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ABSTRACT: We consider the problem of accurate in-body ranging for localization of a wireless capsule 

endoscope utilizing ultra-wide band (UWB) signaling. In this context, we explore the joint use of neural 

network structures and learning algorithms based on metaheuristics, an example of which is particle 

swarm optimization (PSO). The contributions of this paper are three-fold. First, we undertake a 

systematic performance analysis of the PSO technique for UWB-based in-body ranging and propose an 

improved version of the PSO algorithm. Second, we quantitatively compare the performance of PSO 

techniques against more traditional learning algorithms, such as Bayesian Regularization, Levenberg-

Marquardt and Single Conjugate Gradient. Third, we quantify the impact of activation functions used to 

define the neural network structure on performance. Our results indicate that PSO-based techniques can 

outperform traditional techniques by as much as 44%, depending on the activation functions used in the 

neural network. 

    

Key Words: In-body ranging, Metaheuristics algorithms, Neural network, Particle swarm optimization, Ultra-

Wide band, Wireless capsule endoscopy. 

 

 

Parçacık Sürü Optimizasyonuna Dayalı Sinir Ağları Kullanılarak Ultra Geniş Bant Kablosuz 

Kapsül Endoskopide Vücut İçi Mesafe Ölçümü 

 

ÖZ: Bu makalede, ultra geniş bant (UWB) sinyalleri kullanan bir kablosuz kapsül endoskopunun 

lokalizasyonu için hassas vücut içi mesafe ölçümü problemi ele alınmaktadır. Bu bağlamda, yapay sinir 

ağları ve metaheuristik temelli öğrenme algoritmalarının (örnek olarak parçacık sürüsü optimizasyonu 

(PSO) ortak kullanımı irdelenmektedir. Makalenin literatüre katkıları şu şekilde özetlenebilir. İlk olarak, 

UWB tabanlı vücut içi mesafe ölçümü için PSO algoritmasının sistematik bir performans analizi yapılmış 

ve söz konusu problemin çözümü için PSO algoritmasının geliştirilmiş bir versiyonu önerilmiştir. İkinci 

olarak, önerilen PSO algoritmasının performansı Bayesian Regularization, Levenberg-Marquardt ve 

Single Conjugate Gradient gibi geleneksel öğrenme algoritmaları ile karşılaştırılmıştır. Son olarak, yapay 

sinir ağlarında kullanılan aktivasyon fonksiyonlarının performans üzerindeki etkileri incelenmiştir. Elde 

edilen sonuçlar, önerilen PSO algoritması vasıtası ile geleneksel tekniklere nazaran  % 44’e varan 

performans artışları elde edilebileceğini göstermektedir. 

 

Anahtar Kelimeler: Vücut içi mesafe ölçümü, Metasezgisel algoritmalar, Sinir ağları, Parçacık sürü 

optimizasyonu, Ultra geniş bant, Kablosuz kapsül endoskopi. 

 

INTRODUCTION 

 

Wireless capsule endoscopy (WCE) is a new medical diagnosis technique which, compared to 

traditional endoscopy techniques, allows the diagnosis of the diseases of the gastrointestinal (GI) tract in 
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a relatively painless, non-invasive manner (Swain, 2003). A general overview of the whole system is 

shown in Figure 1. The camera automatically takes pictures as it goes along the GI tract, and sends the 

images using an on-board wireless transmitter to a body-mounted receiver. The image data is recorded 

and can then be reviewed by a gastroenterologist. 

 

 
 

Figure 1. General overview of a wireless capsule endoscopy system 

 

For all of its considerable advantages, current WCE systems also have a deficiency in that it is not 

possible to correlate the camera images with a unique location in the GI tract. This makes subsequent 

diagnosis and treatment much more difficult. Therefore, localization of the capsule inside the GI tract 

needs to be addressed. Localization of the capsule can be performed using range-based techniques (which 

involve the processing of range, or distance measurements of the wireless transceiver from a number of 

reference points), angle-based techniques or pattern-recognition techniques (Pahlavan and Levesque, 2005). 

In this paper our focus is on range-based localization.  

For range-based localization to work, it is critical that accurate measurements of the capsule 

transceiver range from the reference points are available. One of the ways in which this can be 

accomplished is through the use of ultra-wide band (UWB) technology. Advantages of UWB technology 

include very high bandwidths (important for high-resolution image transmission from within the GI 

tract), low-power operation and the ability to accomplish high-accuracy ranging in challenging 

environments (Yuce et al., 2009; Chavez and Balasingham, 2013). Therefore, we focus on range-based 

localization using UWB signals in this paper. 

However, accurate ranging with UWB signals in the in-body environment is a challenging problem. 

The human body is an example of a lossy propagation environment, where the electrical permittivity 

and conductivity of body tissues are frequency-dependent (for an excellent review of this frequency 

dependence, the interested reader is referred to the work of Gabriel, accessible via 

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA303903). For UWB-based communication and ranging, 

characterization of this complicated frequency dependence is of paramount importance and a recent 

study on this specific topic can be found in (Kanaan and Suveren, 2015).  As a result, the UWB signal is 

distorted in a frequency-selective manner, which makes high-accuracy ranging difficult. 

Previous work on in-body ranging using UWB signals can be found in (Chen et al., 2013; Chen, 

2013). Traditionally, UWB-based ranging in challenging propagation environments (such as the indoor 

environment) has been accomplished using the Time of Arrival (TOA) parameter (Lee and Scholtz, 2002; 

Shang et al., 2013). However, because UWB signals are distorted in a frequency-dependent manner by 

the body tissues, accurate estimation of the TOA is difficult. Because of this difficulty, it is more feasible 

to use the strength of the received UWB signal, also known as the Received Signal Strength (RSS) metric, 

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA303903)
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for ranging and localization purposes. Prior research has concluded that RSS-based ranging and 

localization problems can be more effectively solved by means of machine learning techniques, such as 

neural networks (NNs) (Fang and Lin, 2008; Dai et al., 2016). In this paper, we have chosen to adopt a 

NN-based approach to the problem of in-body ranging using UWB signals specifically for this reason. 

  Preliminary studies on NN-based in-body ranging using UWB has been conducted, the results of 

which have been reported in (Kanaan and Suveren, 2016a; Kanaan and Suveren, 2016b). These works 

focused on studying the performance of two well-known NN structures, namely the Multilayer 

Perceptron (MLP) and Cascade MLP (C-MLP) structures, in the presence of the Levenberg-Marquardt 

(L-M), Bayesian Regularization (BR) and Single Conjugate Gradient (SCG) training algorithms and 

varying number of neurons in the hidden layer. A considerably expanded study that compared the 

performance of NN-based range estimators versus other estimators (such as those that are based on the 

CLEAN algorithm) is presented in (Kanaan and Suveren, 2017).   

Since the process of training a neural network can be framed as an optimization problem, the 

following question deserves to be answered: are there other optimization approaches that could enhance 

the performance of NN-based ranging? A possible answer to this question may come in the form of 

metaheuristics, which take inspiration from biological phenomena, such as the behavior of schools of fish, 

ant colonies, in order to solve challenging optimization problems (Yang, 2008; Talbi, 2009). Our main 

objective in this paper is to perform a more extensive investigation on NN-based in-body ranging using 

UWB signals, where the NN is trained with metaheuristics techniques. A literature review of various 

metaheuristics algorithms used for training NN are available in (Alba and Marti, 2006; Boussaïda et al., 

2013). Due to space limitations, we have arbitrarily chosen to focus on only one such technique, namely, 

particle swarm optimization (PSO) (Kennedy and Eberhart, 1995; Ch and Mathur, 2012; Garro and 

Vázquez, 2015; Garg et al., 2014).  

As the first contribution of this paper, we present a systematic performance analysis of an NN-based 

range estimator trained using the PSO algorithm, and propose an improved PSO algorithm using the 

strategy of elitism. The second contribution of this paper is to quantitatively compare the performance of 

NN-based range estimators where the NN is trained in accordance with the PSO algorithm, versus the 

cases where the NN is trained with more traditional algorithms, such as the Levenberg-Marquardt (L-

M), Bayesian Regularization (BR) and Single Conjugate Gradient (SCG) algorithms. Our results indicate 

that the use of metaheuristics techniques such as PSO can noticeably improve the performance of NN-

based range estimators, as opposed to standard NN training algorithms such as LM, BR and SCG.   The 

third and final contribution of the paper is to quantify the impact of different activation functions used 

for individual neurons in the network on the final ranging performance. It should be emphasized at this 

juncture that our objective in this paper is simply to explore the application of PSO techniques 

specifically to the solution of the NN-based in-body ranging problem.  

The rest of this paper is organized as follows. In section 2, we present details of the simulation and 

performance analysis environment used for this study. The use of the PSO algorithm for in-body 

ranging is presented in section 3. In section 4, performance results and a quantitative discussion of those 

results are given. Section 5 concludes the paper.   

 

SIMULATION AND PERFORMANCE ANALYSIS ENVIRONMENT 

 
The first phase of our study on UWB-based in-body ranging involves the characterization of the 

propagation environment in this environment for the specified band. For this purpose, we have 

employed the use of a 3-D electromagnetic simulation software, known as XFDTD™, from Remcom, Inc. 

This package allows the calculation of electric and magnetic field intensities over a region of interest, 

using the Finite Difference Time Domain (FDTD) technique, subject to boundary conditions specified in 

the problem (for more information on this software package, the interested reader is referred to 

http://www.remcom.com/xf7). Since we are interested in characterizing the in-body environment for this 

study, a 3-D voxel model of the human body is required. The model utilized for this study was based on 
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the Visible Human dataset, developed and maintained by the United States National Library of 

Medicine (for more details of this data set, please see 

http://www.nlm.nih.gov/research/visible/visible_human.html). Figure 2-a shows a general view of the 

whole-body 3-D voxel model, which has been truncated in order to keep calculation times within 

tolerable limits, as illustrated by Figure 2-b.  

 

 
Figure 2. 3-D voxel models used for performance analysis (a) the whole-body model   

(b) truncated chest model. 

 
Parameter values used in the FDTD calculation were as follows. FDTD cell size was 2 mm in the x 

and y directions, and 0.5 mm; these values were selected in order to satisfy the Courant limit. The 

Perfectly Matched Layer (PML) boundary condition was applied to the 3-D model in order to account 

for the effects of reflections from the body environment.  

Since the scenario focused on in this study was UWB-based WCE, the next step was to embed a 

UWB transmit antenna (as a proxy for the actual endoscopy capsule) within the GI tract. Since WCE is 

mostly used to image the small intestine, the UWB antenna was inserted into the body model at several 

locations within the small intestine, in order to model the UWB signal characteristics there. A total of 32 

locations within the small intestine were selected, as depicted in Figure 3-a and Figure 3-b. The 

particular antenna used for this study was the elliptic disc dipole antenna, illustrated in Figure 3-c, 

details of which are given in (Khaleghi and Balasingham, 2009). It should be noted, however, that the 

overall size of the antenna was scaled down by a factor of two, in order to make the antenna small 

enough to fit in the small intestine. The antenna was fed with a modulated Gaussian pulse, with a center 

frequency of 4.1 GHz and a -10 dB bandwidth of 1.4 GHz. In this manner, we have ensured that most of 

the spectral content of the transmitted signal resided in the 3.4-4.8 GHz range, which has come to be 

known as the “UWB low band” in the literature. The rationale for this choice was the fact that this part 

of the UWB band has more favorable propagation characteristics in the in-body environment (Wang and 

Wang, 2013). For the receive side, an array of receive antennas, modeled as point sensors, were 

incorporated into the simulation model. The number of these point sensors was fixed at 64. 

 

 

 

 

http://www.nlm.nih.gov/research/visible/visible_human.html)
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Figure 3. Antenna locations within the small intestine: (a) General view (b) Detail view (c) Elliptic disc 

dipole antenna  

 

Electric and magnetic field intensity values obtained in this manner were used to calculate values of 

the Poynting vector,  tP ,  defined as the cross product 

 

     t t t P E H  (1) 

 

where  tE and  tH are the values of the time-dependent electric and magnetic field intensities as 

calculated by the FDTD tool, respectively. The magnitude of  tP at each of the receive sensors was 

calculated for every possible location of the transmit antenna within the small intestine; this makes for a 

total of 32 64 2048  data sets. The Fast Fourier Transform (FFT) of each of these data sets was 

computed, and the resulting data set was down sampled at 40-MHz intervals in order to reduce the size 

of the data set. The training time for the NN and the memory requirements are both affected by the size 

of the input data set; therefore, this down sampling step was found to be necessary in order to keep 

these parameters within reasonable limits.  This reduced dataset was then used to train a neural 

network. The process of training the network, i.e. the method through which the synaptic weights were 

adjusted, was accomplished using the PSO (discussed in greater detail in section 3), as well as the BR, 

LM and SCG algorithms, and two different activation functions, namely the log-sigmoid (logsig) and 

tangent-sigmoid (tansig) functions.   

 

NN-BASED RANGING WITH THE PSO ALGORITHM 

 
In this section, we first briefly review the basic PSO algorithm. The PSO algorithm, which was 

introduced by Kennedy and Eberhart in 1995, is an optimization algorithm that is inspired by the 

movement of organisms in a bird flock or fish school (Kennedy and Eberhart, 1995). In the basic PSO, the 

population is considered as a swarm and each particle in the population is considered a potential 

solution. The algorithm updates these particle positions in the search space to find the optimal solution. 

The structure of the basic PSO algorithm is as given in Algorithm 1. below. 

 

Algorithm 1. The main steps of the PSO algorithm 

1: Initialize the particles 

2: While (Stopping conditions are not met) 

3: Calculate fitness values of particles 

4: Modify the best particles in the swarm 

5: Memorize the best particles achieved so far. 

6: Calculate the velocities of particles 

7: Update the particle positions 

8: End while 
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The algorithm determines the modifications to particle velocities by using the personal best and 

global best values. The modification of particle velocities and positions are obtained by using the 

relations 

 

     1 1i i ix t x t v t       (2) 

         1 1 2 21 best gbest

i i i i iv t wv t c k x x t c k x x t               (3) 

 

where  ix t   is the position of the i th particle at time t and  1iv t  is the  velocity for the ith particle 

at time t+1. 
best

ix  represents the personal best solution for particle i and 
gbestx  represents global best 

positions over all particles . w is the inertia weight which determines how the previous velocity of the 

particle influences the velocity in the next iteration. 𝑐1 and 𝑐2 are learning factors whose values  should 

be between 0 and 4. The parameters 1k  and 2k  are two random numbers drawn from a uniform random 

number generator in the interval [0,1]. These parameters can have a large impact on optimization 

performance. Selection of the optimum values for all these parameters has been the subject of much 

research (Shi and Eberhart, 1999; Uy et al., 2007; Xin et al., 2009; Liu et al., 2010; Jordehi and Jashi, 2013). 

The aim of all metaheuristics techniques is to iteratively improve the quality of the population. For 

this purpose almost all evolutionary algorithms use greedy selection which means selecting the better 

one between the current solution and new candidate solution, while the PSO algorithm replaces the old 

solution with the candidate solution directly without checking performance. This creates the risk that the 

best solutions in the population might be lost. In order to avoid deterioration of the current solution, 

most evolutionary algorithms utilize the concept of elitism. 

In order to improve the performance of the basic PSO algorithm, we propose a modification, known 

as Improved PSO (IPSO). IPSO utilizes the strategy of elitism where the worst solutions are replaced by 

a certain number of the best solutions in every generation. In other words, at every iteration, a certain 

number of best-performing solutions are carried forward to the next iteration. We formalize this 

replacement by defining a “keep-x” parameter, where x represents the number of best-performing 

solutions that are carried forward to the next iteration; the lower the value of x, the more elitist the 

algorithm will be.  If this replacement results in duplicate solutions, they  are modified  randomly to 

continue the search beyond the local optimal solution as detailed  in Algorithm 2 below. 

 

Algorithm 2. The main steps of the IPSO algorithm 

1: Initialize the particles 

2: While (Stopping conditions are not met) 

3: Calculate fitness values of particles 

4: Modify the best particles in the swarm 

5: Memorize the best particles achieved so far. 

6: Calculate the velocities of particles 

7: Update the particle positions 

8: Replace x worst solutions with elite solutions 

9: Modify duplicate solutions 

10: End while 

 

RESULTS AND DISCUSSION 

 
The performance of PSO, IPSO, BR, LM and SCG algorithms was evaluated under different NN 

configurations and different activation functions. For all cases, the NN structure involved one input 

layer, one output layer and a single hidden layer. The number of neurons in the hidden layer was varied 

between 4 and 32. The activation functions used on the individual neurons were varied between the 

tangent-sigmoid and log-sigmoid functions. For the sake of simplicity, the same activation function was 
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used on all neurons in the network. For the PSO and IPSO algorithms, the population size was 64, the 

maximum number of cycle was 1000, the learning factors were both set to 1.8 and inertia weight was set 

to 0.6 as recommended in (Vesterstrom and Thomsen, 2004). All algorithms were run 30 times for a 

statistically meaningful comparison of the results. In addition, the data sets were normalized to the 

range [0,1] and randomly shuffled before training the network. 

The first set of results we present involves a comparison of the standard PSO and IPSO algorithms 

for different hidden layer sizes, and the use both of the log-sigmoid (logsig) and tangent-sigmoid 

(tansig) activation functions. These results are given in Table 1. For the case of the IPSO algorithm, the 

impact of the degree of elitism was also investigated, where a certain number of best-performing 

solutions are kept between one iteration of the algorithm to the next: the scenario ‘IPSO-Logsig-Keep 4’, 

for example, means that the four best-performing solutions are carried forward to the next iteration (i.e. 

the value of x in the “keep-x” parameter equals 4).  In order to come up with a single figure of merit to 

compare all scenarios, the average root mean square error (RMSE) across all hidden layer sizes is also 

computed and presented in Table 1, and the algorithms are ranked on the basis of best-case performance 

for each type of activation function. Note that in the tables, the scenarios with the best individual 

performance are highlighted in bold type. 

 

Table 1. Comparison of the ranging RMSE (in mm) between IPSO and standard PSO for different 

hidden layer sizes and activation functions. 

Activation 

Function 

Simulation 

Scenario 

Number of neurons in the hidden layer 
Mean 

RMSE 

Rank of 

Mean 

RMSE 4 8 16 32 

Logsig 

IPSO-Keep 32 31.44 30.41 30.29 29.88 30.50 5 

IPSO-Keep 16 30.86 29.91 29.84 29.78 30.10 1 

IPSO-Keep 8 30.04 29.85 30.43 30.18 30.13 2 

IPSO-Keep 4 30.99 29.98 29.97 30.02 30.24 4 

PSO 30.42 30.55 29.82 29.83 30.16 3 

Tansig 

IPSO-Keep 32 29.52 29.59 29.66 29.28 29.51 3 

IPSO-Keep 16 29.35 29.34 29.22 29.13 29.26 1 

IPSO-Keep 8 29.63 29.26 29.41 29.48 29.44 2 

IPSO-Keep 4 30.30 29.33 29.68 29.64 29.74 4 

PSO 29.69 29.65 30.18 30.38 29.98 5 

 

One striking observation we can make on the basis of Table 1 is that the performance of IPSO does 

not necessarily get better as the algorithm becomes more elitist, i.e. as the value of x in the “keep-x” 

parameter is lowered. This is readily seen from the first four rows of Table 1, where we see that a value 

of x = 4 does not lead to the best ranging performance across all hidden layer sizes. In fact, the best 

average performance across all hidden layer sizes is attained when x = 16. The results of Table 1, the 

best-performing IPSO scenario has a better performance compared to the PSO algorithm for both logsig 

and tansig transfer functions. This somewhat counterintuitive finding may have to do with the size of 

the data set used to train the network, as well as a host of other nonlinear effects that are characteristic of 

a computational structure such as a neural network, and deserves further investigation.  

The next set of results involves a comparison of the BR, LM, SCG and IPSO algorithms on their own 

based on the logsig and tansig activation functions, as presented in Table 2.  
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Table 2. Comparison of the ranging RMSE (in mm) between BR, LM, SCG and IPSO algorithms for 

different hidden layer sizes and activation functions. 

Activation 

Function 

Simulation 

scenario 

Number of neurons in the hidden layer Mean 

RMSE 

Rank of 

Mean 

RMSE 4 8 16 32 

Logsig 

BR 53.61 53.40 53.67 53.02 53.42 3 

LM 54.47 53.70 54.65 54.79 54.40 4 

SCG 53.65 53.16 53.06 53.07 53.24 2 

IPSO 30.86 29.91 29.84 29.78 30.10 1 

Tansig 

BR 29.95 30.32 32.25 31.19 30.93 3 

LM 31.96 36.45 32.33 37.72 34.61 4 

SCG 29.96 29.67 29.59 29.33 29.64 2 

IPSO 29.35 29.34 29.22 29.13 29.26 1 

 

We can immediately infer from Table 2 that, on average, the best performing algorithm across all 

hidden layer sizes is the IPSO algorithm. In the case of the logsig activation function, we see that IPSO 

enjoys a clear performance advantage against BR, LM and SCG algorithms. The exact amount of this 

performance can be found by comparing the average RMSE figures and is seen to be approximately in 

the 43.5-44.5% range. In the  case of the tansig activation function, however, such a big performance gap 

does not seem to exist; the results indicate that amount of performance improvement obtained by using 

IPSO is approximately in the 1.3 – 5% range. The point to take away from these results is that the IPSO 

algorithm, and thus metaheuristics techniques in general, do have potential for accurate in-body 

ranging. However, the performance improvement obtained by the IPSO algorithm is dependent on the 

activation function used. 

For a different perspective on these results, we now turn to Figure 4, where, for the case of   the log-

sigmoid activation function, the best-performing IPSO scenario (referred to as “IPSO-logsig-keep 16” 

with 32 neurons in Table 1) is compared against the traditional algorithm with the best individual 

performance, namely the BR algorithm with 32 neurons. The comparison is now on the basis of the 

cumulative distribution function of the ranging error obtained empirically from the simulation results. 

The figure reveals that the IPSO algorithm attains a ranging error of 48.3 mm or less with 90% 

probability, whereas the BR algorithm is able to achieve a ranging error of 87.94 mm or less with the 

same probability. For the tangent-sigmoid activation function, the IPSO algorithm is compared in the 

same manner against the best-performing traditional algorithm, which turns out to be the SCG 

algorithm. These results are shown in Figure 5, where we see that both algorithms are able to attain a 

ranging error of approximately 50 mm or less with 90% probability. The main point here is that the IPSO 

algorithm is able to achieve a significant performance advantage against traditional algorithms, although 

this performance advantage is also dependent on the choice of the activation function. For yet another 

perspective on the results of Figure 4 and Figure 5, the algorithms exhibiting the best performance for 

the different activation functions are compared on the basis of the mean average error (MAE) and the 

mean relative error (MRE) metrics, as seen in Table 3.   
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Figure 4. Statistical comparison of the IPSO algorithm versus the best-performing traditional algorithm 

(BR): Log-sigmoid activation function. 

 

 
Figure 5. Statistical comparison of the IPSO algorithm versus the best-performing traditional algorithm 

(SCG): Tangent-sigmoid activation function. 

 
Table 3. Comparison of the RMSE, MAE, MRE values between BR, SCG and IPSO algorithms 

Activation 

Function 
Algorithm RMSE MAE MRE 

Logsig 
BR 53,02 44,11 39,87% 

IPSO 29,78 22,69 15,41% 

Tansig 
SCG 29,33 22,91 15,42% 

IPSO 29,13 22,69 15,39% 

 

It may be instructive to compare the results given above with other studies in the literature dealing 

with the problem of NN-based in-body ranging. Unfortunately, in the course of our literature search we 

were unable to locate any other studies in the open literature dealing with this specific problem that 

would permit a direct comparison. 

The results given above serve to highlight two critically important points with regards to the 

problem of in-body ranging using UWB signals.   The first is that metaheuristics techniques such as PSO 
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may have significant potential in terms of accomplishing accurate UWB-based in-body ranging. The 

performance advantage of PSO techniques and the IPSO algorithm in particular, can clearly be seen even 

with other performance metrics such as the MAE and the MRE, as seen in Table 3.  The second point is 

that it is not just the training algorithm, but also the choice of the activation function, which significantly 

impacts performance. These results serve to advance the state of the art which will hopefully make 

accurate in-body ranging and localization a reality in the near future. 

 

CONCLUSIONS 

 
In this paper, we discussed the problem of accurate in-body ranging using UWB signaling and 

explored the utility of metaheuristics concepts, such as PSO, for accomplishing accurate UWB-based in-

body ranging through NN structures. Our results clearly indicate the potential of such techniques for 

this problem, with PSO sometimes outperforming more traditional learning algorithms such as BR, LM 

and SCG by as much as 44% depending on the activation function used in the NN structure. The results 

help to advance the state of the knowledge in the area of accurate UWB-based in-body ranging. 
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