0.77185867 1.09805723 1.45114965 

X1(t) BRCM [3] 0.21965450 0.47775670 0.77185870 1.09805700 1.45115000 

0.21965447 0.47775668 0.77185867 1.09805723 1.45114965  GWM 

 Mathematica 0.21965442 0.47775665 0.77185865 1.09805724 1.45114961 

 RK4 1.321000 × 10−4 5.597440× 10−4 1.327949× 10−3 2.477595 × 10−3 4.043729× 10−3 

 BCM [5] 1.320999× 10−4 5.597436× 10−4 1.327949 ×
10−3 

2.477594× 10−3 4.043728× 10−3 

X2(t) BRCM [3] 1.320999× 10−4 5.597436× 10−4 1.327949× 10−3 2.477594 × 10−3 4.043728× 10−3 

1.320999× 10−4 5.597436× 10−4 1.327949×10−3 2.477595× 10−3 4.043729× 10−3  GWM 

 Mathematica 1.321079×10−4 5.597516× 10−4 1.327957× 10−3 2.477603× 10−3 4.043736× 10−3 

 RK4 1.468551× 10−4 6.225831× 10−4 1.477767×10−3 2.758464× 10−3 4.504315× 10−3 

 BCM [5] 1.468549 × 10−4 6.225828 × 10−4 1.477766×10−3 2.758463× 10−3 4.504314× 10−3 

X3(t) BRCM [3] 1.468549 × 10−4 6.225828× 10−4 1.477766×10−3 2.758463 × 10−3 4.504314× 10−3 

1.468549 × 10−4 6.225828 × 10−4 1.477766×10−3 2.758463 × 10−3 4.504314× 10−3  GWM 

 Mathematica 1.468639× 10−4 6.225917× 10−4 1.477775×10−3 2.758472× 10−3 4.504323× 10−3 
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Table 3. Comparison of the residual errors for the BPM [7], the BCM [5] and the GWM 

using 3𝑟𝑑 order polynomials for each lake 
 

  t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1 

 
REX1,3(t) 

BPM [7] 0 1.96030 × 10−3 1.10160 × 10−3 1.61790 × 10−3 7.36010 × 10−3 3.18840 × 10−2 

BCM [5] 0 1.96030 × 10−3 1.10160 × 10−3 1.61790 × 10−3 7.36010 × 10−3 3.18840 × 10−2 

GWM 0 5.67899 × 10−4 6.60513 × 10−4 8.89004 × 10−4 2.07430 × 10−3 1.60792 × 10−2 

 
REX2,3(t) 

BPM [7] 0 4.56380 × 10−6 2.60790 × 10−6 3.91180 × 10−6 1.82550 × 10−5 8.14960 × 10−5 

BCM [5] 0 4.56380 × 10−6 2.60790 × 10−6 3.91180 × 10−6 1.82550 × 10−5 8.14960 × 10−5 

GWM 0 1.47272 × 10−6 1.74049 × 10−6 2.39078 × 10−6 5.71874 × 10−6 4.56543 × 10−5 

 
REX3,3(t) 

BPM [7] 0 4.97420 × 10−6 2.84240 × 10−6 4.26360 × 10−6 1.98970 × 10−5 8.88260 × 10−5 

BCM [5] 0 4.97420 × 10−6 2.84240 × 10−6 4.26360 × 10−6 1.98970 × 10−5 8.88260 × 10−5 

GWM 0 1.60864 × 10−6 1.90112 × 10−6 2.61143 × 10−6 6.24654 × 10−6 4.98679 × 10−5 

 

Once the degree of the approximation polynomial increases, the residual error of the 

current method decreases.  Table 4 shows that the residual error of the current method is 

smaller than the other methods after 𝑡 = 0.4 when the degree of the polynomial is 6.   A 

similar behavior is observed in Table 5. At 𝑡 = 0, the residual error of the methods are 

close to each other, but after this time the residual error of the current method is smaller 

than the other methods.  Hence, we may say that the proposed method is more accurate 

than the BPM and the BCM. 
 

Table 4. Comparison of the residual errors for the BPM [7], the BCM [5] and the GWM 

using 6𝑡ℎ order polynomials for each lake 

 

Table 5. Comparison of the residual errors for the BPM [7], the BCM [5] and the GWM 

using 10𝑡ℎ order polynomials for each lake 
 

 

  t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1 

 
REX1,6(t) 

BPM [7] 0 4.22730 × 10−8 4.11970 × 10−8 6.56580 × 10−8 2.02930 × 10−7 1.04560 × 10−5 

BCM [5] 0 4.22730 × 10−8 4.11970 × 10−8 6.56580 × 10−8 2.02930 × 10−7 1.04560 × 10−5 

GWM 0 6.64391 × 10−8 2.11896 × 10−8 4.44089 × 10−16 6.55893 × 10−8 2.44337 × 10−6 

 
REX2,6(t) 

BPM [7] 0 6.07690 × 10−10 5.54390 × 10−10 8.31580 × 10−10 2.43080 × 10−9 1.18990 × 10−7 

BCM [5] 0 6.07690 × 10−10 5.54390 × 10−10 8.31580 × 10−10 2.43080 × 10−9 1.18990 × 10−7 

GWM 0 9.59807 × 10−10 2.86258 × 10−10 7.80964 × 10−19 7.87210 × 10−10 2.78344 × 10−8 

 
REX3,6(t) 

BPM [7] 0 6.78000 × 10−10 6.18530 × 10−10 9.27790 × 10−10 2.71200 × 10−9 1.32750 × 10−7 

BCM [5] 0 6.78000 × 10−10 6.18530 × 10−10 9.27790 × 10−10 2.71200 × 10−9 1.32750 × 10−7 

GWM 0 1.07099 × 10−9 3.19418 × 10−10 1.09606 × 10−18 8.78399 × 10−10 3.10587 × 10−8 

  t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1 

 
 

REX1,10(t) 

BPM [7] 0 1.26760×10−13 1.21070×10−13 9.85880×10−14 5.07370×10−14 4.89280×10−11 

BCM [5] 0 1.24480×10−13 2.53460×10−13 3.91240×10−13 5.41460 × 10−13 4.96510×10−11 

GWM 0 1.15200×10−13 4.38538×10−15 5.55112×10−17 1.13243×10−14 2.08822×10−12 

 
 

REX2,10(t) 

BPM [7] 0 6.61150×10−16 8.09190×10−16 9.37060×10−16 1.01970×10−15 5.45960×10−13 

BCM [5] 0 1.76210×10−15 3.45760×10−15 5.08630×10−15 6.64640×10−15 5.38930×10−13 

GWM 0 1.49896×10−15 5.23647×10−17 1.90972×10−18 1.37462×10−16 2.35596×10−14 

 
 

REX3,10(t) 

BPM [7] 0 7.45460×10−16 9.14160×10−16 1.06390×10−15 1.16670×10−15 6.09290×10−13 

BCM [5] 0 1.52350×10−15 2.95500×10−15 4.28400×10−15 5.51610×10−15 6.17950×10−13 

GWM 0 1.67600×10−15 6.12146×10−17 1.07865×10−18 1.54378×10−16 2.63161×10−14 
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Fig. (2) represents the residual error for the lake pollution model of a three-lake 

interconnected system, solved by using the Gegenbauer Wavelet Method (GWM) with 

polynomial degrees of 3, 6, and 10.  Each curve in the graph corresponds to the residual 

error for a different polynomial, allowing a clear comparison of the solution accuracy 

across varying levels of approximation.  The figure demonstrates that as the degree of 

the polynomial increases, the residual error decreases significantly, highlighting the ability 

to provide precise and refined solutions for the interconnected lake pollution model. 

 

Figure 2.  Residual error of 𝑅𝐸𝑋1(𝑡), 𝑅𝐸𝑋2(𝑡)  and 𝑅𝐸𝑋3(𝑡) for  𝑀 = 4, 𝑀 = 7 and    𝑀 =

11 on 0 ≤ 𝑡 ≤ 1 for Lake 1, Lake 2, Lake 3,  respectively. 

Fig. (3) illustrates the level of pollution in three lakes (Lake 1, Lake 2, and Lake 3) over 

a longer   period of time.  We compare the solution curves for the lake pollution model 

obtained by using 10th degree polynomial and the RK4 method with step size Δ𝑡 = 0.1 .  
These graphs show the pollution dynamics over an extended time.  Both methods exhibit 

excellent agreement throughout the time period, demonstrating that the GWM and the 

RK4 maintain high accuracy even over the extended time frame.  This highlights the 

robustness and reliability of the current approach in modeling the interconnected lake 

pollution system.  

One can see from Fig. (3) that the increase of the contamination in the first lake is 

significant with a sinusoidal behaviour, while the second and third lakes are contaminated 

as well with an exponential behaviour but the level of pollution at these lakes are much 

smaller than the first lake, and nearly equal to each other. 

 



GÜMGÜM S. 
 

747 

 

 

Figure 3. 𝑋1(𝑡), 𝑋2(𝑡)  and 𝑋3(𝑡) of the GWM solutions with 10𝑡ℎ degree polynomials 

with 𝑙 = 1 and RK4  Δ𝑡 = 0.1 for 0 ≤ 𝑡 ≤ 12  for each of the lakes. 

 

4. Conclusion  

In this study, we investigated the pollution dynamics within a system of three 

interconnected lakes, employing the   Gegenbauer wavelet method to effectively solve 

this system.  Our approach is notable for its dual application across  both short-term (𝑡 =
0 to 𝑡 = 1) and extended time intervals (𝑡 = 0 to 𝑡 = 12), offering a novel perspective 

on long- term pollutant behavior modeling.  Comparative analysis with Mathematica 

default solver, the 4𝑡ℎ order Runge-Kutta method, and other techniques demonstrates the 

superior accuracy of the Gegenbauer wavelet method, with minimized residual errors 

confirming its robustness.  The residual error graphs further validate the method’s 

effectiveness, high-  lighting its potential for precise long-term pollution forecasting in 

environmental models.  Additionally, the Gegenbauer wavelet method exhibits 

considerable computational efficiency, even when utilizing high-degree 

polynomials.   Despite the inherent complexity of high-degree expansions, our approach 

maintains practical CPU time, underscoring its suitability for large-scale or real-time 

applications.  This computational efficiency, combined with the stability and adaptability, 

makes it a highly practical choice in the solution of complex systems with high precision 

while minimizing computational demands.  This work underscores the versatility and 

effectiveness of the Gegenbauer wavelet method in addressing complex environmental 

systems, paving the way for future research on adaptive wavelet techniques in similar 

applications.  
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