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NONPOLYNOMIAL CUBIC SPLINE APPROXIMATION FOR

THE EQUAL WIDTH EQUATION

ALI SAHIN AND LEVENT AKYUZ

Abstract. In this paper, we investigate the numerical solutions of the equal

width (EW) equation via the nonpolynomial cubic spline functions. Crank-

Nicolson formulas are used for time discretization of the target equation. A
linearization technique is also employed for the numerical purpose. Accuracy

of the method is observed by the pointwise rate of convergence. Stability

of the suggested method is investigated via the von-Neumann analysis. Six
numerical examples related to single solitary wave, interaction of two, three

and opposite waves, wave undulation and the Maxwell wave are considered as

the test problems. The accuracy and the efficiency of the purposed method are
measured by L∞ and L2 error norms and conserved constants. The obtained

results are compared with the possible analytical values and those in some
earlier studies.

1. Introduction

The field of nonlinear dispersive waves is one of the rapidly developed area in
science over the last few decades. Because of their attractive solutions such as
shallow water and plasma waves, studying on this field has been source of interest.
Since the analytical solutions are not available in general and the possible cases are
limited, numerical solutions for those equations have importance to understand the
nonlinear phenomena.

There are many different models for the nonlinear dispersive waves in the lit-
erature. In this paper, we focus on the equal width (EW) equation which is first
suggested by Morrison et.al. [2] and it represents an alternative to the well known
KdV and RLW equations.

The EW equation has the following form:

(1.1)
∂u

∂t
+ u

∂u

∂x
− µ ∂3u

∂x2∂t
= 0
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where µ is a positive parameter and u is a smooth function that represents the
wave amplitude on a domain Ω × [0, T ] with Ω ∈ R. The only possible analytical
solution of Eq.(1.1) is the single travelling solitary wave solution. Therefore numer-
ical methods have to be used for some other initial conditions such as interactions,
undulation or the Maxwell initial condition.

Numerical methods including spectral method[4], least squares finite element
method[5], Galerkin method[6][8][9], collocation method[7][10][14], finite difference
method[12][13], differential quadrature method, meshless method[14][22] and Petrov-
Galerkin method[3][19] have been presented in the literature for the EW equation.

Spline approximation is based upon to divide the solution domain into a collec-
tion of subdomains and construct an approximating function on each subdomains.
The most known spline approximation is the cubic spline in which piecewise cubic
polynomials are used for the approximation. The objective of spline approximation
is to obtain an interpolation formula that has continuous derivatives in required
order both within the intervals and at the interpolating nodes.

Nonpolynomial spline based methods have been used for some other partial dif-
ferential equations such as non-linear Schrödinger equation[20], RLW equation[21],
Burgers’ equation[16], Klein-Gordon equation[17], Bratu’s problem[18]. However,
with our knowledge, numerical solution of the EW equation has not been pub-
lished yet. The aim of this paper is to investigate the numerical solution of the
EW equation via the nonpolynomial cubic spline method. Crank-Nicolson method
and Rubin-Graves technique[1] are also used for the time discretization and the
linearization of the governing equation respectively.

This paper is organized as follows: Section 2 is devoted to the numerical method.
Truncation error and stability analysis are also given in that section. The numerical
testing and the comparisons on the examples are studied in Section 3. Finally, a
conclusion is presented in the last section.

2. Numerical method

Let’s start the numerical method by partitioning the solution domain Ω ∈ R into
subintervals. For this purpose, we consider N + 1 equally distributed mesh points
such that

Ω : x0 < x1 < · · · < xN

where xi+1 = xi + h, i = 0, 1, ..., N − 1 and h is the grid size.
The proposed spline functions in this paper have the form

T3 =span{1, x, sin (ωx) , cos (ωx)}
where ω is the frequency of the trigonometric part of the spline. The cubic non-
polynomial spline functions can be constructed over this mesh as follows:

(2.1)
Pi (x, tj) = ai (tj) cos [ω (x− xi)] + bi (tj) sin [ω (x− xi)]

+ci (tj) (x− xi) + di (tj)

where i and j are indices for space and time respectively.
Because of the spline properties, it can written that

U j
i = Pi (xi, tj) , U j

i+1 = Pi (xi+1, tj) ,

Sj
i = P ′′i (xi, tj) , Sj

i+1 = P ′′i (xi+1, tj) .
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Then the coefficients in Eq.(2.1) are obtained as

ai = −h
2

θ2
Sj
i , bi =

h2
(
Sj
i cos θ − Sj

i+1

)
θ2 sin θ

,

ci =
U j
i+1 − U

j
i

h
+
h
(
Sj
i+1 − S

j
i

)
θ2

, di =
h2

θ2
Sj
i + U j

i

where θ = ωh and capital U is used for the approximation to the exact function u.
Another useful tool for the purposed method comes from the continuity of

the first derivatives. Having first order continuous derivatives at grid points, i.e.
P ′i (xi, tj) = P ′i−1 (xi, tj), gives the equation

(2.2) biω + ci = −ai−1ω sin θ + bi−1ω cos θ + ci−1.

Substitution of related coefficients in Eq.(2.2) and slight arrangements on it lead
to the following relation between the solutions and their second derivatives:

(2.3) U j
i−1 − 2U j

i + U j
i+1 = αSj

i−1 + βSj
i + αSj

i+1, i = 1, 2, · · · , N − 1

where α =
h2

θ sin θ
− h2

θ2
and β = −2h2 cos θ

θ sin θ
+

2h2

θ2
. Also note here that if θ → 0

then α→ h2

6
and β → 2h2

3
which means the standard cubic spline case.

Eq.(2.3) can be written between two successive time levels j and j + 1 so that

(2.4)

(
U j+1
i−1 − U

j
i−1

)
− 2

(
U j+1
i − U j

i

)
+
(
U j+1
i+1 − U

j
i+1

)
=

α
(
Sj+1
i−1 − S

j
i−1

)
+ β

(
Sj+1
i − Sj

i

)
+ α

(
Sj+1
i+1 − S

j
i+1

)
where i = 1, 2, · · · , N − 1. The present numerical method will be built on Eq.(2.4).

Theorem 2.1. The difference equation (2.4) has the local truncation error of order
i) O(h2) when 2α+ β 6= h2,
ii) O(h4) when 2α+ β = h2 and α 6= h2/12,
iii) O(h6) when 2α+ β = h2 and α = h2/12.

Proof. It was proved in [21] by using the Taylor series expansion, see [21]. �

Besides the spline relation (2.4), the EW equation gives some additional facts
about the second derivative of the solution. First, Eq.(1.1) may be rearranged as

∂

∂t

(
∂2u

∂x2
− 1

µ
u

)
=

1

µ

(
u
∂u

∂x

)
.

Then following Crank-Nicolson scheme for the time discretization, the EW equation
turns into the form:

(2.5)

[
∂2U

∂x2
− 1

µ
U

]t=tj+1

x=xi

−
[
∂2U

∂x2
− 1

µ
U

]t=tj

x=xi

=
k

2µ

([
U
∂U

∂x

]t=tj+1

x=xi

+

[
U
∂U

∂x

]t=tj

x=xi

)
The nonlinear term in Eq.(2.5) can be linearized with the technique

(UUx)
j+1

= U j+1U j
x + U jU j+1

x − U jU j
x
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which is suggested by Rubin and Graves[1] as

(2.6) Sj+1 − Sj =
1

µ

(
U j+1 − U j

)
+

k

2µ

(
U j+1U j

x + U jU j+1
x

)
.

Using difference formulas for the first order space derivatives in Eq.(2.6) leads
to

(2.7)



Sj+1
i−1 − Sji−1 = 1

µ

(
Uj+1
i−1 − Uji−1

)
+ 2rUj+1

i−1

(
Uji − Uji−1

)
+ 2rUji−1

(
Uj+1
i − Uj+1

i−1

)
,

Sj+1
i − Sji = 1

µ

(
Uj+1
i − Uji

)
+ rUj+1

i

(
Uji+1 − Uji−1

)
+ rUji

(
Uj+1
i+1 − Uj+1

i−1

)
,

Sj+1
i+1 − Sji+1 = 1

µ

(
Uj+1
i+1 − Uji+1

)
+ 2rUj+1

i+1

(
Uji+1 − Uji

)
+ 2rUji+1

(
Uj+1
i+1 − Uj+1

i

)
where r = k/ (4µh) .

Finally, considering Eq.(2.4) together with Eq.(2.7) gives the recurrence relation

(2.8) AiU
j+1
i−1 +BiU

j+1
i + CiU

j+1
i+1 = DiU

j
i−1 + EiU

j
i + FiU

j
i+1

where

Ai = 1− α/µ+ 4αrU j
i−1 − r (2α− β)U j

i ,

Bi = −2− β/µ+ r (2α− β)
(
U j
i+1 − U

j
i−1

)
,

Ci = 1− α/µ− 4αrU j
i+1 + r (2α− β)U j

i ,

Di = 1− α/µ,

Ei = −2− β/µ,

Fi = 1− α/µ.
The recurrence relation (2.8) contains N − 1 equations in N + 1 unknowns. By
adding two equations from the boundary conditions, it will be a solvable linear
system. After the initial solutions U0 computed from the initial condition, all the
other solutions at different time levels are calculated from the system (2.8).

2.1. Stability analysis. According to von-Neumann analysis, it is assumed that
the solution of the governing equation is in the following form:

U j
i = ξjeqϕih

where q is the imaginary unit, ϕ is the wave number and ξ is the amplification
factor. Substitution of the above expression in Eq.(2.8) yields

Aiξ
j+1eqϕ(i−1)h +Biξ

j+1eqϕih + Ciξ
j+1eqϕ(i+1)h

= Diξ
jeqϕ(i−1)h + Eiξ

jeqϕih + Fiξ
jeqϕ(i+1)h.

Then

ξ =

(
2− 2α

µ

)
cosϕh− 2− β

µ
+ q (2α+ β) 2rd∗(

2− 2α

µ

)
cosϕh− 2− β

µ
− q (2α+ β) 2rd∗
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where d∗ is locally constant for U in the nonlinear terms. Hence, the above ex-
pression gives |ξ| = 1 which means that the numerical method is unconditionally
stable.

3. Test problems

In this section, several test problems take part in order to show the accuracy
and the efficiency of the numerical method. The accuracy is measured by L∞ and
L2 error norms that are defined by

L∞ = max
i

∣∣uexacti − Unumeric
i

∣∣ ,
L2 =

√√√√h

N∑
i=0

∣∣uexacti − Unumeric
i

∣∣2 .
In all numerical computations except the motion of single solitary wave, the

discretization parameters are chosen as h = 0.1 and k = 0.1. Additionally, similar
to the reference [21], the parameters α and β are selected as 2α + β = h2 and
α = h2/4 in all computations.

The EW equation has also the following conserved quantities:

C1 =
b∫
a

udx, C2 =
b∫
a

(
u2 + µ (ux)

2
)
dx, C3 =

b∫
a

u3dx

which correspond to mass, momentum and energy respectively. These invariants
also give an idea about the accuracy of the numerical method especially in cases
that the equation does not have an analytical solution. Therefore the invariants
are monitored to check the conservation of the numerical algorithms for all test
problems.

In order to compute the rate of convergence, the algorithm has been performed
for difference space and time steps. Then the results are used in the formula

space order =
log(‖u− uhi‖2 /

∥∥u− uhi+1

∥∥
2
)

log(hi/hi+1)

time order =
log(‖u− uki‖2 /

∥∥u− uki+1

∥∥
2
)

log(ki/ki+1)

where u is the exact solution and uhi and uki are the numerical solutions for space
size hi and time step ki respectively.

3.1. Motion of single solitary wave. A single solitary wave which is initially
centered at x̃s and travels with a constant velocity has the following analytical
solution

(3.1) u (x, t) = 3csech2 [K (x− x̃s − ct)] ,

where K = 1/
√

4µ is the width of the wave pulse, c is the velocity and 3c is the
magnitude of the wave.

The initial condition comes from Eq.(3.1) and the boundary conditions are given
by

u (x0, t) = 0 and u (xN , t) = 0.
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The common parameter choices in the literature are µ = 1 and xs = 10. Although
almost all earlier papers use same time increment, i.e. k = 0.05, there are some
different considerations for the grid size. For instance, h = 0.15 in [22] and MM[14],
h = 0.1 in DQM[14], h = 0.05 in [7], [9] and [6]. In this test problem, similar
to QBGM[14], the solutions are calculated over Ω = [0, 30] and t ∈ [0, 80] with
the discretization parameters h = 0.03 and k = 0.05. The solution profiles are
illustrated in Fig.1-2 for c = 0.1 and Fig.3-4 for c = 0.03 at different times. It is
clear from these figures that solutions remain in same profile.

3.1 Motion of single solitary wave
A single solitary wave which is initially centered at exs and travels with a constant velocity has the
following analytical solution

u (x; t) = 3csech2 [K (x� exs � ct)] ; (10)

where K = 1=
p
4� is the width of the wave pulse, c is the velocity and 3c is the magnitude of the

wave.
The initial condition comes from Eq.(10) and the boundary conditions are given by

u (x0; t) = 0 and u (xN ; t) = 0:

The common parameter choices in the literature are � = 1 and xs = 10: Although almost all earlier
papers use same time increment, i.e. k = 0:05; there are some di¤erent considerations for the grid
size. For instance, h = 0:15 in [22] and MM[14], h = 0:1 in DQM[14], h = 0:05 in [7], [9] and [6]. In
this test problem, similar to QBGM[14], the solutions are calculated over 
 = [0; 30] and t 2 [0; 80]
with the discretization parameters h = 0:03 and k = 0:05: The solution pro�les are illustrated in
Fig.1-2 for c = 0:1 and Fig.3-4 for c = 0:03 at di¤erent times. It is clear from these �gures that
solutions remain in same pro�le.
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Fig.1: Solitary waves for c = 0:1 Fig.2: Solitary waves for c = 0:1
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Fig.3: Solitary waves for c = 0:03 Fig.4: Solitary waves for c = 0:03

The analytical values of the invariants are calculated by

C1 =
6c

K
; C2 =

12c2

K
+
48Kc2�

5
; C3 =

144c3

5K

that correspond to C1 = 1:2; C2 = 0:288 and C3 = 0:0576 for c = 0:1 and C1 = 0:36; C2 = 0:02592
and C3 = 0:001555 for c = 0:03: Computed errors and invariants are presented in Table 1 and
Table 3 for c = 0:1 and c = 0:03 respectively. According to Table 1 and 3, the present results are
acceptable and the given method is comparable with others.

Table 1
Errors and invariants at time t = 80 for c = 0:1
Method L1 � 104 L2 � 104 C1 C2 C3
Analytic 1.2 0.288 0.05760
Present 0.07372964 0.1289443 1.199985 0.2879897 0.05760
[7] 0.53 0.56 1.19998 0.28798 0.05759
[9] 0.21 0.29 1.19995 0.28798 0.05759
[6] 0.01704 0.03064 1.19999 0.28801 0.05760
QBGM[14] 0.07370 0.06095 1.20000 0.288000 0.05760
DQM[14] 0.07373 0.07035 1.19999 0.288000 0.05760
MM[14] 0.20296 0.31198 1.20003 0.288000 0.05760
W(7,5)[22] 0.03537611 0.03360406 1.19999752 0.28800001 0.05760

Absolute error distributions at t = 80 are plotted in Fig.5 and Fig.6. Due to the relatively high
velocity, the solution domain is short when c = 0:1: Therefore the maximum error is observed at

7

The analytical values of the invariants are calculated by

C1 =
6c

K
, C2 =

12c2

K
+

48Kc2µ

5
, C3 =

144c3

5K

that correspond to C1 = 1.2, C2 = 0.288 and C3 = 0.0576 for c = 0.1 and C1 = 0.36,
C2 = 0.02592 and C3 = 0.001555 for c = 0.03. Computed errors and invariants are
presented in Table 1 and Table 3 for c = 0.1 and c = 0.03 respectively. According to
Table 1 and 3, the present results are acceptable and the given method is comparable
with others.
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Table 1
Errors and invariants at time t = 80 for c = 0.1
Method L∞ × 104 L2 × 104 C1 C2 C3

Analytic 1.2 0.288 0.05760
Present 0.07372964 0.1289443 1.199985 0.2879897 0.05760
[7] 0.53 0.56 1.19998 0.28798 0.05759
[9] 0.21 0.29 1.19995 0.28798 0.05759
[6] 0.01704 0.03064 1.19999 0.28801 0.05760
QBGM[14] 0.07370 0.06095 1.20000 0.288000 0.05760
DQM[14] 0.07373 0.07035 1.19999 0.288000 0.05760
MM[14] 0.20296 0.31198 1.20003 0.288000 0.05760
W(7,5)[22] 0.03537611 0.03360406 1.19999752 0.28800001 0.05760

Absolute error distributions at t = 80 are plotted in Fig.5 and Fig.6. Due to the
relatively high velocity, the solution domain is short when c = 0.1. Therefore the
maximum error is observed at the right hand boundary in Fig.5. To overcome this
problem, the solution domain can be extended so that the error at the right hand
boundary decreases.

the right hand boundary in Fig.5. To overcome this problem, the solution domain can be extended
so that the error at the right hand boundary decreases.
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Fig.5: Absolute error for c = 0:1 Fig.6: Absolute error for c = 0:03

The orders for pointwise rate of convergence are given in Table 2 which shows that the present
method has second order accuracy in terms of both space and time.

Table 2: Rate of convergence
Spatial order (�t = 0:05) Temporal order (h = 0:03)
hi t = 80 �ti t = 80
2:00 2:00
1:00 3:1914841 1:00 1:9942460
0:50 2:1804472 0:50 2:0091253
0:25 2:0403988 0:25 2:0364273
0:125 2:0157560 0:125 1:9910816
0:0625 2:0207153 0:0625 0:9043434

8

The orders for pointwise rate of convergence are given in Table 2 which shows
that the present method has second order accuracy in terms of both space and time.

Table 2: Rate of convergence
Spatial order (∆t = 0.05) Temporal order (h = 0.03)
hi t = 80 ∆ti t = 80
2.00 2.00
1.00 3.1914841 1.00 1.9942460
0.50 2.1804472 0.50 2.0091253
0.25 2.0403988 0.25 2.0364273
0.125 2.0157560 0.125 1.9910816
0.0625 2.0207153 0.0625 0.9043434
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Table 3
Errors and invariants at time t = 80 for c = 0.03
Method L∞ × 104 L2 × 104 C1 C2 C3

Analytic 0.36000 0.02592 0.001555
Present 0.02299 0.03812 0.359997 0.025919 0.0015552
[8] 18.36 26.83 0.36665 0.02658
[9] 0.07 0.13 0.36000 0.02592 0.00156
[6] 0.01483 0.01025 0.36000 0.02592 0.00156
QBGM[14] 0.01483 0.01064 0.36000 0.02592 0.00156
DQM[14] 0.01483 0.00934 0.36000 0.02592 0.00156
MM[14] 0.07598 0.04911 0.36000 0.02592 0.00156
W(7,5)[22] 0.01418041 0.01267701 0.36000055 0.02592 0.0015552

3.2. Interaction of two solitary waves. As a second problem, interaction of two
solitary waves is considered. The initial condition

(3.2)
u0 (x) = U1 + U2

Uj = 3cjsech2 [Kj (x− x̃j − cj)] , j = 1, 2

}
yields two waves travelling in same direction and having amplitude 3c1 and 3c2.
These waves are initially positioned at x = x̃1 and x = x̃2 respectively. The
following parameter choices give a complete interaction over the solution domain
x ∈ [0, 80] .

µ = 1, K1 = 0.5, K2 = 0.5, x̃1 = 10, x̃2 = 25, c1 = 1.5, c2 = 0.75.

To illustrate the interaction, the solution profiles are figured in Fig.7-8 at three
different times. The figures show that there is no decay on the solitary waves after
the interaction. However, as seen in Fig.9, there are some changes on magnitudes
for both waves at the interaction process.
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Fig.7: Interaction of two solitary waves Fig.8: Interaction of two solitary waves

In order to see the results quantitatively and to make a comparison, Table 4 is constructed.
Since there is no analytical solution with the considered initial condition (11), only the invariants
are compared in the table. Analytical values of the invariants are

C1 = 12 (c1 + c2) = 27; C2 = 28:8 (c21 + c
2
2) = 81; C3 = 57:6 (c31 + c

3
2) = 218:7:
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Fig.9: Magnitudes of the waves
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In order to see the results quantitatively and to make a comparison, Table 4
is constructed. Since there is no analytical solution with the considered initial
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condition (3.2), only the invariants are compared in the table. Analytical values of
the invariants are

C1 = 12 (c1 + c2) = 27, C2 = 28.8
(
c21 + c22

)
= 81, C3 = 57.6

(
c31 + c32

)
= 218.7.
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In order to see the results quantitatively and to make a comparison, Table 4 is constructed.
Since there is no analytical solution with the considered initial condition (11), only the invariants
are compared in the table. Analytical values of the invariants are

C1 = 12 (c1 + c2) = 27; C2 = 28:8 (c21 + c
2
2) = 81; C3 = 57:6 (c31 + c

3
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Table 4
Invariants for the interaction of two solitary waves at t = 30.
Method C1 C2 C3

Analytic 27 81 218.7
Present 26.999997 80.968402 218.70289
[9] 27.00003 81.01719 218.70650
[6] 27.00068 81.02407 218.73673
[10] 27.12702 80.98988 218.6996
QBGM[14] 26.99973 80.99778 218.69094
DQM[14] 27.00017 81.00044 218.70304
MM[14] 27.00024 81.00140 218.70694
W(7,5)[22] 27.000049 81.000204 218.70186

3.3. Interaction of three solitary waves. Interaction of three solitary waves is
figured out in this subsection. The initial condition

u0 (x) =

3∑
j=1

3cjsech2 [Kj (x− x̃j − cj)]

where

K1 = K2 = K3 = 0.5, c1 = 4.5, c2 = 1.5, c3 = 0.5, x̃1 = 10, x̃2 = 25, x̃3 = 35

leads to three waves which interact together. Figs.10-11 shows the complete inter-
action. The backmost wave passes the others without any decay on its profile. The
invariants are tabulated at t = 15 for h = 0.1 and k = 0.1 in Table 5.
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Table 4
Invariants for the interaction of two solitary waves at t = 30:
Method C1 C2 C3
Analytic 27 81 218.7
Present 26.999997 80.968402 218.70289
[9] 27.00003 81.01719 218.70650
[6] 27.00068 81.02407 218.73673
[10] 27.12702 80.98988 218.6996
QBGM[14] 26.99973 80.99778 218.69094
DQM[14] 27.00017 81.00044 218.70304
MM[14] 27.00024 81.00140 218.70694
W(7,5)[22] 27.000049 81.000204 218.70186

3.3 Interaction of three solitary waves
Interaction of three solitary waves is �gured out in this subsection. The initial condition

u0 (x) =
3X
j=1

3cjsech
2 [Kj (x� exj � cj)]

where

K1 = K2 = K3 = 0:5; c1 = 4:5; c2 = 1:5; c3 = 0:5; ex1 = 10; ex2 = 25; ex3 = 35
leads to three waves which interact together. Figs.10-11 shows the complete interaction. The
backmost wave passes the others without any decay on its pro�le. The invariants are tabulated at
t = 15 for h = 0:1 and k = 0:1 in Table 5.
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Table 5
Invariants for the interaction of two solitary waves at t = 15.
Method C1 C2 C3

Analytic 78 655.2 5450.4
Present 77.999994 655.069708 5451.895023
[10] 77.99539 652.8104 5411.639
[11] 78.00490 652.3474 5412.232
W(7,5)[22] 78.000004 655.263936 5451.005509

3.4. Interaction of opposite waves. The last interaction example is the inter-
action between two opposite waves that have exactly the same form but different
signs. This case is relatively less considered problem in the literature. Although
it is stated in [22] that the colliding solitons has never been treated before, it was
also studied in [4] and [11].

The initial condition for colliding waves that are initially centered at x = 40 and
x = 120 is given in [4] as

u0 (x) = 4.5sech2 [(x− 40) /2]− 4.5sech2 [(x− 120) /2]

which is also considered here with h = 0.1 and k = 0.1.
These two opposite waves move towards each other and then a singularity occurs

when they meet. The colliding yields trains of smaller waves on both sides, while
the singularity gradually vanishes over time, see Figs.12-15.



NONPOLYNOMIAL CUBIC SPLINE APPROXIMATION FOR THE EW EQUATION 27

Table 5
Invariants for the interaction of two solitary waves at t = 15:
Method C1 C2 C3
Analytic 78 655.2 5450.4
Present 77.999994 655.069708 5451.895023
[10] 77.99539 652.8104 5411.639
[11] 78.00490 652.3474 5412.232
W(7,5)[22] 78.000004 655.263936 5451.005509

3.4 Interaction of opposite waves
The last interaction example is the interaction between two opposite waves that have exactly the
same form but di¤erent signs. This case is relatively less considered problem in the literature.
Although it is stated in [22] that the colliding solitons has never been treated before, it was also
studied in [4] and [11].
The initial condition for colliding waves that are initially centered at x = 40 and x = 120 is

given in [4] as
u0 (x) = 4:5sech

2 [(x� 40) =2]� 4:5sech2 [(x� 120) =2]
which is also considered here with h = 0:1 and k = 0:1:
These two opposite waves move towards each other and then a singularity occurs when they

meet. The colliding yields trains of smaller waves on both sides, while the singularity gradually
vanishes over time, see Figs.12-15.
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3.5 Wave undulation
Development of an undular bore is studied here by the initial function

u0 (x) =
U0
2

�
1� tanh

�
x� xc
d

��
where d shows the slope between the still and deeper water and xc is the center of the change in water
level of magnitude U0: The EW equation has not an analytical solution with the mentioned initial
condition. So, only the invariants of the EW equation are considered in order to see the e¢ ciency
of the method. A comparison on invariants, position and amplitude of the leading undulation is
presented in Table 6.
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3.5. Wave undulation. Development of an undular bore is studied here by the
initial function

u0 (x) =
U0

2

(
1− tanh

(
x− xc
d

))

where d shows the slope between the still and deeper water and xc is the center of
the change in water level of magnitude U0. The EW equation has not an analytical
solution with the mentioned initial condition. So, only the invariants of the EW
equation are considered in order to see the efficiency of the method. A comparison
on invariants, position and amplitude of the leading undulation is presented in
Table 6.
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Table 6
Development of undular bore

Time C1 C2 C3 x U
d = 2 0 2.0000000 0.19027759 0.018500000

200 3.0000000 0.32337149 0.033500252 9.4 0.17579731
400 4.0000000 0.45637134 0.048500614 21.4 0.18142204
600 5.0000000 0.58937051 0.063500976 33.6 0.18321870
800 5.9999778 0.72236947 0.078501338 45.8 0.18383578

QBGM[14] 800 0.6002474 0.72386 0.078525 45.85 0.18471
DQM[14] 800 0.6025073 0.72402 0.07853 45.85 0.184713
d = 5 0 2.0000839 0.17512787 0.01625251521

200 3.0000815 0.30837385 0.03125247301 8.8 0.16035721
400 4.0000815 0.44138580 0.04625256015 20.4 0.17905369
600 5.0000815 0.57438765 0.06125265022 32.5 0.18242416
800 6.0000801 0.70738790 0.07625274062 44.7 0.18364070

QBGM[14] 800 6.002578 0.708710 0.076277 44.75 0.18405
DQM[14] 800 6.025306 0.711361 0.076579 44.75 0.17259
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Variations in invariants that are given in Table 7 are calculated numerically with the formula

Mi =
Ci (at time t = 800)� Ci (at time t = 0)

Running time

and analytically with

M1=
dC1
dt

=
d

dt

Z xN

x0

udx =
1

2
U20 = 5� 10�3

M2=
dC2
dt

=
d

dt

Z xN

x0

�
u2 + �u2x

�
dx =

2

3
U30 = 6:66667� 10�4

M3=
dC3
dt

=
d

dt

Z xN

x0

u3dx =
3

4
U40 = 7:5� 10�5

The undulation pro�les are illustrated in Figs.16-19 for d = 2 and Figs.20-23 for d = 5:
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Variations in invariants that are given in Table 7 are calculated numerically with
the formula

Mi =
Ci (at time t = 800)− Ci (at time t = 0)

Running time

and analytically with

M1 =
dC1

dt
=

d

dt

∫ xN

x0

udx =
1

2
U2
0 = 5× 10−3

M2 =
dC2

dt
=

d

dt

∫ xN

x0

(
u2 + µu2x

)
dx =

2

3
U3
0 = 6.66667× 10−4

M3 =
dC3

dt
=

d

dt

∫ xN

x0

u3dx =
3

4
U4
0 = 7.5× 10−5

The undulation profiles are illustrated in Figs.16-19 for d = 2 and Figs.20-23 for
d = 5.
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Table 7
Variations in invariants

Method M1 × 10−3 M2 × 10−4 M3 × 10−5

Analytical 5 6.66667 7.5
d = 2 Present 4.9999723 6.6511485 7.500167

QBGM[14] 4.99997 6.66665 7.5
DQM[14] 5 6.669387 7.507
MM[14] 5 6.669387 7.507
W(7,5)[22] 4.99937586 6.66667317 7.50000017

d = 5 Present 4.9999953 6.6532503 7.5001382
QBGM[14] 4.99999 6.66665 7.7
DQM[14] 5 6.671688 7.509
MM[14] 5 6.671688 7.509

3.6. The Maxwell wave. The last problem for testing our method is the Maxwell
wave where the starting function is

u0 (x) = 0.05 exp
(
− (x− 20)

2
/25
)
.

Again the analytical solution does not exist with this initial condition. The solutions
are computed over Ω = [0, 50] until T = 1000. The wave profiles are drawn in
Figs.24-25 at four different times to figure out the behavior of the initial wave over
time.

Table 7
Variations in invariants

Method M1 � 10�3 M2 � 10�4 M3 � 10�5
Analytical 5 6:66667 7:5

d = 2 Present 4:9999723 6:6511485 7:500167
QBGM[14] 4:99997 6:66665 7:5
DQM[14] 5 6:669387 7:507
MM[14] 5 6:669387 7:507
W(7,5)[22] 4:99937586 6:66667317 7:50000017

d = 5 Present 4:9999953 6:6532503 7:5001382
QBGM[14] 4:99999 6:66665 7:7
DQM[14] 5 6:671688 7:509
MM[14] 5 6:671688 7:509

3.6 The Maxwell wave
The last problem for testing our method is the Maxwell wave where the starting function is

u0 (x) = 0:05 exp
�
� (x� 20)2 =25

�
:

Again the analytical solution does not exist with this initial condition. The solutions are computed
over 
 = [0; 50] until T = 1000: The wave pro�les are drawn in Figs.24-25 at four di¤erent times to
�gure out the behavior of the initial wave over time.
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17There are some changes in the initial profile in course of time. It turns into a
train such that while its amplitude becomes larger, the wave length becomes smaller
and there are tails that will turn to a new small wave.

The invariants are presented at some different times in Table 8. The results show
that the method is very conservative in this problem.
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Table 8
Invariants for the Maxwell wave
Time C1 C2 C3

0 0.44311346 0.016292833 0.00063957919
100 0.44311348 0.016292567 0.00063957921
200 0.44311349 0.016291320 0.00063957928
300 0.44311349 0.016289148 0.00063957937
400 0.44311350 0.016287762 0.00063957944
500 0.44311349 0.016287480 0.00063957947
600 0.44311337 0.016287483 0.00063957947
700 0.44311225 0.016287440 0.00063957948
800 0.44310227 0.016287342 0.00063957947
900 0.44301341 0.016287228 0.00063957915
1000 0.44222656 0.016287133 0.00063955380

4. Conclusion

In this study, cubic nonpolynomial spline based numerical method is imple-
mented in order to get the solution of the EW equation. Over the uniform mesh,
Crank-Nicolson formulas are employed for time discretization whereas Rubin and
Graves[1] technique is used for the linearization. According to pointwise rate of
convergence, the present method has second order accuracy for both space and
time. Also the von-Neumann stability analysis shows that the purposed method is
unconditionally stable. Six problems that related to single solitary wave, interac-
tion of two, three and opposite solitary, the undulation bore and the Maxwell wave
are examined for testing the numerical scheme. Comparisons between the obtained
results and some earlier papers show that the present results are all acceptable and
in agreement with those in the literature. Simple adaptation and yielding band
matrices can be stated as the advantages of the method. On the other hand, ac-
cording to your problem, requiring the determination of two parameters (α and β)
is an undesirable situation. In conclusion, cubic nonpolynomial spline method can
be considered as a conservative numerical method that leads to reasonable results.
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