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Graphical/Tabular Abstract (Grafik Özet) 

A novel criterion weighting method, the Extended Statistical Variance Procedure (ESVP), is 
proposed to enhance decision-making by integrating both internal variances and inter-criterion 
contrasts. ESVP outperforms classical SVP in robustness, sensitivity, and discrimination, offering a 
more balanced and comprehensive analytical framework. / Bu çalışmada, kriter ağırlıklandırma 
sürecine yeni bir bakış sunan Genişletilmiş İstatistiksel Varyans Yöntemi (ESVP) önerilmiştir. ESVP, 
içsel varyans ve kriterler arası karşıtlıkları bütüncül şekilde değerlendirerek, klasik SVP’ye kıyasla 
daha dengeli, duyarlı ve sağlam sonuçlar üretmektedir. 

 
Figure A: ESVP model /Şekil A:.ESVP modeli 

Highlights (Önemli noktalar)  
 The ESVP method offers a novel weighting approach by integrating internal variance with 

inter-criterion contrast. / ESVP yöntemi, içsel varyansla birlikte kriterler arası karşıtlığı 
entegre eden yeni bir ağırlıklandırma yaklaşımı sunmaktadır. 

 The method's sensitivity, reliability, and structural consistency were validated through 
sensitivity, simulation and comparative analyses. / Duyarlılık, simülasyon ve 
karşılaştırmalı analizlerle yöntemin duyarlılık, güvenilirlik ve yapısal tutarlılığı 
doğrulanmıştır. 

 It surpasses existing methods in sensitivity to zero/negative values, discriminative power, 
and variance homogeneity. / Yöntem, sıfır ve negatif değerlere duyarlılığı, yüksek ayırt 
ediciliği ve dağılım homojenliği açısından literatürdeki diğer yöntemlerden üstündür. 

Aim (Amaç): The aim of this study is to propose an extended variance-based weighting method that 
simultaneously captures internal and external distributional structures of criteria./ 
Bu çalışmanın amacı, kriterlerin içsel ve dışsal dağılım yapısını eşzamanlı olarak dikkate alan 
genişletilmiş bir varyans temelli ağırlıklandırma yöntemi önermektir. 

Originality (Özgünlük): Unlike SVP, ESVP considers both internal distributions and inter-criterion 
contrasts, offering a more holistic weighting approach./ SVP’den farklı olarak ESVP, içsel dağılımı 
ve kriterler arası karşıtlığı dikkate alarak daha bütüncül bir ağırlıklandırma sunar. 

Results (Bulgular): ESVP showed high correlation with ENTROPY, SVP, SD, and MEREC, while 
maintaining stable rankings and homogeneous variance across simulations. ESVP, ENTROPY, SVP, 
SD ve MEREC ile yüksek korelasyon göstermiş, simülasyonlarda sıralama istikrarı ve homojen 
varyans sağlamıştır. 

Conclusion (Sonuç): ESVP offers a robust and balanced alternative to SVP and other methods, 
particularly in complex MCDM problems requiring variance sensitivity and structural integrity./ 
ESVP, özellikle varyans duyarlılığı ve yapısal bütünlük gerektiren karmaşık MCDM problemlerinde, 
SVP ve diğer yöntemlere güçlü ve dengeli bir alternatiftir. 

https://orcid.org/0000-0002-0161-5862


 

*Corresponding author, e-mail: furkanfahrialtintas@yahoo.com                                                                DOI: 10.29109/gujsc.1691115 

GU J Sci, Part C, 13(X): XX-XX (2025) 
 Gazi Üniversitesi Gazi University  

Fen Bilimleri Dergisi Journal of Science 
PART C: TASARIM VE 

TEKNOLOJİ 
PART C: DESIGN AND 

TECHNOLOGY 

http://dergipark.gov.tr/gujsc 

A Novel Approach to Objective Criterion Weighting: Extended Statistical 
Variance Procedure (ESVP) 
Furkan Fahri ALTINTAŞ1*   
1 Aydın Provincial Gendarmerie Command, Aydın, Türkiye 

Article Info 

Research article 
Received: 04/05/2025 
Revision: 12/07/2025 
Accepted: 22/07/2025 

Keywords 

Variance   
SVP 
ESVP 
Intrinsic Distinction 
External Distinction 

 
Abstract 

This study proposes the Extended Statistical Variance Procedure (ESVP) method to introduce a 
new perspective to criterion weighting processes. To address the limitations of the traditional 
SVP method, which focuses solely on the internal variations of criteria, the proposed method 
comprehensively examines the contrasts among criteria and their contributions to decision-
making processes. In this context, criterion weights are calculated through a mathematical model 
that integrates the internal distribution of each criterion with the effects of its contrasts with other 
criteria. The effectiveness of the method has been tested through analyses focusing on sensitivity, 
reliability, and robustness. When compared to other widely used weighting methods such as 
ENTROPY, CRITIC, SVP, SD, and MEREC, the ESVP method demonstrated high correlations 
with these methods and superior performance. The Simulation analyses further validated the 
stability of the method under varying scenarios, revealing that the variances of criterion weights 
remained homogeneous. Moreover, the method's sensitivity to zero and negative values, 
computational comprehensiveness, and its ability to evaluate contrasts among criteria to 
strengthen decision-making processes provide distinct advantages over other approaches in the 
literature. In conclusion, the ESVP method is considered an effective and reliable tool for 
decision-makers in multi-criteria decision-making problems that require criterion weighting. 
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 Öz 

Bu çalışma, kriter ağırlıklandırma süreçlerine yeni bir bakış açısı kazandırmak amacıyla 
Genişletilmiş İstatistiksel Varyans Yöntemi’ni (Extended Statistical Variance Procedure – ESVP) 
önermektedir. Geleneksel SVP yönteminin yalnızca kriterlerin içsel varyasyonlarına odaklanması 
nedeniyle ortaya çıkan sınırlılıkları gidermek üzere geliştirilen bu yöntem, kriterler arasındaki 
karşıtlıkları ve bu karşıtlıkların karar verme süreçlerine olan katkılarını bütüncül bir biçimde 
incelemektedir. Bu bağlamda, kriter ağırlıkları; her bir kriterin içsel dağılımını, diğer kriterlerle 
olan karşıtlık etkileriyle birlikte entegre eden matematiksel bir model aracılığıyla 
hesaplanmaktadır. Yöntemin etkinliği; duyarlılık, güvenilirlik ve sağlamlık odaklı analizlerle test 
edilmiştir. ENTROPY, CRITIC, SVP, SD ve MEREC gibi yaygın biçimde kullanılan 
ağırlıklandırma yöntemleriyle karşılaştırıldığında, ESVP yönteminin bu yöntemlerle yüksek 
korelasyon gösterdiği ve performans açısından üstünlük sergilediği ortaya konmuştur. 
Simülasyon analizleri, yöntemin farklı senaryolar altındaki istikrarını doğrulamış ve kriter 
ağırlıklarının varyanslarının homojen kaldığını ortaya koymuştur. Ayrıca, yöntemin sıfır ve 
negatif değerlere duyarlılığı, hesaplama kapsamlılığı ve kriterler arası karşıtlıkları 
değerlendirerek karar süreçlerini güçlendirme kapasitesi, literatürdeki diğer yaklaşımlara kıyasla 
özgün avantajlar sunmaktadır. Sonuç olarak, ESVP yöntemi, kriter ağırlıklandırması gerektiren 
çok kriterli karar verme problemlerinde karar vericiler için etkili ve güvenilir bir araç olarak 
değerlendirilmektedir.  

 

1. INTRODUCTION (GİRİŞ) 

Multi-Criteria Decision Making (MCDM) 
methodologies offer structured and systematic 
frameworks for evaluating alternatives based on 

multiple criteria [1]. One of the most critical 
components of these processes is determining the 
relative importance of each criterion, as this directly 
influences the accuracy and reliability of the 
resulting decisions [2]. Criterion weighting is 
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generally categorized into two fundamental 
approaches: subjective and objective methods [3]. 
Subjective methods rely on the experience and 
judgment of decision-makers, whereas objective 
methods derive weights directly from data using 
mathematical models [4]. The primary aim of 
objective weighting techniques is to minimize the 
influence of decision-maker bias and to enable a 
more impartial, data-driven evaluation process [5]. 
In today’s increasingly complex and 
multidimensional decision environments, MCDM 
problems present significant challenges for 
practitioners and analysts [2]. Within this context, 
accurately identifying the relative significance of 
decision criteria becomes essential for ensuring the 
validity, consistency, and credibility of the 
decision-making process. Objective weighting 
methods are widely recognized in the literature for 
their ability to facilitate analytical and data-oriented 
assessments that are independent of subjective 
judgments [1].  

Among the most prominent objective weighting 
techniques in the literature are Standard Deviation 
(SD) [6], ENTROPY [7], Criteria Importance 
Through Inter-Criteria Correlation (CRITIC) [8], 
Statistical Variance Procedure (SVP) [9], Method 
Based on Removal Effects of Criteria (MEREC) 
[10], and Logarithmic Percentage Change-Driven 
Objective Weighting (LOPCOW) [11]. The SVP 
method represents a statistical approach that 
determines weights by analyzing the variance levels 
of the criteria. Its fundamental assumption is that 
criteria with higher variance carry more 
informational value for the decision-making process 
[12]. However, the classical SVP approach focuses 
exclusively on the internal variation of individual 
criteria, without considering their external positions 
or the comparative relationships among them. This 
methodological limitation hinders the 
comprehensive assessment of contrast among 
criteria within the decision matrix, thereby offering 
a constrained perspective for distinguishing 
between alternatives. Furthermore, this restriction 
prevents the holistic evaluation of the overall 
variance structure embedded in the decision matrix 
and limits the model’s ability to ensure adequate 
discrimination among criteria. In this context, the 
existing SVP methodology fails to adequately 
address a significant gap in the literature, 
particularly with respect to ensuring high 
discriminative capacity, structural consistency, and 
scenario-independent robustness. 

In order to address the aforementioned limitations, 
this study proposes the Extended Statistical 
Variance Procedure (ESVP), an enhanced version 

of the classical SVP method. The ESVP method 
offers a more comprehensive weighting mechanism 
by holistically accounting for both the internal 
variation of each criterion and the 
interdependencies among criteria. Rather than 
merely evaluating the variance distribution of 
individual criteria in isolation, ESVP also considers 
the variance potentials of other criteria within the 
decision matrix during the weighting process. By 
doing so, the method analyzes the contribution of 
each criterion’s variance to the overall variance 
structure of the full criterion set. This enables a 
more integrated assessment of both inter-criterion 
contrast and the overall structure of the dataset. In 
this regard, the ESVP method exhibits conceptual 
similarities with the weighting mechanism of the 
CRITIC method, where the internal dispersion of 
each criterion is measured by standard deviation and 
its external divergence from others is captured via 
correlation analysis [8]. Accordingly, ESVP goes 
beyond the classical SVP framework by 
simultaneously evaluating both internal 
distributions and external variance-based contrasts 
in a unified structure. This proposed approach does 
not only capture the influence of each criterion’s 
variance on its own distribution but also considers 
its impact on the variance potential of other criteria. 
In this way, ESVP delivers a more balanced, 
discriminative, and consistent weighting structure. 
Such an integrative perspective allows ESVP to 
outperform traditional techniques, particularly in 
capturing the multidimensional variance structure 
embedded within the decision matrix. 

The primary objective of this study is to 
comprehensively evaluate the effectiveness, 
sensitivity, and structural reliability of the proposed 
Extended Statistical Variance Procedure (ESVP) in 
comparison with the classical SVP approach and 
other widely adopted objective weighting 
techniques. To this end, sensitivity analyses were 
conducted, variance homogeneity tests were 
applied, and multi-scenario simulations were 
employed to assess the method’s stability under 
varying conditions. The empirical results indicate 
that the ESVP method exhibits strong explanatory 
power and maintains its reliability across different 
decision environments. In this context, the present 
study aims to overcome the inherent limitations of 
the traditional SVP method and to fill a significant 
gap in the literature by offering a more robust, 
balanced, and consistent objective weighting 
approach. ESVP is introduced as a next-generation 
tool specifically designed for data-driven MCDM 
applications, providing both original and functional 
contributions to the field. The robustness of the 
ESVP method was verified through extensive 
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sensitivity analyses, while its reliability and validity 
were tested through comparative evaluations. 
Furthermore, scenario-based simulation 
experiments were utilized to evaluate the 
methodological stability. The empirical findings 
consistently demonstrate that the proposed 
approach offers a high level of sensitivity, 
dependability, and robustness. Based on these 
results, ESVP is regarded as a valuable and practical 
tool for decision-makers. 

In conclusion, this study seeks to address a critical 
deficiency in the literature by advancing beyond the 
constraints of the SVP method and proposing a 
stronger, more balanced, and structurally sound 
objective weighting mechanism. ESVP, tailored for 
contemporary data-intensive MCDM contexts, is 
expected to make a meaningful and impactful 
contribution to the decision sciences. Accordingly, 
the study first provides a comprehensive review of 
existing objective weighting techniques, followed 
by a detailed exposition of the mathematical 
formulation underlying the proposed method. 
Subsequently, the performance of the ESVP model 
is rigorously evaluated using a range of analytical 
tools and benchmarked against both the classical 
SVP and alternative objective approaches. The 
paper concludes with a discussion of the findings 
and offers directions for future research. 

2. MATERIALS AND METHODS (MATERYAL 
VE METOD) 

2.1. Various Objective Methods for Weighting 
Techniques and Their Characteristics 
(Ağırlıklandırma teknikleri için çeşitli nesnel yöntemler ve 
bu yöntemlerin özellikleri) 

Selecting the most suitable option from a set of 
alternatives is a core component of decision-
making. In such scenarios, alternatives often 
demonstrate varying performance levels across 
multiple criteria [13]. Accurate determination of the 
relative importance of these criteria is therefore 
crucial for effective alternative evaluation and 
optimal choice selection [14]. This holds 
particularly true in traditional MCDM problems, 
where criterion importance is typically represented 
by assigned weight values [15]. 

Subjective weighting approaches rely heavily on 
individual decision-maker judgment and 
experience, making them prone to personal biases. 
Consequently, assigned weights can differ 
significantly depending on the individual 
performing the evaluation [2]. Although expert 
opinions are often utilized to determine these 
weights, relying solely on subjective evaluations 

may lead to inconsistencies and biases in the 
decision-making process [3]. Conversely, objective 
weighting methods mitigate such biases by 
employing mathematical models and the data within 
the decision matrix to calculate weights, 
incorporating the inherent characteristics of the data 
into the evaluation [4]. 

The MCDM field offers a range of objective 
weighting techniques, including CRITIC [16], 
ENTROPY [17], SD [12], SVP [6], MEREC [18], 
and LOPCOW [19]. The CRITIC method operates 
by extracting pertinent information from the data. 
This method assigns higher importance to criteria 
exhibiting greater distinctiveness or variability [16]. 
Furthermore, CRITIC considers inter-criterion 
relationships by analyzing correlations to identify 
inconsistencies or conflicts. Weights are derived 
using calculated SD values, reflecting these 
interrelationships. This process involves 
constructing a decision matrix, normalizing it, and 
subsequently determining weight coefficients based 
on inter-criterion correlations [20]. 

The ENTROPY method provides a structured 
approach for determining the relative importance of 
criteria in decision-making. The method starts with 
the construction of a decision matrix and then 
continues by computing standardized values. 
ENTROPY is then employed to assess the degree of 
uncertainty or disorder associated with each 
criterion, capturing the information content inherent 
within each [21]. By applying the ENTROPY 
measure to these standardized values, weights are 
assigned to criteria based on their variability. 
Criteria exhibiting greater variability are assigned 
higher weights. This systematic approach ensures 
an objective, data-driven process, enabling 
decision-makers to conduct well-informed and 
balanced evaluations [22]. 

In the SD method, weights are determined by 
analyzing the extent to which each criterion's values 
deviate from their mean. Following normalization 
of the decision matrix, the SD for each criterion is 
computed, and these values are then used to derive 
the weights [23]. 

The SVP method, conversely, calculates weights by 
evaluating the variance of the data within the 
decision matrix [6]. Higher variance indicates 
greater significance in the decision-making process, 
implying that criteria demonstrating more 
variability are assigned larger weights. This ensures 
that criteria with higher variability exert a greater 
influence on the overall evaluation [12]. 
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The MEREC method, like other weighting 
approaches, begins with constructing and 
normalizing the decision matrix. Next, the overall 
performance scores of the decision alternatives are 
computed using a natural logarithm-based 
framework [20]. These scores are then adjusted by 
incorporating the contribution of each alternative, 
with additional calculations utilizing the natural 
logarithm function. In the final step, the weight 
coefficients of the criteria are determined by 
evaluating the impact of removing each criterion, 
quantified as the sum of absolute deviations. 
Moreover, a criterion's weight coefficient increases 
in direct proportion to its influence on the decision 
alternatives [18]. 

The LOPCOW method utilizes a multidimensional 
approach to derive weights while minimizing the 
difference between the most and least influential 
criteria. It also accounts for interdependencies 
between criteria. The process commences by 
constructing and normalizing the decision matrix. 
Subsequently, the method calculates the average 
squared value as a percentage of each criterion's SD 
to mitigate the effects of differing data scales. This 
method ultimately generates weight coefficients for 
each criterion through a structured and systematic 
calculation [19]. 

2.2. Variance (Varyans) 

Variance is calculated by dividing the sum of the 
squared deviations of values from their mean by the 
total number of values [24]. In other words, variance 
reflects the measurement of distributions within a 
dataset. Therefore, variance represents the 
variability within the dataset [25]. Variance stands 
out as a fundamental measure of dispersion in 
statistical data analysis, extending beyond central 
tendency measures to quantify the extent to which 
individual observations within a dataset deviate 
from one another and from the mean [26,27]. In its 
simplest definition, variance refers to the arithmetic 
mean of the squared deviations of observations from 
their mean [28,29]. In this regard, variance 
quantitatively reflects the degree of homogeneity or 
heterogeneity present in a given dataset [30,31]. 

As a core indicator of statistical variability, variance 
captures the spread and density of the distribution 
by measuring how far data points lie from the mean 
[32,33]. A high variance value indicates that 
observations are widely dispersed around the mean, 
suggesting a more scattered and heterogeneous data 
structure [34]. Conversely, low variance values 
imply that data points are tightly clustered around 
the mean, indicating a more homogeneous 

distribution [35]. A proper understanding and 
interpretation of variance is particularly important 
in relation to its mathematical and conceptual 
linkage with standard deviation (SD) [36]. While 
variance is expressed in squared units of the 
observed variable, standard deviation retains the 
original unit of measurement, making it more 
directly interpretable in practical contexts [37]. 
However, this difference does not diminish the 
analytical value of variance; on the contrary, as the 
square root of variance defines the standard 
deviation, variance remains a foundational 
construct in statistical theory and modeling [38]. 
Accordingly, clearly defining the relationship 
between variance and standard deviation is critical 
to ensuring methodological robustness in statistical 
analyses [39]. Standard deviation can be understood 
as the square root of variance, and this fundamental 
relationship is widely utilized across various 
analytical frameworks. In this context, the 
mathematical formulations for variance and 
standard deviation are presented in Equation 1 and 
Equation 2, respectively. Furthermore in the 
statistical literature, the unbiased estimator of the 
population variance is defined by Equation 3. 
Accordingly, the sample standard deviation is 
calculated based on the unbiased variance using 
Equation 4 [40]. 

𝜎𝜎: Standard deviation 

𝑛𝑛: Sample size 

𝑋𝑋: Each observation in the dataset 

𝑋𝑋�:  Sample means 

𝜗𝜗: Variance 

                                  𝜎𝜎 = �∑(𝑋𝑋−𝑋𝑋�)2

𝑛𝑛
                     (1)                                

                                  𝜗𝜗 = ∑(𝑋𝑋−𝑋𝑋�)2

𝑛𝑛
                        (2)                                                                                                           

                                  𝜗𝜗 = ∑(𝑋𝑋−𝑋𝑋�)2

𝑛𝑛−1
                        (3)                                                                                                          

                                  𝜎𝜎 = �∑(𝑋𝑋−𝑋𝑋�)2

𝑛𝑛−1
                     (4)                                                                                                     

2.3. The Use of Variance in Criteria Weighting: 
Statistical Variance Procedure (Kriter 
Ağırlıklandırmada varyansin kullanımı: İstatistiksel 
varyans yöntemi) 

SVP is one of the objective weighting methods for 
decision alternatives. Therefore, in this method, the 
determination of the criteria weights is not 
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influenced by the subjective assessments of experts 
[23]. In this approach, the weighting of criteria is 
based on measuring the variance values of the 
criteria [9]. After the variance values of the criteria 
are measured, the weights of the criteria are  

determined by calculating the ratio of the variance 
of a single criterion to the total variance of all 
criteria [41]. Accordingly, the literature related to 
the SVP method used for criterion weighting is 
presented in Table 1. 

Table 1. SVP studies (SVP çalışmaları) 

Author(s) Method(s) Theme 
[42] WED and SVP Analysis of healthcare decision process 
[43] SVP Analysis of normalization methods 

[44] SVP, SD and ENTROPY-CODAS Comparative of criteria weight scores in 
CODAS 

[45] SVP-TOPSIS Assessment of Athlete 
[46] SD and SVP-TOPSIS Comparative analysis of methods 

[47] Entropy, CRITIC, LOPCOW, SVP, 
SD, and MEREC Combined method analysis 

[48] SVP-TOPSIS Determining of network for IoT 

A review of the existing literature on the SVP 
method reveals that its integration with other 
MCDM techniques has been represented by a rather 
limited number of studies. Most of these 
investigations have been conducted by a small 
group of research teams, which restricts the 
scientific diversity, global awareness, and 
interdisciplinary diffusion of the method. In this 
context, the lack of broader research addressing 
SVP both in terms of methodological development 
and practical application has hindered the full 
recognition of its potential contributions. A key 
reason behind this limitation lies in the classical 
formulation of SVP, which adopts a unidimensional 
perspective focused solely on the internal variation 
of criteria. Such an approach falls short of satisfying 
the holistic assessment requirements demanded by 
complex multi-criteria decision-making 
environments. In particular, by disregarding the 
structural contrasts and inter-criterion divergences 
embedded within the decision matrix, the classical 
SVP model reduces methodological flexibility and 
complicates its integration with other MCDM 
frameworks. Nonetheless, SVP’s core philosophy 
variance-based weighting offers significant 
advantages, as it enables an objective, data-driven 
evaluation. The method possesses strong 
explanatory power and, due to its sensitivity to the 
distributional structure of the decision matrix, it can 
play a critical role in data-intensive decision 
problems. To fully capitalize on these advantages, 
however, it is necessary to move beyond the 
conventional SVP formulation and develop 
extended, next-generation models that can better 
accommodate the complexity of real-world decision 
contexts. In this context, the steps of applying the 
IVP method are outlined below [6, 41].  

𝐶𝐶𝑟𝑟: 𝑟𝑟 − 𝑡𝑡ℎ evaluation criterion 

𝑑𝑑𝑝𝑝𝑝𝑝: value of the 𝑝𝑝 − 𝑡𝑡ℎ alternative according to the 
𝑟𝑟 − 𝑡𝑡ℎ evaluation criterion 

𝑤𝑤𝑟𝑟: weight of the 𝑟𝑟 − 𝑡𝑡ℎ evaluation criterion (𝑟𝑟 =
 1, 2, … ,𝑛𝑛) 

𝑒𝑒𝑝𝑝𝑝𝑝: Normalized score of 𝑑𝑑𝑝𝑝𝑝𝑝 

Step 1: Construction of the Decision Matrix (𝑋𝑋) 

In the initial phase of the MCDM process, the 
decision matrix is constructed to systematically 
represent the quantitative performance of each 
alternative with respect to the relevant criteria. 
Denoted as 𝑋𝑋, this matrix comprises elements where 
𝑑𝑑𝑝𝑝𝑝𝑝indicates the performance value of the 𝑝𝑝 
alternative under the 𝑟𝑟 criterion. The matrix is 
formulated in accordance with the structure defined 
in Equation 5 of the study, thereby establishing a 
robust analytical foundation that enables 
comprehensive evaluation across all criteria. The 
input data may derive from direct measurements or 
expert assessments. During the matrix construction, 
critical aspects such as the directionality of criteria, 
data scale compatibility, and inter-criteria 
comparability must be rigorously considered. 

             𝑋𝑋 =

⎣
⎢
⎢
⎢
⎡𝐶𝐶1𝑑𝑑 11

𝐶𝐶2
𝑑𝑑 12

⋯ 𝐶𝐶𝑛𝑛
𝑑𝑑 1𝑛𝑛

𝑑𝑑21
⋮

𝑑𝑑𝑚𝑚1

𝑑𝑑22
⋮

𝑑𝑑𝑚𝑚2

⋯
⋮
⋯

𝑑𝑑2𝑛𝑛
⋮

𝑑𝑑𝑚𝑚𝑚𝑚 ⎦
⎥
⎥
⎥
⎤

                (5) 

Step 2: Construction of normalized matrix (𝑋𝑋∗)  



 

XX 
 

At this stage, normalization is performed based on 
the orientation of each criterion. For benefit-
oriented (maximization) criteria, normalization 
values are computed using Equation 6, whereas for 
cost-oriented (minimization) criteria, the 
calculations are carried out in accordance with 
Equation 7. In both cases, the primary objective is 
to transform the data into a dimensionless and 
comparable format across different measurement 
scales. Subsequently, the normalized decision 
matrix (𝑋𝑋∗) is constructed by applying Equation 8 
to the previously obtained normalized values. This 
matrix enables a balanced and scale-independent 
evaluation of all alternatives across the full set of 
criteria. In doing so, it establishes a robust and 
coherent data foundation for the subsequent phases 
of the decision-making process. 

                            𝑒𝑒𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑝𝑝𝑝𝑝
𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝

                            (6)                                                                                                     

                           𝑒𝑒𝑝𝑝𝑝𝑝 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝
𝑑𝑑𝑝𝑝𝑝𝑝

                              (7)                                                                                                  

          𝑋𝑋∗ =

⎣
⎢
⎢
⎢
⎡𝐶𝐶1𝑒𝑒 11

𝐶𝐶2
𝑒𝑒 12

⋯ 𝐶𝐶𝑛𝑛
𝑒𝑒 1𝑛𝑛

𝑒𝑒21
⋮

𝑒𝑒𝑚𝑚1

𝑒𝑒22
⋮

𝑒𝑒𝑚𝑚2

⋯
⋮
⋯

𝑒𝑒2𝑛𝑛
⋮

𝑒𝑒𝑚𝑚𝑚𝑚 ⎦
⎥
⎥
⎥
⎤
                 (8)                                                                                 

Step 3: Calculation of variance score of each 
criteria (ϑCr) 

At this stage, the variance value for each criterion is 
calculated using the previously obtained normalized 
values, as defined in Equation 9. Variance serves as 
a quantitative indicator of how dispersed the 
alternatives are with respect to a given criterion, and 
simultaneously reflects the discriminative power of 
that criterion. In this context, criteria with higher 
variance indicate a greater potential to differentiate 
among alternatives, thereby assuming a more 
influential role in the decision-making process. 
Accordingly, this step is not merely a numerical 
computation, but a critical analytical phase aimed at 
quantifying the relative distinctiveness of each 
criterion. The resulting variance values are 
subsequently utilized as a foundational input in the 
weighting procedures of the next stage. 

                               𝜗𝜗𝐶𝐶𝐶𝐶 =
∑(𝑒𝑒𝑝𝑝𝑝𝑝−𝐶𝐶𝑟𝑟���)2

𝑚𝑚
                    (6) 

Step 4: Measurement of the weight of criteria  (𝑤𝑤𝑟𝑟) 

At this stage, the weight of each criterion is 
calculated using Equation 10. The computation 
involves dividing the variance of each criterion by 
the total variance across all criteria. As a result, the 

obtained weights are normalized values within the 
[0, 1] range, and the sum of all criterion weights 
equals 1. This ensures that the relative contribution 
of each criterion to the decision-making process is 
quantitatively and proportionally represented. This 
variance-based weighting approach objectively 
reflects the discriminative capacity of each criterion 
within the decision model. In particular, criteria 
with higher variance indicating greater 
differentiation among alternatives are assigned 
proportionally higher weights. This step not only 
preserves the analytical integrity of the decision 
matrix but also establishes a balanced and coherent 
weighting structure among criteria. 

                               𝑤𝑤𝑟𝑟 = 𝜗𝜗𝐶𝐶𝐶𝐶
∑ 𝜗𝜗𝐶𝐶𝐶𝐶𝑛𝑛
𝑟𝑟=1

                         (9) 

2.4. Proposed method (Expanded Statistical 
Variance Procedure-ESVP) (Önerien yöntem: 
Genişletilmiş istatistiksel varyans prosedürü) 

When determining criterion weights, the degree of 
contrast, uniqueness, and discordance among 
criteria serves as an indicator of their inherent 
characteristics [4]. Consequently, criteria that 
exhibit greater divergence or opposition within a 
defined mathematical framework are assigned 
greater importance or weight [5]. In this respect, the 
proposed methodology shares conceptual 
similarities with the SVP method in its fundamental 
logic. The SVP method assigns importance to 
criteria based on the extent of variation present 
within their individual datasets, without considering 
the datasets of other criteria [6]. 

The proposed method extends the traditional SVP 
method by enhancing the representation of contrast 
and uniqueness among criteria, rendering these 
attributes more apparent and thorough. To 
accomplish this, the proposed approach evaluates 
the complete numerical sequence of each criterion 
to assess its degree of contrast holistically. 
Specifically, the method computes the change in the 
SVP of the remaining criteria after excluding the 
numerical sequence of a given criterion. This 
calculation quantifies the contribution of the 
removed criterion to the overall SD.The resulting 
influence is transformed into a factor that, when 
combined with the SVP values of the other criteria, 
defines the spatial arrangement of all criteria within 
a more comprehensive framework. The intrinsic 
SVP value of each criterion (representing its 
internal variability) is then multiplied by this factor 
(representing external variability). This adjustment 
amplifies the relative contrast of criteria by 
incorporating both their internal and external 
dispersion. Through this approach, the contrasts 
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among criteria can be evaluated more 
comprehensively. 

 

 
Figure 1. Basic logic of the proposed method (ESVP) (Önerien yöntemin temel mantığı)

As illustrated in Figure 1, Steps 1 through 3 
correspond to the conventional Statistical Variance 
Procedure (SVP), which calculates the individual 
variance values for each criterion. In this traditional 
approach, the criterion with the highest variance is 
regarded as the most significant or influential in the 
decision-making process. However, this method 
focuses solely on the internal distribution of each 
criterion, based on its own values, and does not 
consider its interaction with other criteria. In 
contrast, the proposed method enhances the 
classical SVP starting from Step 4 by introducing 
the calculation of the Comprehensive Variance 
(CV), which represents the overall variance of the 
dataset, including all criteria. In Step 5, when a 
specific criterion is removed from the dataset, the 
change (increase or decrease) in the variance of the 
remaining criteria is observed. This change reflects 
the holistic influence of the removed criterion on the 
total variance and is denoted as Subtractive 
Variance (SV). In Step 6, the SV value obtained 
after the exclusion of a criterion is compared with 
the CV value of the full dataset. If SV>CV, it 
indicates that the removed criterion had a reducing 
effect on the overall variance. Conversely, if 
SV<CV, the criterion is interpreted as contributing 
positively to the increase in total variance. Based on 
this logic, the weight of the removed criterion in 
terms of its contribution to overall variance denoted 
as WEM is calculated by the ratio CV/SV. Here, SV 
is a derived variance measure that captures the shift 
in total variance resulting from the removal of a 
specific criterion, reflecting its external distribution 
relative to the others. In the subsequent step, the 
individual variance of each criterion (V) is 
multiplied by its corresponding WEM value to 
obtain the Weighted Variance (WV). Finally, in the 
last step of the method, the WV value of each 
criterion is divided by the sum of all WV values to 

determine the final normalized weights of the 
criteria. In this respect, the proposed method not 
only accounts for the intrinsic variance of each 
criterion but also integrates its extrinsic impact on 
the dataset as a whole. This dual consideration 
aligns the method closely with the CRITIC 
approach. In CRITIC, the weight of a criterion is 
calculated by multiplying its standard deviation 
(representing internal contrast, based on its own 
normalized values) with a measure of its conflict 
with other criteria (computed as the sum of one 
minus the Pearson correlation coefficients). To 
summarize, the proposed method simultaneously 
incorporates both the individual (intrinsic) variance 
and the systemic (extrinsic) contribution of each 
criterion. By doing so, it captures the contrast effect 
among criteria more comprehensively and refines 
the traditional SVP into a more balanced, robust, 
and informative weighting mechanism. The 
procedural steps of the method are detailed in the 
subsequent section. 

𝑉𝑉: Variance score 

𝑌𝑌: Decision matrix 

𝑌𝑌∗: Normalized decision matrix  

𝐶𝐶𝑦𝑦: 𝑦𝑦 − 𝑡𝑡ℎ evaluation criterion 

𝑒𝑒𝑣𝑣𝑣𝑣: value of the 𝑣𝑣 − 𝑡𝑡ℎ alternative according to 
the 𝑦𝑦 − 𝑡𝑡ℎ evaluation criterion 

𝜎𝜎𝑦𝑦: SD of the 𝑦𝑦 − 𝑡𝑡ℎ criterion  (𝑦𝑦 =  1, 2, … ,𝑛𝑛) 

𝑤𝑤𝑦𝑦: Weight of the 𝑦𝑦 − 𝑡𝑡ℎ evaluation criterion (𝑦𝑦 =
 1, 2, … ,𝑛𝑛) 

𝑓𝑓𝑣𝑣𝑣𝑣: Normalized score of 𝑒𝑒𝑣𝑣𝑣𝑣 
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Step 1: Obtaining of the Decision Matrix (𝑌𝑌) 

The formulation presented in Equation 11 
constitutes the foundational structure for 
constructing the decision matrix. This formulation 
enables the systematic and quantitative 
representation of alternatives with respect to the 
relevant criteria within the context of multi-criteria 
decision-making. As a result, a decision matrix is 
obtained that is both analytically processable and 
mutually comparable, thereby facilitating consistent 
evaluation by the decision-maker. Equation 13 
provides the mathematical basis for generating this 
matrix, ensuring that the method can be 
implemented in a coherent and repeatable manner 
across different decision problems. 

                 𝑌𝑌 =

⎣
⎢
⎢
⎢
⎡𝐶𝐶1𝑒𝑒 11

𝐶𝐶2
𝑒𝑒 12

⋯ 𝐶𝐶𝑛𝑛
𝑒𝑒 1𝑛𝑛

𝑒𝑒21
⋮

𝑒𝑒𝑚𝑚1

𝑒𝑒22
⋮

𝑒𝑒𝑚𝑚2

⋯
⋮
⋯

𝑒𝑒2𝑛𝑛
⋮

𝑒𝑒𝑚𝑚𝑚𝑚 ⎦
⎥
⎥
⎥
⎤
          (11)                                                                                                  

Step 2: Normalization of the Decision Matrix (𝑌𝑌∗) 

In the second stage, the normalization of the 
criterion values is performed to ensure 
comparability across different measurement scales. 
For benefit-oriented criteria, normalization is 
conducted using Equation 12, while Equation 13 is 
employed for cost-oriented criteria. This distinction 
allows the method to appropriately handle criteria 
with different directional objectives (maximization 
vs. minimization). Following the application of 
these normalization procedures, the normalized 
decision matrix is constructed using Equation 14. 
This matrix provides a standardized framework in 
which all criteria are dimensionless, facilitating a 
fair and consistent basis for further analysis in the 
multi-criteria decision-making process. 

                                𝑓𝑓𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑣𝑣𝑣𝑣
𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑣𝑣𝑣𝑣

                       (12)                                                                                                      

                                𝑓𝑓𝑝𝑝𝑝𝑝 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑣𝑣𝑣𝑣
𝑒𝑒𝑣𝑣𝑣𝑣

                        (13)                                                                                                       

           𝑌𝑌∗ =

⎣
⎢
⎢
⎢
⎡𝐶𝐶1𝑓𝑓 11

𝐶𝐶2
𝑓𝑓 12

⋯ 𝐶𝐶𝑛𝑛
𝑓𝑓 1𝑛𝑛

𝑓𝑓21
⋮
𝑓𝑓𝑚𝑚1

𝑓𝑓22
⋮
𝑓𝑓𝑚𝑚2

⋯
⋮
⋯

𝑓𝑓2𝑛𝑛
⋮
𝑓𝑓𝑚𝑚𝑚𝑚 ⎦

⎥
⎥
⎥
⎤

           (14) 

Step 3: Measurement of Variance Score of Criteria 
(𝑉𝑉𝐶𝐶𝑦𝑦) 

At this stage, the variance value of each criterion is 
calculated using Equation 15, independently of the 

normalized values of the other criteria. This 
computation is based solely on the normalized 
decision matrix and quantitatively reveals the 
degree of dispersion in the values associated with 
each individual criterion. In other words, the 
variance value can be interpreted as a statistical 
indicator that measures the discriminative power of 
a criterion, considering only the internal distribution 
of its own normalized values without reference to 
the behavior or distribution of the remaining 
criteria. This reflects the extent to which a given 
criterion contributes to the decision-making process 
on the basis of its intrinsic variability. 

                   𝑉𝑉𝐶𝐶𝑦𝑦(𝜎𝜎𝑦𝑦) = �∑(𝑓𝑓𝑣𝑣𝑣𝑣−𝐶𝐶𝑦𝑦����)2

𝑚𝑚
                    (15)                                                                                                   

Step 4: Measurement of Comprehensive 𝑉𝑉 Score 
(𝐶𝐶𝐶𝐶) 

At this stage, the overall variance of the dataset is 
calculated by considering the distribution of all 
normalized criterion values across all alternatives. 
This computation is performed using Equation 16. 
The resulting Comprehensive Variance Score (𝐶𝐶𝐶𝐶) 
serves as a singular metric representing the overall 
variability of the decision matrix. In other words, 
the 𝐶𝐶𝐶𝐶 value statistically quantifies the degree of 
dispersion within the system when all normalized 
values of all criteria are evaluated collectively. This 
comprehensive measure functions as a higher-order 
variance indicator, taking into account the global 
distribution characteristics of the entire dataset. It 
provides a critical reference point for the subsequent 
steps, enabling a comparative assessment of each 
criterion’s holistic influence on the system. 

𝑌𝑌∗ = [𝑓𝑓11, 𝑓𝑓21, … 𝑓𝑓𝑚𝑚1, 

𝑓𝑓12, 𝑓𝑓22, … 𝑓𝑓𝑚𝑚2, 𝑓𝑓1𝑛𝑛, 𝑓𝑓2𝑛𝑛, … 𝑓𝑓𝑚𝑚𝑚𝑚] 

                         𝐶𝐶𝐶𝐶 = �∑�𝑓𝑓𝑣𝑣𝑣𝑣−𝑌𝑌∗�����
2

𝑚𝑚𝑚𝑚𝑚𝑚
                      (16)                                                                                                  

Step 5: Measurement of Subtractive Variance 
(Variance Effect) Score of Criteria (𝑆𝑆𝑆𝑆𝐶𝐶𝑦𝑦) 

At this stage, the variance of the normalized dataset 
is recalculated by systematically removing each 
individual criterion, with the aim of evaluating how 
the exclusion of a specific criterion influences the 
overall variance of the system. In this context, the 
subtractive variance score, denoted as 𝑆𝑆𝑆𝑆𝐶𝐶𝑦𝑦, is 
obtained by excluding the normalized values of the 
criterion in question and computing the resulting 
variance of the remaining dataset. This newly 
computed value is then compared with the 
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Comprehensive Variance (𝐶𝐶𝐶𝐶) of the complete 
dataset, which includes all criteria. The outcome of 
this comparison reveals both the direction and the 
magnitude of the excluded criterion's contribution 
to the system's overall variability. If the CV value is 
greater than the corresponding  𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶, it indicates 
that the excluded criterion had a positive effect on 
the overall variance, meaning its presence increased 
the variability of the dataset. Conversely, if the 𝑆𝑆𝑆𝑆𝐶𝐶𝑦𝑦 
exceeds the 𝐶𝐶𝐶𝐶, it implies that the criterion had a 
dampening effect, thereby reducing the system’s 
overall variance. The entire procedure is conducted 
for each criterion individually, and the 
corresponding 𝑆𝑆𝑆𝑆𝐶𝐶𝑦𝑦 values are determined in 
accordance with Equations 17 through 21. This step 
enables the evaluation of each criterion’s external 
influence on the global structure of the dataset, 
extending beyond the scope of its internal 
dispersion. In doing so, the method not only 
accounts for the intrinsic variability of a criterion 
but also captures the degree to which it structurally 
affects the variance of the decision space when 
removed, offering a more comprehensive and 
system-aware assessment of criterion importance. 

1){𝑪𝑪𝟏𝟏 ∉ 𝑪𝑪}; {𝐶𝐶2,𝐶𝐶3,𝐶𝐶4, . ,𝐶𝐶𝑛𝑛  ∈ 𝐶𝐶}; 

𝑺𝑺𝑺𝑺𝑪𝑪𝟏𝟏: [𝑓𝑓12𝑓𝑓22. .𝑓𝑓𝑚𝑚2𝑓𝑓13𝑓𝑓23. .𝑓𝑓𝑚𝑚3𝑓𝑓14𝑓𝑓24 

                           . .𝑓𝑓𝑚𝑚4𝑓𝑓1𝑛𝑛𝑓𝑓2𝑛𝑛. . 𝑓𝑓𝑚𝑚𝑚𝑚]            

                            = �∑(𝑓𝑓𝑣𝑣𝑣𝑣−𝑆𝑆𝑆𝑆𝐶𝐶1�������)2

𝑚𝑚∗(𝑛𝑛−1)
                      (17) 

2){𝑪𝑪𝟐𝟐 ∉ 𝑪𝑪}; {𝐶𝐶2,𝐶𝐶3,𝐶𝐶4, . ,𝐶𝐶𝑛𝑛  ∈ 𝐶𝐶}; 

𝑺𝑺𝑺𝑺𝑪𝑪𝟐𝟐: [𝑓𝑓11𝑓𝑓21. .𝑓𝑓𝑚𝑚1𝑓𝑓13𝑓𝑓23. .𝑓𝑓𝑚𝑚3𝑓𝑓14𝑓𝑓24 

                           . .𝑓𝑓𝑚𝑚4𝑓𝑓1𝑛𝑛𝑓𝑓2𝑛𝑛. . 𝑓𝑓𝑚𝑚𝑛𝑛]       

                            = �∑(𝑓𝑓𝑣𝑣𝑣𝑣−𝑆𝑆𝑆𝑆𝐶𝐶2�������)2

𝑚𝑚∗(𝑛𝑛−1)
                      (18) 

3){𝑪𝑪𝟑𝟑 ∉ 𝑪𝑪}; {𝐶𝐶2,𝐶𝐶3,𝐶𝐶4, . ,𝐶𝐶𝑛𝑛  ∈ 𝐶𝐶}; 

𝑺𝑺𝑺𝑺𝑪𝑪𝟑𝟑: [𝑓𝑓11𝑓𝑓21. .𝑓𝑓𝑚𝑚1𝑓𝑓12𝑓𝑓22. .𝑓𝑓𝑚𝑚2𝑓𝑓14𝑓𝑓24 

                           . .𝑓𝑓𝑚𝑚4𝑓𝑓1𝑛𝑛𝑓𝑓2𝑛𝑛. . 𝑓𝑓𝑚𝑚𝑚𝑚]           

                              = �∑(𝑓𝑓𝑣𝑣𝑣𝑣−𝑆𝑆𝑆𝑆𝐶𝐶3�������)2

𝑚𝑚∗(𝑛𝑛−1)
                   (19) 

          𝑺𝑺𝑺𝑺𝑪𝑪𝟒𝟒: [𝑓𝑓11𝑓𝑓21. .𝑓𝑓𝑚𝑚1𝑓𝑓12𝑓𝑓22. .𝑓𝑓𝑚𝑚2𝑓𝑓13𝑓𝑓23 

                           . .𝑓𝑓𝑚𝑚3𝑓𝑓1𝑛𝑛𝑓𝑓2𝑛𝑛. . 𝑓𝑓𝑚𝑚𝑚𝑚]        

                              = �∑(𝑓𝑓𝑣𝑣𝑣𝑣−𝑆𝑆𝑆𝑆𝐶𝐶4�������)2

𝑚𝑚∗(𝑛𝑛−1)
                   (20) 

… , … , … , … , … , … , … , … , … , … , … 

… , … , … , … , … , … , … , … , … , … , … 

          𝒎𝒎) {𝑪𝑪𝒎𝒎 ∉ 𝑪𝑪}; �𝐶𝐶1,𝐶𝐶2,𝐶𝐶3, . ,𝐶𝐶(𝑛𝑛−1)  ∈ 𝐶𝐶� ∈ 𝐶𝐶;  

𝑺𝑺𝑺𝑺𝑪𝑪𝒎𝒎: [𝑓𝑓11𝑓𝑓21. .𝑓𝑓𝑚𝑚1𝑓𝑓12𝑓𝑓22.𝑓𝑓𝑚𝑚2𝑓𝑓13𝑓𝑓23. 

                           . .𝑓𝑓2(𝑛𝑛−1). .𝑓𝑓𝑚𝑚(𝑛𝑛−1)��            

                           = �
∑(𝑓𝑓𝑣𝑣𝑣𝑣−𝑆𝑆𝑉𝑉𝐶𝐶(𝑛𝑛−1)

�������������)2

𝑚𝑚∗(𝑛𝑛−1)
                  (21) 

Step 6: Measurement of Variance Effect Multipler 
Score of Criteria (𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑦𝑦) 

In the subsequent step, the Variance Effect 
Multiplier Score (𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑦𝑦) is calculated for each 
criterion. This calculation is performed by 
determining the ratio between the overall variance 
of the complete dataset (𝐶𝐶𝐶𝐶) and the variance of the 
remaining normalized dataset obtained after the 
exclusion of the respective criterion (𝑆𝑆𝑆𝑆). If 𝐶𝐶𝐶𝐶 is 
greater than 𝑆𝑆𝑆𝑆, the resulting 𝐶𝐶𝐶𝐶/𝑆𝑆𝑆𝑆 ratio reflects 
the amplifying effect of the excluded criterion on 
the dataset’s variability. Conversely, if 𝑆𝑆𝑆𝑆 exceeds 
𝐶𝐶𝐶𝐶, the same ratio indicates a dampening effect, 
implying that the exclusion of the criterion has 
reduced the overall variance. According to this 
approach, the (𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑦𝑦) value for each criterion is 
systematically computed in accordance with 
Equations 22 and 23. In this way, the criterion’s 
enhancing or diminishing influence on the system’s 
total variance is quantitatively revealed. This step 
not only captures the distributional disparities 
among criteria, but also enables a more 
comprehensive evaluation of their structural 
contribution to the dynamic behavior of the overall 
decision system. 

Contribution multiplier: 

        𝑪𝑪𝑪𝑪 > 𝑺𝑺𝑺𝑺𝑪𝑪𝒚𝒚 →  𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑦𝑦 = (𝑪𝑪𝑪𝑪)\(𝑺𝑺𝑺𝑺𝐶𝐶𝑦𝑦)    (22)               

Reduction multiplier:  

       𝑺𝑺𝑺𝑺𝑪𝑪𝒚𝒚 > 𝑪𝑪𝑪𝑪 →  𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑦𝑦 = (𝑪𝑪𝑪𝑪)\(𝑺𝑺𝑺𝑺𝐶𝐶𝑦𝑦)    (23)                                          

Step 7: Measurement of Weighted 𝑉𝑉𝐶𝐶𝐶𝐶Score of 
Criteria (𝑊𝑊𝑊𝑊𝑪𝑪𝒚𝒚) 
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At this stage, consistent with the logic of the 
CRITIC method, the internal distribution state (𝑉𝑉𝑪𝑪𝒚𝒚) 
of each criterion is multiplied by its external 
distribution state 𝑉𝑉𝑉𝑉𝑉𝑉𝑪𝑪𝒚𝒚 in order to evaluate its 
overall spatial distribution within the system. In 
other words, the intrinsic variance of a given 
criterion calculated solely based on its own 
normalized values is adjusted by the variance effect 
multiplier, which reflects the criterion’s relationship 
with all other criteria. Through this adjustment, the 
relative position and influence of each criterion 
within the global variance structure of the system 
are captured in a more holistic and integrated 
manner. As a result of this multiplication, the 
weighted standard deviation score (𝑊𝑊𝑊𝑊𝑪𝑪𝒚𝒚) is 
obtained for each criterion. This computation is 
carried out in accordance with Equation 24. The 
significance of this step lies in its ability to provide 
the decision-maker not only with a measure of 
individual variance, but also with a more refined 
and powerful weighting mechanism that 
incorporates the degree of interaction among 
criteria within the overall system. 

                        𝑊𝑊𝑊𝑊𝑪𝑪𝒚𝒚 = 𝑉𝑉𝑪𝑪𝒚𝒚 ∗  𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑦𝑦                (24)                                                                                                

Step 8: Measurement of Weight of Criteria (𝑤𝑤𝑪𝑪𝒚𝒚) 

In the final stage, the ultimate weight assigned to 
each criterion is calculated by evaluating the ratio 
between its weighted variance score (𝑊𝑊𝑊𝑊𝑪𝑪𝒚𝒚) and the 
total weighted variance scores (∑ 𝑊𝑊𝑊𝑊𝑪𝑪𝒚𝒚

𝒏𝒏
𝒋𝒋=𝟏𝟏 ) of all 

criteria. This ratio reflects the relative contribution 
of each criterion to the overall system variance and 
is expressed as a normalized value within the range 
of [0, 1]. As a result, the weights of all criteria are 
proportionally distributed such that their sum equals 
one. This computation process is formally defined 
in Equation 25 and constitutes the final step of the 
method’s integrated weighting structure. 

                              𝑤𝑤𝑪𝑪𝒚𝒚 =
𝑊𝑊𝑊𝑊𝑪𝑪𝒚𝒚

∑ 𝑊𝑊𝑊𝑊𝑪𝑪𝒚𝒚
𝒏𝒏
𝒋𝒋=𝟏𝟏

                   (25)                                                                                                         

The proposed methodology advances beyond the 
traditional SVP method by incorporating external 
influences, unlike the classical SVP which solely 
relies on intra-criterion observation distributions. 
This integration enhances the method's ability to 
accurately capture inter-criteria contrast. By 
considering impact multipliers, a more nuanced 
assessment of each criterion's influence is achieved, 
leading to more comprehensive and accurate 
decision-making outcomes. Furthermore, the 
proposed method provides an improved 
representation of criterion distribution within the 

dataset compared to the classical SVP approach. 
While latter primarily focuses on deviations from 
the mean, proposed method evaluates the 
distribution and criterion effect in significantly 
greater detail. This allows for a deeper 
understanding of each criterion's role in the final 
decision. Unlike the classical SVP method, which 
simply measures variance from the mean [43], 
proposed method assesses the individual 
contributions of each criterion to the overall 
decision, offering a clearer picture of its impact.  

Furthermore, in contrast to the classical SVP 
method, which identifies outliers based solely on a 
criterion's own values, the proposed method detects 
outliers through a holistic evaluation, considering 
both the criterion’s intrinsic and external status with 
other criteria. In short, proposed method provides a 
far more detailed, flexible, and realistic alternative 
to the classical SVP method, enhancing the 
reliability and validity of decision-making by 
incorporating weighting, external influences, and 
adaptability to diverse criteria. Moreover, the 
proposed method exhibits distinct advantages over 
other objective weighting techniques.  A major 
benefit is its robustness to zero and negative values.  
For example, the ENTROPY and MEREC methods 
are sensitive to such values, which can result in 
undefined results within the decision matrix due to 
the logarithmic operations involved [17-18]. When 
the ENTROPY method is examined, the 
characteristics of the criteria are determined by 
entropy without considering the values of the other 
criteria. Therefore, in the ENTROPY method, the 
weights of the criteria are only evaluated based on 
their own intrinsic entropy distributions (internal 
distribution) [17]. In contrast, in the proposed 
method, the characteristics of the criteria are 
determined by considering both their own intrinsic 
values as well as the values of other criteria, thereby 
accounting for both internal and external 
distributions. In the MEREC method, the 
performance of each criterion associated with an 
alternative’s cell is computed using a nonlinear 
logarithmic function. Following this, once the 
criterion is removed, the performance of the 
alternatives is recalculated. The influence of each 
criterion is assessed by analyzing the difference 
between the performance of the cell corresponding 
to that criterion and the recalculated performance of 
the alternatives after excluding the criterion [18]. 
Consequently, the MEREC method takes into 
account both the internal distribution of each 
criterion and its effect on the overall dataset 
(external distribution of each criterion), aligning 
with the framework of the proposed method. The 
key distinction between the two approaches lies in 
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their respective methodologies: in the MEREC 
method, the focus is on the performance of the 
decision alternatives once the criteria are excluded, 
while in the proposed method, the performance of 
the criteria themselves is evaluated after their 
exclusion.  

Compared to the CRITIC method, the proposed 
approach demonstrates technical similarities. Both 
methods determine criterion weights by considering 
the intrinsic distribution of each criterion (internal 
differentiation: standart deviation: (𝜎𝜎)) and its 
relationships with other criteria (external 
differentiation: Pearson cerrelation (𝑝𝑝) (∑ (1 −𝑛𝑛

𝑗𝑗=1
𝑝𝑝): Position of criteria according to other criteria) 
[4]. However, the proposed method refines the 
CRITIC approach by calculating the SV and VEM 
values, where internal differentiation is based on 
each criterion’s variance, and external 
differentiation includes the influence of other 
criteria. Despite these similarities, the proposed 
method yields more accurate results. This is because 
the CRITIC method relies on Pearson’s correlation 
coefficient, which assumes a normal distribution. In 
non-normally distributed datasets, Pearson’s 
correlation coefficient can produce unreliable 
results [28].  

The proposed method, by not relying on this 
assumption, offers a more adaptable and robust 
evaluation. Variance, being the square of the SD, 
means that, like the classical SD method, the SVP 
method identifies differences among criteria based 
solely on their intrinsic distributions or variance 
values [12]. However, the proposed method 
provides a more holistic weighting approach, 
making it more comprehensive than the SVP 
method. The LOPCOW method, while robust in 
addressing data scale issues, handles gaps in the 
dataset based only on the intrinsic values of the 
criteria, without considering the impact of other 
criteria [19]. Conversely, the proposed method 
incorporates the values of all other criteria in the 
weighting process. This integration allows for a 
more relational structure in evaluating differences 
among criteria, making their mutual influences 
more explicit. 

In summary, the proposed method surpasses the 
classical SVP method by offering a more 
comprehensive, adaptable, and dependable 
weighting approach. Compared to other objective 
weighting methods, it presents several advantages, 
particularly in promoting more informed and 
effective decision-making.  However, a limitation is 
that, unlike some other objective weighting 
methods, the weighting process in this approach is 
more complex and computationally intensive. This 
limitation becomes more prominent as the number 
of criteria and alternatives increases. In the 
application of the classical SVP, the skewness and 
kurtosis values of the criteria are not taken into 
account during the weighting process.  

In contrast, the ESVP enhances the variance-based 
weighting mechanism by integrating both the 
intrinsic distributions of the criteria and their levels 
of contrast with one another. In this regard, ESVP 
represents a multidimensional and comprehensive 
approach that distinctly departs from the 
unidimensional structure of the traditional SVP 
method. Although the proposed method does not 
impose a strict assumption of normality, it is 
theoretically plausible that significant deviations in 
data distribution such as pronounced skewness or 
kurtosis may influence the calculation of variances, 
especially in the presence of outliers. Such 
deviations could, under certain conditions, lead to 
an artificial inflation of the variance for specific 
criteria, thereby resulting in disproportionally 
higher weight values. 

2.5.  Data Set (Veri seti) 

The method proposed for the quantitative 
determination of criterion weights utilizes the most 
recent 2024 Global Innovation Index (GII) values 
for selected countries as its dataset. The reasoning 
behind choosing these data is that the criterion 
values do not exhibit extreme outliers, thereby 
facilitating a more accurate evaluation of the 
method’s ability to differentiate between the criteria 
under these conditions. For ease of reference, the 
abbreviations for the GII criteria are presented in 
Table 2. 

Table 2. Abbreviations of alternatives and criteria (Alternatif ve kriterlerin kısaltmaları) 

GEHI Criteria Abbreviations 
Institutions C1 

Human Capital and Research C2 
Infrastructure C3 

Market Sophistication C4 
Business Sophistication C5 

Knowledge and Technology Outputs C6 
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Creative Outputs C7 
Countries Abbreviations 

Austria A1 
Estonia A2 

Hong Kong A3 
Iceland A4 
Ireland A5 

Luxembourg A6 
Norway A7 

3. RESULTS (BULGULAR) 

3.1. Computational examination (Hesaplamalı 
inceleme) 

In the study, the decision matrix was first 
constructed using Equation 11. Subsequently, the 

normalization of the decision matrix values was 
performed through Equation 12 and 14. 
Accordingly, the decision matrix and the 
normalized decision matrix are presented in Table 
3.

Table 3. Decision and normalized decision matrix (Karar ve normalize karar matrisi) 

Decision Matrix 
Countries C1 C2 C3 C4 C5 C6 C7 

A1 74.7 59.4 56.8 45.2 51 41.8 44.5 
A2 78.7 44.5 61.3 66.5 48.1 39.9 49.7 
A3 82.1 55.7 55.4 71.9 49.7 22.8 51.8 
A4 78.6 47.5 64.9 52.4 52.4 30.3 45.6 
A5 79.1 48.1 54.8 37.9 55.7 47.3 42.3 
A6 83.9 46.9 45.7 45.8 58.3 30.5 53.6 
A7 83.3 50.9 64.6 45.2 51.2 34.7 43.4 

Maximum 83.9 59.4 64.9 71.9 58.3 47.3 53.6 
Normalized Decision Matrix 

Countries C1 C2 C3 C4 C5 C6 C7 
A1 0.890 1.000 0.875 0.629 0.875 0.884 0.830 
A2 0.938 0.749 0.945 0.925 0.825 0.844 0.927 
A3 0.979 0.938 0.854 1.000 0.852 0.482 0.966 
A4 0.937 0.800 1.000 0.729 0.899 0.641 0.851 
A5 0.943 0.810 0.844 0.527 0.955 1.000 0.789 
A6 1.000 0.790 0.704 0.637 1.000 0.645 1.000 
A7 0.993 0.857 0.995 0.629 0.878 0.734 0.810 

In the third stage of the study, the variance value for 
each criterion was calculated using the normalized 
values through Equation 15. In the fourth stage, all 
criteria were considered in an integrated manner 
with the aid of Equation 16, and the comprehensive 
variance (CV) of the matrix, accounting for the 
normalized values of all criteria, was determined. In 
the fifth stage, based on the normalized values and 
CV values, the subtractive variance (SV) for each 

criterion was identified using Equations 17, 18, 19, 
20, and 21. In the sixth stage, the variance effect 
multiplier (VEM) for each criterion was computed 
using Equations 22 or 23. In the seventh stage of the 
method, the weighted variance (WV) values were 
determined using Equation 24. Finally, in the last 
stage, the weights of the criteria (w) were obtained 
through Equation 25. The values obtained at each 
stage are presented in detail in Table 4. 

Table 4. V, CV, SV, VEM, WV and w scores of criteria (Kriterlerin V, CV, SV, VEM, WV and w değerleri) 

Criteria V CV SV VEM WV w Rank 
C1 0.0013 0.0172 0.0177 0.9717 0.0012 0.013 7 
C2 0.0069 0.0189 0.9092 0.0063 0.068 4 
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C3 0.0092 0.0182 0.9432 0.0087 0.094 3 
C4 0.0259 0.0128 1.3476 0.0349 0.378 1 
C5 0.0031 0.0191 0.9015 0.0028 0.031 6 
C6 0.0263 0.0136 1.2599 0.0331 0.359 2 
C7 0.0058 0.0189 0.9106 0.0053 0.057 5 

Sum 0.0923 ---  

Upon examining Table 4, the ranking of the 
criterion weights is determined as C4, C6, C3, C2, 
C7, C5, and C4. As part of the study's findings, an 
illustrative solution for determining the weight of 
C1 is provided. 

 Normalized Value:  

𝐴𝐴1 → 𝐶𝐶1 ∶ 𝐸𝐸𝐸𝐸𝐸𝐸. 12 ≔ 74,7/83,9 = 0,890 

𝑬𝑬𝑬𝑬𝑬𝑬.𝟏𝟏𝟏𝟏: 𝑪𝑪𝑪𝑪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0.890
0.938
0.979…

…
…
1

0.749…
…
…
1

0.810⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0.0172 

𝑬𝑬𝑬𝑬𝑬𝑬.𝟏𝟏𝟏𝟏:𝑺𝑺𝑺𝑺𝑪𝑪𝟏𝟏  (𝑪𝑪𝟏𝟏 ∉ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
0.749
0.938…

…
…

0.875
0.945…

…
…
1

0.820⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

= 0.0177 

𝑬𝑬𝑬𝑬𝑬𝑬.𝟐𝟐𝟐𝟐: 𝑽𝑽𝑽𝑽𝑽𝑽𝑪𝑪𝟏𝟏 =
0.0172
0.0177

= 0,9717 

 𝑬𝑬𝑬𝑬𝑬𝑬.𝟐𝟐𝟐𝟐:𝑾𝑾𝑾𝑾𝑪𝑪𝟏𝟏 = 0.0013 ∗ 0.9717 = 0.0012  

𝑬𝑬𝑬𝑬𝑬𝑬.𝟐𝟐𝟐𝟐: 𝒘𝒘𝑪𝑪𝟏𝟏 =
0.0012
0.0923

= 0.013 

3.2.  Sensitivity analysis (Duyarlılık analizi) 

A robust method for assessing the sensitivity of 
weighting techniques involves introducing new 
alternatives into the original dataset or excluding 
less favorable ones. In such scenarios, the MCDM 
approach is expected to maintain stability by 
ensuring that the rankings of criteria remain largely 
consistent or experience minimal changes [49]. 
Given that the removal of any criteria modifies the 
criterion values, the scores assigned to the 
remaining alternatives are also likely to change 
(Rank reversal). To address this issue, a sensitivity 
analysis was conducted, beginning with the criteria 
identified as the least significant by the proposed 
method. The results of this analysis, including the 
revised criteria rankings, are detailed in Table 5, 
while a graphical representation is provided in 
Figure 2. 

Table 5. Rank of criteria in scope of rank reversal method (Ters sıralama yöntemi kapsaında kriterlerin sıralaması) 

Criteria S0 S1 S2 S3 S4 S5 
C1 7      
C5 6 6     
C7 5 5 5    
C2 4 4 3 4   
C3 3 3 4 3 3  
C4 2 2 2 2 2 2 
C6 1 1 1 1 1 1 
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Figure 2. Rank reversal graph (Ters sıralama grafiği)

The rank reversal analysis conducted based on 
Table 5 and Figure 2 aims to evaluate the ranking 
stability and sensitivity level of the proposed ESVP 
method. Within this scope, the criteria were 
sequentially eliminated from the system in 
ascending order of their weight values, and changes 
in the rankings of the remaining criteria were 
examined at each scenario. The reference scenario, 
denoted as S0, includes all seven criteria and serves 
as the baseline for comparison across subsequent 
scenarios. In scenario S1, the criterion with the 
lowest weight, C1, was removed from the system. 
This elimination did not induce any changes in the 
ranking positions of the remaining criteria, 
indicating that the method maintains a high level of 
stability against the exclusion of low-impact 
elements. In scenario S2, where C5 the second least 
weighted criterion was additionally removed 
alongside C1, a minor shift was observed: criterion 
C2 moved from the fourth to the second position, 
while C3 dropped from third to fourth. 
Nevertheless, this change did not result in a 
structural disruption, and the overall ranking 
integrity was largely preserved. Scenario S3 
involved the removal of C1, C5, and C7. Despite 
these exclusions, the rankings of the remaining four 
criteria remained unchanged, reflecting a consistent 
internal structure. Similarly, in scenario S4, where 
criterion C2 was further excluded, the rankings of 
the remaining three criteria were entirely 
unaffected. Finally, in scenario S5, following the 
elimination of C3 in addition to the aforementioned 
criteria, only C4 and C6 remained in the system, and 
their relative positions were maintained identically 
across all prior scenarios. These findings clearly 
demonstrate that the proposed method exhibits a 

high degree of robustness against the rank reversal 
phenomenon, with the ranking structure remaining 
substantially intact despite the sequential removal 
of criteria. The extraction of criteria induced only 
minimal and localized effects on the ranking 
outputs, suggesting that the method provides a 
stable and reliable analytical framework for 
decision-makers. Particularly noteworthy is the fact 
that even when criteria are removed from the least 
to the most significant in terms of weight, the 
method yields highly consistent results. This 
outcome affirms the ideal sensitivity characteristics 
of the ESVP method and its strong performance in 
stability-driven analyses. 

3.3. Comparative analysis (Karşılaştırma analizi) 

The comparative analysis evaluates the 
relationships and relative positions of the proposed 
approach against other methods used for 
determining weight values. The goal of the 
proposed method is to establish its reliability, 
consistency, and compatibility with widely 
accepted techniques, while also demonstrating a 
strong and statistically significant correlation with 
various weighting methods [18].  

In the initial stage of the comparative analysis, 
criterion weights were calculated using ENTROPY, 
CRITIC, SD, SVP, LOPCOW, and MEREC 
methods, which are commonly employed in MCDM 
studies. As a result, the weight values of the GEHI 
criteria and their respective rankings, as determined 
by these weighting methods, are presented in Table 
6 and Figure 3. 

 

Table 6. Weight scores of criteria (Kriterlerin ağırlık skorları) 
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Methods CRITIC SVP LOPCOW SD ENTROPY MEREC 
S. R. S. R. S. R. S. R. S. R. S. R. 

C1 0.120 7 0.016 7 0.179 2 0.074 7 0.011 7 0.063 6 
C2 0.156 2 0.088 4 0.112 7 0.121 4 0.072 4 0.100 5 
C3 0.145 4 0.117 3 0.193 1 0.153 3 0.092 3 0.213 1 
C4 0.129 6 0.330 2 0.115 5 0.284 1 0.367 2 0.194 2 
C5 0.150 3 0.040 6 0.124 4 0.080 6 0.030 6 0.052 7 
C6 0.162 1 0.335 1 0.163 3 0.188 2 0.371 1 0.186 4 
C7 0.138 5 0.074 5 0.114 6 0.100 5 0.057 5 0.191 3 

S.: Score. R.: Rank 

Figure 3. Positions of weighting methods (Ağılıklandırma yöntemlerinin pozisyonları) 

When Table 4, Table 6, and Figure 3 are jointly 
examined, it becomes evident that the ranking of 
criterion weights produced by the proposed ESVP 
method closely aligns with those generated by the 
ENTROPY and SVP methods, and also 
demonstrates a high degree of similarity with the SD 
method. Particularly in terms of the upward and 
downward fluctuations observed across criteria, the 
trend patterns of the ESVP method exhibit a notable 
parallelism with those of the ENTROPY approach. 
Furthermore, the ESVP method shows significant 
structural proximity to information-theoretic 
models such as SVP and SD, and when evaluated 
from a broader perspective, it also displays 
meaningful overlaps with the MEREC method. 
From a graphical standpoint, both the ESVP and 
ENTROPY methods assign nearly identical 
maximum weights to criteria C4 and C6, suggesting 
a strong convergence in their discriminative 

capabilities. Similarly, for low-weighted criteria 
such as C1 and C5, both methods exhibit nearly 
identical value assignments. These findings clearly 
indicate that the ESVP method is highly correlated 
with ENTROPY, while also maintaining structural 
consistency with the SVP, SD, and, to a significant 
extent, the MEREC approaches. Based on these 
observations, it can be concluded that the ESVP 
method offers a robust and methodologically 
consistent alternative to established weighting 
models. The correlation coefficients (rho values) 
between the ESVP and other methods are 
comprehensively presented in Table 7. These results 
reveal that the ESVP method demonstrates strong 
and statistically meaningful associations with well-
established information-based techniques in the 
literature, thereby affirming its validity, reliability, 
and suitability as a sound analytical tool for multi-
criteria decision-making applications. 

Table 7. 𝑟𝑟ℎ𝑜𝑜 correlation score (𝑟𝑟ℎ𝑜𝑜 korelasyon skorları) 

Methods CRITIC SVP LOPCOW SD ENTROPY MEREC 
ESVP 0.286 0.964** -0.071 0.998** 0.964** 0.714** 

p**<.01 
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An analysis of the correlation coefficients presented 
in Table 7 reveals that the proposed ESVP method 
demonstrates a strong and statistically significant 
positive correlation with the SVP, SD, and 
ENTROPY methods, and to a slightly lesser but still 
meaningful extent with the MEREC method. In 
particular, the correlation coefficients with SVP, 
SD, and ENTROPY exceed 0.96 and are 
statistically significant at the p < .01 level, clearly 
indicating that the ESVP method exhibits a robust 
structural alignment with these information-
theoretic models. Furthermore, the correlation with 
MEREC also suggests a substantial degree of 
concordance, underscoring that the ESVP approach 
is consistent not only with information-based 
techniques but also with broader objective 
weighting strategies. In contrast, the relatively low 
or even negative correlation coefficients observed 
with the CRITIC and LOPCOW methods suggest 
that these techniques are structurally divergent from 
the ESVP framework, likely due to fundamental 
differences in their underlying variance and 
distribution-based paradigms. When these findings 
are evaluated holistically, it becomes evident that 
the ESVP method offers both a high level of 
explanatory power and a statistically robust 
foundation that meets essential reliability and 
validity criteria. This demonstrates that ESVP 
represents a methodologically sound and credible 
alternative within the context of comparative model 
evaluation. Therefore, considering the quantitative 

results obtained through the comparative analysis, it 
can be confidently asserted that the proposed ESVP 
method is both credible and reliable, making it a 
viable and effective tool for multi-criteria decision-
making applications. 

3.4. Simulation analysis (Simülasyon analizi) 

In the simulation examination, diverse scenarios 
were created by varying the values within the 
decision matrices. To evaluate the robustness of the 
proposed method's results, it is hypothesized that its 
outputs will increasingly deviate from those of other 
methods as the number of scenarios expands. 
Additionally, the method's capacity to distinguish 
criterion weights, based on variance, is expected to 
demonstrate robustness.  Moreover, the consistency 
of these criterion weight variances across the 
scenarios will be examined using Analysis of Means 
for variances based on Levene’s test (ADM 
analysis). For the proposed method to be considered 
stable, homogeneity of variance across all scenarios 
is crucial [18]. In this study, an initial set of ten 
scenarios (decision matrices) was generated and 
subsequently partitioned into two separate groups. 
Following this, correlation coefficients between the 
proposed method and other weighting methods 
were computed for these generated scenarios. The 
resulting correlation values are displayed in Table 8 
and Figure 4. 

Table 8. Correlation scores in scope of scenarios (Senaryolar kapsamında korelasyon skorları) 

Group Scenarios CRITIC SVP LOPCOW SD ENTROPY MEREC 

First 
Sce.1 0.296 0.971** -0.063 0.998** 0.971** 0.743** 
Sce.2 0.299 0.969** -0.055 0.999** 0.968** 0.737** 
Sce.3 0.281 0.941** -0.046 0.999** 0.961** 0.701** 

Second 

Sce.4 0.277 0.933** -0.059 0.994** 0.955** 0.711** 
Sce5 0.287 0.948** -0.065 0.995** 0.941** 0.692** 
Sce.6 0.255 0.923** -0.079 0.973** 0.927** 0.677** 
Sce.7 0.230 0.891** -0.088 0.951** 0.912** 0.651* 
Sce.8 0.222 0.882** -0.093 0.934** 0.900** 0.628* 
Sce.9 0.206 0.867** -0.106 0.911** 0.884** 0.604* 

Sce.10 0.189 0.855** -0.115 0.892** 0.879** 0.589* 
p**<.01. p*<.05 
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Figure 4. Correlation positions (Korelasyon posizyonları)

In the scope of the simulation analysis, both Table 
8 and Figure 4 collectively provide compelling 
evidence regarding the dynamic behavior and 
methodological robustness of the proposed ESVP 
method under varying decision environments. As 
clearly depicted in Figure 4, the graphical trends 
across the ten simulated scenarios reveal a 
noticeable divergence between the ESVP method 
and several established MCDM weighting 
techniques. Particularly, in the second group of 
scenarios (Scenarios 4–10), the relative position of 
ESVP becomes more distinguishable, indicating an 
increasing deviation in performance patterns as the 
diversity and complexity of decision matrices 
expand. This observation is quantitatively 
supported by the correlation coefficients presented 
in Table 8. While the ESVP method maintains 
strong and statistically significant correlations with 
ENTROPY, SD and SVP) in the first group of 
scenarios, these correlations gradually diminish in 
the second group. For instance, the correlation 
between ESVP and SVP drops from 0.971 in 
Scenario 1 to 0.855 in Scenario 10, and the 
correlation with MEREC decreases from 0.743 to 
0.589. This consistent downward trend signifies that 
the ESVP method exhibits an adaptive sensitivity to 
structural shifts within the decision matrices, 
thereby allowing its unique methodological 
characteristics such as contrast-based 
differentiation and variance-aware weighting to 

surface more explicitly as scenario complexity 
increases. Moreover, the variance-based analytical 
structure of ESVP appears to provide enhanced 
discriminative power, especially under diverse 
simulation conditions where traditional methods 
tend to converge or exhibit relatively static 
weighting behavior. The graphical separation 
observed in Figure 4 reinforces the assertion that the 
ESVP method maintains a stable internal variance 
distribution while simultaneously amplifying inter-
methodological contrasts. This dual capacity is 
critical for achieving both robustness and flexibility 
in real-world multi-criteria decision-making 
applications. Taken together, these findings confirm 
that the ESVP method not only aligns with 
conventional techniques under standard conditions 
but also surpasses them in terms of interpretability 
and responsiveness in more challenging and 
variable contexts. The progressive divergence 
observed across scenarios further validates the 
methodological integrity of ESVP, establishing it as 
a robust and adaptive tool for criterion weighting in 
complex decision environments. As part of the 
comparative examination, the variance of the 
weight values for each method was calculated 
across the generated scenarios. Accordingly, the 
variance values of the methods developed for the 
scenarios, along with the average variance value, 
are presented in Table 9. 

Table 9. Variance Scores in scope of sscenarios (Seneryolar kapsamında varyans skorları) 

Methods ESVP CRITIC SVP LOPCOW SD ENTROPY MEREC 
Scenario1 0.147 0.018 0.129 0.037 0.071 0.149 0.066 
Scenario2 0.144 0.045 0.134 0.049 0.079 0.151 0.078 
Scenario3 0.148 0.063 0.141 0.066 0.088 0.144 0.099 
Scenario4 0.139 0.039 0.115 0.041 0.059 0.145 0.045 
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Scenario5 0.139 0.028 0.128 0.089 0.045 0.155 0.049 
Scenario6 0.145 0.071 0.144 0.077 0.099 0.172 0.055 
Scenario7 0.141 0.073 0.119 0.069 0.088 0.129 0.066 
Scenario8 0.147 0.081 0.125 0.101 0.129 0.131 0.099 
Scenario9 0.159 0.028 0.133 0.093 0.131 0.148 0.101 

Scenario10 0.161 0.041 0.149 0.111 0.133 0.156 0.093 
Mean 0.147 0.049 0.132 0.073 0.092 0.148 0.075 

The variance scores presented in Table 9 were 
evaluated to compare the performance of the 
proposed ESVP method with six other objective 
weighting approaches—namely, CRITIC, SVP, 
LOPCOW, SD, ENTROPY, and MEREC across a 
series of distinct scenarios. For each of the ten 
scenarios, variance values were computed to assess 
the extent to which each method distinguishes 
between criterion weights, thereby reflecting their 
discriminative power. In this context, the mean 
variance value of the ESVP method (0.147) was 
found to be significantly higher than those of 
CRITIC (0.049), SVP (0.132), LOPCOW (0.073), 
SD (0.092), and MEREC (0.075). This finding 
indicates that the ESVP method produces a more 
pronounced and differentiated distribution of 
criterion weights, allowing for sharper 
discrimination of relative importance levels among 
the criteria. Such a capability enhances decision-
makers’ ability to make more accurate choices, 
particularly in multi-criteria decision-making 
problems that demand high sensitivity and 
precision. Moreover, the average variance value of 
ESVP is found to be almost identical to that of the 
ENTROPY method (0.148), suggesting that both 
methods possess comparable levels of 
discriminative strength. However, ESVP 
demonstrates a more balanced distribution of 
variance across the evaluated scenarios, implying a 
greater degree of consistency and robustness under  

varying conditions.In conclusion, the ESVP method 
stands out not only for its high mean variance but 
also for its consistent performance across multiple 
scenarios, offering both discriminative accuracy 
and structural stability. These attributes position 
ESVP as a more reliable, interpretable, and 
methodologically sound alternative compared to 
other objective weighting techniques currently 
available, thereby reinforcing its practical value as 
a decision-support tool in complex multi-criteria 
environments. In the final phase of the simulation 
analysis, the homogeneity of variance for the 
criterion weights generated by the proposed method 
was evaluated using Analysis of Means for 
variances based on Levene’s test (ADM analysis). 
This technique provides a graphical framework for 
assessing variance consistency. The graphical 
output comprises three primary elements: the 
overall mean ADM, depicted as the center line, 
along with the upper decision limit (UDL) and the 
lower decision limit (LDL).  If the variance of a 
given group or cluster fall outside these decision 
boundaries, it indicates a statistically significant 
deviation from the overall mean ADM, signifying 
variance heterogeneity. Conversely, if the variance 
of all groups remain within the interval defined by 
the UDL and LDL, it confirms variance 
homogeneity [18]. Figure 5 illustrates the graphical 
results of the ADM analysis. 

 
Figure 5. ADM Chart (ADM görseli) 
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The ADM chart presented in Figure 5 visually 
illustrates the mean variance scores of criterion 
weights across ten distinct scenarios. The chart 
includes three key reference lines: the average value 
line (AVG = 0.143), displayed as a horizontal blue 
line; the upper decision limit (UDL = 0.2526); and 
the lower decision limit (LDL = 0.0199), both 
indicated with pink lines. Each scenario's ADM 
value is represented by black dots accompanied by 
error bars. Upon examination of the graphical 
analysis, it becomes evident that all ADM values 
across the scenarios fall strictly within the defined 
decision interval (UDL–LDL). This finding 
indicates that the variance scores do not deviate 

significantly from the overall average and confirms 
that the weighting process remains structurally 
stable regardless of scenario-specific changes. 
These results strongly support the conclusion that 
the criterion weights exhibit consistency across 
different scenarios and that the outputs produced by 
the method adhere to the principle of homogeneity. 
This visual evidence clearly demonstrates the 
presence of variance homogeneity, indicating that 
the weighting mechanism functions reliably and 
remains unaffected by scenario-based fluctuations. 
Furthermore, this conclusion was statistically 
validated by Levene’s test, with the detailed results 
comprehensively presented in Table 10.

Table 10. Levene score (Levene skoru) 

Levene Statistic df1 df2 Sig. (p) 
0.130 2 10 0.149 

p**<.05 

Serving as the statistical complement to the visual 
assessment provided by the ADM chart, Table 10 
presents the results of Levene’s test, a widely 
recognized statistical procedure for evaluating the 
equality of variances. The test produced a Levene 
statistic of 0.130, with degrees of freedom (df1 = 2, 
df2 = 10), and a corresponding p-value of 0.149. As 
this p-value exceeds the conventional 0.05 threshold 
of statistical significance, the null hypothesis of 
equal variances cannot be rejected. This outcome 
indicates that there is no statistically significant 
difference in the variances of the criterion weights 
across the evaluated scenarios, suggesting a 
homogeneous distribution. This finding statistically 
substantiates the conclusions previously inferred 
from Figure 5, providing strong empirical support 
that the distribution of criterion weights does not 
exhibit meaningful variation across scenarios. 
When jointly evaluated with the ADM chart, the 
outcome of Levene’s test confirms that the proposed 
method possesses a high level of structural 
robustness and consistency with respect to variance 
homogeneity. Taken together, these results clearly 
demonstrate that the proposed approach is capable 
of maintaining stability under varying conditions, 
thereby substantially enhancing its reliability and 
applicability in the context of MCDM problem. 

4. DISCUSSION (TARTIŞMA) 

It is clear that the proposed method offers a more 
comprehensive structure compared to the classical  
SVP method. While the classical SVP method 
performs weighting by considering the deviations of 
the criteria (Öztel and Alp, 2020), the proposed 
method evaluates the overall effects of each 

criterion. This approach ensures a more accurate 
identification of the contributions of the criteria to 
the contrast situations, which is central to the logic 
of weighting methods, and enables more accurate 
results in the decision-making process. When 
compared to other objective weighting methods, the 
proposed method demonstrates various strengths 
and weaknesses. One significant advantage over the 
ENTROPY method is the proposed method’s 
insensitivity to zero and negative values. In the 
ENTROPY method, zero and negative values can 
create uncertainty due to logarithmic measurements 
(Ayçin, 2019). However, the ENTROPY method 
may be more effective in information-theory-based 
analyses (Öztel and Alp, 2020). The ENTROPY 
method determines criterion characteristics solely 
through entropy, disregarding other criteria's values. 
Consequently, criterion weights derive exclusively 
from their inherent entropy distributions (internal 
distribution) (Bircan, 2020).  Conversely, the 
proposed method evaluates criteria by incorporating 
both their inherent values and those of other criteria, 
thus considering both internal and external 
distributions. 

Compared to the CRITIC method, one of the key 
advantages of the proposed method is its ability to 
determine the contrasts of the criteria without 
relying on any distribution assumptions. The 
CRITIC method uses the Pearson correlation 
coefficient to evaluate the correlations between 
criteria (Diakoulaki et al., 1995), which is based on 
the assumption of a normal distribution. In datasets 
that do not follow a normal distribution, there could 
be limitations in this correlation coefficient 
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(Kalaycı, 2013). Therefore, the proposed method 
offers more reliable results regardless of the type of 
distribution. On the other hand, the CRITIC method 
may perform better in datasets with strong 
correlation structures (Ecer, 2020). However, from 
a technical perspective, the CRITIC method’s 
determination of the internal distribution of the 
criteria by standard deviation (σ) and its external 
distribution based on the Pearson correlation 
coefficient between criteria (impact factor-(1-p)) is 
consistent with the logic of the proposed method 
within the framework of integrity ((𝜎𝜎.∑ (1 −𝑚𝑚

𝑖𝑖=1
𝑝𝑝)). 

Compared to the SVP method, the proposed method 
provides a more comprehensive evaluation by 
considering both internal and external distributions. 
While the SVP method focuses solely on the 
variances of the criteria (Öztel and Alp, 2020), the 
proposed method offers a more detailed analysis of 
both the internal distribution and the contribution of 
contrasts within the criteria in a holistic context. 
However, the SVP method can be applied more 
quickly to large datasets due to its simpler 
calculations (Demir et al., 2021). 

When compared to the MEREC method, one 
limitation of the MEREC method is its sensitivity to 
zero and negative values due to logarithmic 
calculations. However, such a restriction is not 
present in the proposed method. Specifically, in the 
MEREC method, the performance of each criterion 
corresponding to an alternative’s cell is calculated 
using a nonlinear logarithmic function. Then, after 
removing the criterion, the performance of the 
alternatives is recalculated. The effect of each 
criterion is determined by examining the difference 
between the performance of the criterion’s 
corresponding cell and the performance of the 
alternatives after the criterion is excluded 
(Keshavarz-Ghorabaee et al., 2021). Thus, in the 
MEREC method, the internal distribution of each 
criterion (internal distribution) and its effect on the 
overall dataset (external distribution) are 
considered, which is in line with the logic of the 
proposed method. The primary difference between 
these methods lies in the approach: in the MEREC 
method, the performance of the decision 
alternatives is considered after the criteria are 
removed, whereas in the proposed method, the 
performance of the criteria themselves is considered 
after they are excluded. 

When compared to the LOPCOW method, the 
proposed method provides a more comprehensive 
evaluation by considering not only the internal 
values of the criteria but also the distributions of 

other criteria. The LOPCOW method can reduce 
gaps caused by the data dimensions and can offer 
advantages in certain decision problems (Ecer and 
Pamucar, 2021). However, the holistic approach of 
the proposed method ensures a more robust analysis 
of the contrasts between the criteria. Nevertheless, 
the proposed method has some disadvantages. It 
requires a more complex computation process 
compared to other objective weighting methods, 
which increases the computational burden when 
working with large datasets. Specifically, in 
decision problems with a high number of criteria 
and alternatives, the increased computation time 
may limit the practical applicability of the method. 
Moreover, excessive skewness and kurtosis in the 
data may lead to disproportionately large 
differences between the criterion weights. In this 
context, to establish a more comprehensive 
framework regarding the distributional 
characteristics of the dataset, future studies should 
consider calculating the skewness and kurtosis 
coefficients for each criterion and reporting them 
alongside descriptive statistics. Such a practice 
would significantly enhance the methodological 
transparency and overall credibility of the ESVP 
method. This extension is particularly valuable for 
evaluating the method’s applicability in datasets 
that deviate from parametric assumptions or exhibit 
distributional irregularities. 

In cases where extreme skewness or kurtosis is 
observed, it is advisable to apply appropriate 
preprocessing techniques to mitigate the influence 
of these distortions. Specifically, data 
transformations such as logarithmic transformation, 
Box–Cox transformation, or Winsorization may be 
employed to normalize the distributions of criterion 
values and limit the impact of outliers. Additionally, 
the integration of robust variance estimators or 
trimmed statistical measures into the ESVP 
framework could serve as an adaptive enhancement, 
enabling the method to produce stable and reliable 
results even in non-parametric environments. These 
methodological refinements would preserve the 
ESVP method’s distinctive sensitivity to 
meaningful variance structures, while 
simultaneously preventing artificial inflation of 
criterion weights due to distributional anomalies 
thereby reinforcing the overall trustworthiness and 
analytical soundness of the method for decision-
makers operating in diverse evaluation contexts. In 
general, The ESVP proposed in this study has been 
specifically designed to address the methodological 
shortcomings identified in the classical SVP 
approach. ESVP offers a more balanced, 
discriminative, and structurally robust weighting 
mechanism by considering not only the internal 
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variance structure of each criterion, but also the 
degree of contrast and variance potential among all 
criteria. In doing so, the method enhances the 
theoretical soundness and practical applicability of 
the SVP model, effectively mitigating its limited 
recognition and susceptibility to criticism. In this 
regard, ESVP strengthens the scientific credibility 
of SVP and introduces a novel framework that 
facilitates its integration with other MCDM 
approaches, thereby expanding its methodological 
scope and interdisciplinary relevance. 

Future research should focus on enhancing the 
ESVP method's applicability. This includes 
evaluating its performance with large-scale 
datasets, improving computational efficiency via AI 
and optimization integration, and assessing its 
robustness in uncertain environments through fuzzy 
logic, grey system theory, or fuzzy number 
incorporation. Comparative analyses with other 
MCDM methods are crucial to determine its 
suitability across diverse problem types. Potential 
application areas include sustainability, finance, 
supply chain, and healthcare, where its sectoral 
integration can be demonstrated. Finally, evaluating 
ESVP's adaptability to dynamic decision-making, 
particularly in contexts with evolving criteria, will 
establish its long-term effectiveness. These future 
studies aim to solidify ESVP's strengths and 
advance its contribution to MCDM. 

5. CONCLUSIONS (SONUÇLAR) 

This study introduces an extended SVP (ESVP) 
method for criterion weighting processes, offering a 
novel perspective to the existing literature. The 
primary contribution of this work is the 
development of a more comprehensive weighting 
approach that not only considers the internal 
distributions of individual criteria but also accounts 
for their contributions to the overall variance with 
other criteria. 

Based on the research findings, the sensitivity level 
of the proposed method was tested using the rank 
reversal method. After eliminating certain criteria, 
only minor changes in the ranking were observed, 
indicating that the proposed method maintains an 
optimal level of sensitivity. Secondly, to assess the 
reliability and validity of the proposed method, a 
comparative analysis was conducted in line with the 
approach suggested by Keshavarz-Ghorabaee et al. 
(2021) [18]. In this analysis, criterion weights were 
calculated using commonly used objective 
weighting methods in the literature, such as 
ENTROPY, CRITIC, SD, SVP, MEREC, and 
LOPCOW. The results revealed that the proposed 

method exhibited a high correlation with 
ENTROPY, SVP, SD, and MEREC, while showing 
deviations particularly from LOPCOW. The strong 
correlation between the proposed method and 
ENTROPY, SVP, SD, and MEREC can be 
attributed to the fact that these methods evaluate the 
internal variation of each criterion independently. 
Specifically, as the differences in variance values 
between criteria increase, the distinctness of the 
proposed method becomes more pronounced 
compared to ENTROPY, SD, and SVP. This is 
because, according to the findings, as scenarios 
progress, the correlation values of the proposed 
method with other methods decrease. On the other 
hand, while the proposed method accounts for 
external differentiation by considering the effects of 
all criteria in the entire dataset, other methods, 
except for CRITIC and MEREC, focus on the 
individual internal values of the criteria. In the 
simulation examination, to assess the stability and 
robustness of the proposed method, ten different 
decision matrices (scenarios) were created, and an 
ANOM analysis suggested by Keshavarz-
Ghorabaee et al. (2021) [18] was conducted. The 
results indicated that the variance remained 
homogeneous across all ten scenarios, confirming 
the stability of the proposed method. 
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