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MATRICES OF GENERALIZED DUAL QUATERNIONS

MEHDI JAFARI

ABSTRACT. After a brief review of some algebraic properties of a generalized
dual quaternion, we investigate properties of matrix associated with a gener-
alized dual quaternion and examine De Moivre’s formula for this matrix, from
which the n-th power of such a matrix can be determined. We give the relation
between the powers of these matrices.

1. INTRODUACTION

Mathematically, quaternions represent the natural extension of complex num-
bers, forming an associative algebra under addition and multiplication. Dual num-
bers and dual quaternions were introduced in the 19th century by W.K. Clifford [5],
as a tool for his geometrical investigation. Study [17] and Kotel’nikov [12] system-
atically applied the dual number and dual vector in their studies of line geometry
and kinematics and independently discovered the transfer principle.

The use of dual numbers, dual numbers matrix and dual quaternions in instan-
taneous spatial kinematics are investigated in [15,18]. The Euler’s and De-Moivre’s
formulas for the complex numbers are generalized for quaternions in [4]. These
formulas are also investigated for the cases of split and dual quaternions in [11,14].
Some algebraic properties of Hamilton operators are considered in [1,2] where dual
quaternions have been expressed in terms of 4 x 4 matrices by means of these opera-
tors. Properties of these matrices have applications in mechanics, quantum physics
and computer-aided geometric design [3,20]. Recently, we have derived the De-
Moivre’s and Euler’s formulas for matrices associated with real, dual quaternions
and every power of these matrices are immediately obtained [9,10].

A generalization of real and dual quaternions are also investigated by author
and et al. [6,7]. Here, after a review of some algebraic properties of generalized
dual quaternions, we study the Euler’'s and De-Moivre’s formulas for generalized
dual quaternions and for the matrices associated with them. Also, the n-th roots of
these matrices are obtained. Finally, we give some examples for more clarification.
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2. PRELIMINARIES

In this section, we give a brief summary algebra of generalized dual quaternions.
For detailed information about this concept, we refer the reader to (7, 8].

Definition 2.1. A generalized dual quaternion @ is written as

Q= A1+ Aji + Asj + Ask,
where A., A1, As and A3 are dual numbers and i, j, k are quaternionic units which
satisfy the equalities
i2 = —Q, j2:_ﬁa k'2:—O£B,
ij = k=—ji, jk=pi=—kj,
and
ki=aj =—ik, a,f €R.
As a consequence of this definition, a generalized dual quaternion @ can also be

written as;

Q = q+eq", ¢,4" € Hup

where g and ¢*, real and pure generalized dual quaternion components, respectively.
A quaternion Q = Agl + Ayi+ Agj + Ask is pieced into two parts with scalar piece
Sqg = A. and vectorial piece V g = Aji+ Asj + Azk. We also write @ = Sg + 7Q.
The conjugate of Q = Sg + V ¢ is then defined as Q = Sg — 7@. If Sg =0, then
@ is called pure generalized dual quaternion, we may be called its generalized dual
vector. The set of all generalized dual vectors denoted by Di,@ [15].

Dual quaternionic multiplication of two dual quaternions @ = Sg + 7@ and P
=Sp+ 71) is defined;
QP = SoSp-— g(VQ,Vp) + Sp?@ + SQVP + ?Q N 713
- AoBo - (aAlBl + 6A2B2 + O‘ﬁAZSBS) + AO(BL B23 B3) + Bo (Ala AQa A3)
+(B(A2Bs — A3Bs), a(A3By — A1 B3), (A1 By — A3 By)).

Also, It could be written
Ao —aA; —BAy —afAs B,

oP — A As —BA3 BAs B
As s A, —a Ay By
Az —As Ay A, Bs

So, the multiplication of dual quaternions as matrix-by-vector product. The
norm of @ is defined as Ng = QQ = QQ = A3 + aA? + BA3 + aBA%. If Ng =1,
then @ is called a unit generalized dual quaternion.The set of all generalized dual
quaternions (abbreviated GDQ) are denoted by Hyg.

Theorem 2.1. Every unit generalized dual quaternion is a screw operator [8].
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We investigate the properties of the generalized dual quaternions in two different
cases.

Case 1: Let «, 8 be positive numbers.

Definition 2.2. Let §]?§ be the set of all unit generalized dual quaternions and
S%, the set of unit generalized dual vector, that is,

S} = {QEﬁaﬁiNQzl}Cffaﬁ’

§%) {7Q:<A1’A2’A3):g(vQ7?Q):OZA?‘FBA%-FaﬂA%:l},

Definition 2.3. Every nonzero unit generalized dual quaternion can be written in
the polar form

Q = Ao+ Avi+ Azj + Ask
= cosgzﬁ—f—ﬁ)/singb,

where cos ¢ = Ag, sing =/ aA? + BAZ + aBA3. ¢ = p+ep* is a dual angle and
the unit generalized dual vector W is given by

W Avi+Aoj+Asj A+ Agj+ Azj

VaA? + BAZ + aBA2 J1-42

with aA? + SA3 + aBA3 # 0.
Note that W is a unit generalized dual vector to which a directed line in Riﬁ
corresponds by means of the generalized E. Study map [16].

= = 4
Theorem 2.2. (De-Moivre’s formula) Let Q = "' = cos ¢+ W sin ¢ € S3,, where
¢ = @+ ep* is dual angle and W € S%. Then for every integer n;
_)
Q" = cosng + W sinng.

Proof. The proof follows immediately from the induction (see [13]). O

Every generalized dual qauetrnion can be separated into two cases:
1) Generalized dual quaternions with dual angles (¢ = ¢ + ¢*); i.e.

Q = \/Ng(cosp + Wsind)).
2) Generalized dual quaternions with real angles (¢ = ¢, ¢* = 0); i.e.
Q = \/Ng(cosp + Wsimp).

% ~,
Theorem 2.3. Let Q = cosp + Wsing € S3,.De-Moivre’s formula implies that
there are uncountably many unit dual generalized quaternions @ satisfying Q™ =

forn > 2 [13].
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Case 2: Let a be a positive and 3 a negative numbers.
In this case, for a generalized dual quaternion Q = Ag + Ayi + Axj + Ak, we
can consider three different subcases.

Subcase (i): The norm of generalized dual quaternion is negative, i.e.
Ng = A% + AT + BA3 + aBA3 <0,
since 0 < A3 < —a A} — BA3 — aBA2 thus aA? + BA3 + afA% < 0. In this case,
the polar form of @ is defined as
_>
Q@ = r(sinh ¥ + W cosh ¥)

where we assume

r = \INgl = /142 + a3 + B3 + apa3),

A —aA? — BAZ — aB A2
sinh¥ = 0 , cosh\Il:\/ adi - fd; —ab 3.
VINel VING|
%
The unit dual vector W (axis of quaternion) is defined as
= 1

W = (wi,wq,ws) =
(w3, e, ws) V—0A? — BAZ — af A2

(A17A27 A3)

_>
Theorem 2.4. (De-Moivre’s formula) Let Q = sinh W + W cosh ¥ be a unit gen-
eralized dual quaternion with Ng < 0. Then for every integer n;

Q" = sinhnW¥ + W coshnW.
Proof. The proof follows immediately from the induction [13]. O

Subcase (ii): The norm of generalized dual quaternion is positive and the norm
of its vector part to be negative, i.e.

No >0, Ny = aA? + A2 + aBA2 <0,

In this case, the polar form of () is defined as
Q = r(cosh® + W sinh D)
where we assume
ro= Ng=1/43+aA?+ A3+ aBAl,
cosh® = Ao , sinh® = \/_QA% — PA3 - aﬁA‘%.
vNo VNo
The unit dual vector W (axis of quaternion) is defined as

1
V/—aA} — BA3 — aB A3

(AlaAQa AS)

_>
W = (wy, w,ws3) =
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Theorem 2.5. Let (Q = cosh® + Wsinh@ be a unit generalized dual quaternion
with Ng > 0 and NVQ < 0. Then for every integer n;

—
Q" = coshn® 4+ W sinh n®.
Proof. The proof follows immediately from the induction [13]. O

Subcase (1ii): The norm of generalized dual quaternion is positive and the norm
of its vector part to be positive, i.e.

Nog >0, Ny = aA? + A2 + aBA2 >0,
In this case, the polar form of @ is defined as
Q =r(cos® + W/sin@)

where we assume

r

VNg = \/Ag + ad? + BAZ + aBAZ,
3 7 3
cos® = Ao sin® = VaA] + A7 + aﬂA3'

Vers VMo

%
The unit dual vector W (axis of quaternion) is defined as

— 1
W = (wy,ws,w3) =
(w1, w2, ws) VAT + BAZ + aBA2

(A17 A27 A3)

Theorem 2.6. Let Q = cos© + Wsin ® be a unit generalized dual quaternion with
Ng >0 and Nv@ > 0. Then for every integer n;

Q" = cosn® + V_[}sin no.

Proof. The proof follows immediately from the induction. (Il

2.1. 4 x 4 Dual Matrix representation of GDQ.

In this section, we introduce the R-linear transformations representing left mul-
tiplication in ﬁ[aﬁ and look for also the De-Moiver’s formula for corresponding
matrix representation. Let ) be a generalized dual quaternion, then the linear

+ - ~
map hqg : Hog — H,p defined as follows;
+ ~
hqo(P)=QP, P € Hyg.

+
The Hamilton’s operator H, could be represented as the matrix

AO 7C¥A1 *BAQ 7046143
+ A Ay —pAs A,
H(Q) o AQ aA3 AO —OéAl

A3 —A2 A1 AO
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Theorem 2.7. IfQ and P are two generalized dual quaternions, A is a real number,
then the following identities hold;
+ +
i. Q=P H(Q)=H(P)
o+ + +
i HQ+P)=H(@)+ H(P)
+
140 ( Q) =\H(Q)
, + o+
iv. ( P)=H(Q)H(P)
+ +
v. H(Q')=[H(Q) " Ng#0.
. +oo
vi.  H(Q)=[H(Q)]
+
vii. det [H(Q)] = (Ng)?
+
vidi. tr[H(Q)] = 44,

Proof. The proof can be found in [7]. O

Following the usual matrix nomenclature, a matrix A is called a dual quasi-
orthogonal matrix if ATeA = Ae, where A is a dual number and € is a 4 x 4
diagonal matrix. A matrix A is called dual quasi-orthonormal matrix if A =1 [g].

+
Theorem 2.8. Matrices generated by operators by H is a dual quasi-orthogonal
+ +
matrices; i.e. [H(Q)|TeH(Q) = Nge where

oo o~
co 9 o
oo o
oo o

+
Also, H(Q) is a dual quasi-orthonormal matrices if Q is a unit generalized dual
quaternion [8].

Theorem 2.9. The ¢ map defined as

¢ : (ﬁaﬁa +, ) — (M(4,D)7€B7®)

Ay —aA; —BAy —afAs3
A1 AO 7BA3 ,BAQ
Ay aAs Ap —aAy
A3 —AQ Al AO

O(Ao + Avi+ Asj + Ask) —

is an isomorphism of algebras.

Proof. We first demonstrate its homomorphic properties. If Q = Agl+ Ayi+ Azj+
Ask and P = Byl + Byi + Byj + Bsk are any two GDQ, then
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HQ+ P} = éf’_{(Ao + Bo) + (A1 + B1)i+ (A2 + Ba)j + (Az + B3)k}

AO + Bo —Oé(Al + Bl) —ﬁ(Az + Bz) —aﬁ(Ag + Bg)
_ (4 +Bl) Ao+ By —B(As + Bs) B(As + Bo)
(A2 + Bs)  a(As+ Bs) Ao + By —a(A1 + By)
| (A3 +B3) —(A2+ B») (A1 + By) Ap + By
[ Ao —aA1 —BAQ —O[ﬁA;g Bo —OéBl —ﬁBQ —aﬂng
_ A1 Ay —BAs BA n B1 By —pBs BB
AQ OéAg Ao —OéAl B2 OéB3 BO —a31
L Az —Ay Aq Ap B3 —Bs By By
= Qe o{Pr},

H{QP} = ¢{AoBo — (€A1 By + fA3Bs + aBA3B3) + Ao(By, Ba, B3) + Bo (A1, Az, A3)
(B(A2Bs — A3Bs),a(A3By — A1B3), (A1By — A2 Bh))}
Ao —aAr —BAy —aBA; By —aBy —pBy —afBs
_ Ay Ay —BA3 BAy ® By By —BBs BB
- A2 CkAg AO —aA1 B2 CVB3 BO —OéBl
Az —As Ay Ay B3 —B B, By
O

+
We can express the matrix H(Q) in polar form. Let @ be a unit generalized dual
quaternion and a, 8 > 0. Since

Q = Ao+ Ajer + Agea + Azes

= cos¢+ W/singh

= cos¢+ (wi,wz, ws3)sin ¢
so we have
Ay —aA; —BAy; —afAj cos¢p —awising —Pwssing —aPwssing
Ay Ay —BAs BAs _ w1 sin ¢ cos ¢ —Bwsgsing  Lwssin g
Ay «Aj Ag —aA a wesing  awssin ¢ cos ¢ —aaw; sin ¢
As  —Ay Aq Ag w3sing  —wssin ¢ wy sin ¢ cos ¢

Theorem 2.10. (De-Moivre’s formula) For an integer n and matriz

cos¢p —awsing —Pwssing —aBwssing |
A_ | W sin ¢ cos ¢ —Bwssing  fwssin @ (1.1)
wosing  qwssin @ cos ¢ —Qwi sin @ '
wssing  —wsgsin ¢ w1 sin ¢ cos ¢

the n-th power of the matriz A reads

cosng  —aw;sinng —Pwysinng —afwssinng |
An— | W sin ne cos ng —Bwssinng  Pwssinng
wo SinNg  qws sin ng cosne —qwi sin ng
wgsinng  —wsysinng w1 sinng cos ng

Proof. The proof follows immediately from the induction. O
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Special cases:

1) If ¢, w1, we and ws be real numbers, then Theorem 3.4 holds for real quater-
nions (see [10]).
2) If @ = 8 =1, then Theorem 3.4 holds for dual quaternions (see [9]).

Example 2.1. Let Q = % + %(%, ﬁ, ¢) be a unit generalized dual quaternion.
The matrix corresponding to this quaternion is

ML _Va VB _aBe
V2 2 2 2
1 L _Be VB
A = V2a V2 2 2
_1 ae 1 _Va ’
V2B 2 V2 2
£ 1 1 1
L 2 V28 V2a V2
r s o T o T o T
cos —awrsin i —pws sin —OéB’LUg.SIIl T
_ wy sin cos —Bws sin 7 Bwsg sin
wWs Sin % aws sin % cos % —owi sin %
: us M s 3 us us
L w3 Sin 1 — W2 S1nN y w1 SIn 1 COS 1

every powers of this matix are found to be with the aid of Theorem 3.4 , for
example, 6—th and 15-th power is

i . 1
0 Vs 5 Jgeab
1 1 B
A = | T 0 #mE s
1 1 a
I A
L % v v Y
! Va VB
s T abg
__1 1 [ —icl
A5 = V2a V2 2 2
1 _4: L Ve
) 2VB  V2a V2
2.2. Euler’s Formula for Matrices of GDQ.
Definition 2.4. Let A be a dual matrix. We choose
0 —aw; —Pws —afws
A- | @ 0 —Bws  Pws
Wy Qw3 0 —owq
ws —Wa3 w1 0
then one immediately finds A? = —I;. We have a netural generalization of Euler’s

formula for matrix A;
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(A49)?  (49)° | (Ag)!

e = I+ A+ TR TR TR
2 4 3 5
= L(1- % + %—) + Ao — % + % — )
= cos¢+ Asin g,
cos¢p —awising —fwssing —aPwssinp
w1 sin ¢ Cos ¢ —pwzsing  Pwssin g
- wosSin g  aawssin ¢ cos ¢ —qaw1 Sin @
wgsing  —wssin ¢ w1 sin ¢ cos ¢

2.3. n-th Roots of Matrices of GDQ.

Let @ be a unit generalized dual quaternion with real angle, i.e. ¢ = ¢ and
¢* = 0. The matrix associated with the quaternion @ is of the form (1.7). In a
more general case, we assume for the matrix of (1.1)

cos(p + 2km)  —aw;sin(p + 2kw) —Pwssin(e + 2kw) —aPfwssin(p + 2km)

A wy sin(p + 2km) cos(p + 2km) —Bwssin(p + 2kw)  Pwsasin(p + 2kT)
- wo sin(p + 2km)  awssin(p + 2kw) cos(p + 2km) —aws sin(p + 2k7)
wysin(p + 2kw)  —wsq sin(p 4 2kn) wy sin(p + 2km) cos(p + 2km)
where k € Z.
The equation X™ = A has n roots. Thus
cos(i“’fk") —aw; sin(i“’fk") —Bws sin(i“‘”rjk7T ) —afws sin(i“’tfk”)
Ar w1 sin(Lrs’”) cos(Lrjk”) —Bws sin(Lfk”) Bwo sin(Lrs’”)
ke wo sin(*”jk”) aws sin(%%”) COS(%M) —Qw sin(%m)
w3 sin(i‘ﬁsk“) —wo sin(i“"tfk”) wy Sin(i“"tfk”) cos(i‘ﬁikw)

For k = 0, the first root is

cos(£-)  —awsin(%-) —Pwssin(f) —afwssin(L)
Ar wy sin(£) cos(£) —pBwzsin(¥£)  Pwasin(L)
0 wosin(Z)  awssin(£) cos(£) —aw;sin(2) |
wssin(£)  —wsgsin(¥) wy sin(£) cos(£)

for k = 1, the second root is

Cos(%) —aw sin( 90+7127T ) —Pws Sin(%) —aBws Sin(%zﬂ)
A wy sin(£127) cos(£27) —Buwssin(£X2)  Buwg sin(£T2T)
L we sin( 9"‘;2”) Qs sin(%%) cos(%%) —auw sin( Wwfﬂ)
wgsin(ELE) - —wpsin($5E) - wysin(HLE) cos(#477)

Similarly, for K = n — 1, we obtain the n-th root.
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2.4. Relation Between Power of Matrices. The relations between the powers
of matrices associated with a generalized dual quaternion can be realized by the
following Theorem.

Theorem 2.11. @ be a unit generalized dual quaternion with the polar form Q =
cos + Wsmgp Ifm= 2—” € Z*T — {1}, then n = p(mod m) is possible if and only
if Q" =Qr.

Proof. Let n = p(mod m). Then we have n = a.m + p, where a € Z.
%
Q" = cosnp+ Wsinnp
%
= cos(am + p)p + W sin(am + p)p
27 = . 27
= cos(a; +p)p+ Wsm(az +p)p

%
= cos(py + a27m) + W sin(py + a2)
= .
= cos(pp) + Wsin(pyp)
Q.

Now suppose Q™ = cosnyp + Wsin ny and QP = cospy + Wsinpga . Since
Q" = QP, we have cos ny = cos py and sin ny = sin py, which means ny = pp+27a,
a€Z. Thusn = a%” +p, n = p(mod m).

O
Example 2.2. Let Q = f + %(T L ¢) be a unit generalized dual quaternion.
From the theorem 6.1, m = 2% = 8, we have

/4
Q = Q=Q7=..
Q? = QU =QB=..
QP = QUM =0QY=..
Qr = QR2=Q¥=..=-1
Q = é“ﬂ =¥ =.. =1

Theorem 2.12. Q be a unit dual quaternion with the polar form @ = cosp +
Wsmgp Let m = 2” € Z*T — {1} and the matriz A corresponds to Q. Then n =
p(mod m) is posszble if and only if A™ = AP.

Proof. Proof is same as above. O

Example 2.3. Let Q = —1 + (e, W’ 2\ﬁ) = cos ¢ +W sin 2% be a unit
generalized dual quaternion. The matrix corresponding to this dual quaternlon is

_1 _ _./B 1
3 ae 5 svap
. _1 _1. /8 B
A= 2 2V a 2 ,
1 1 a _1 _
V2B 24/ B 2 ae
1 1

N}
3
@

-
S o
™

\
[N
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From the Theorem 6.2, m = 23:;3 = 3, we have
A = A*=AT=_.
A2 = AP =A% =

A3 = AS=4A= ... =1,

The square roots of the matrix A can be achieved too;

cos 2k7H2~120 —oapy sin 2k7r45120 _ Bws sin 2k7h;120 —afBws sin (Zkrﬁ;lQO )
B wy sin 21m45120 cos (21«3120 —Buws sin 2k7r§120 Buws sin (2k:7r§120 )
A2 =
Wy sin 2k7r—i2-120 ws sin (2%;120 ) oS (2]@77-12-120 ) —auwy sin 21m45120
ws sin 2k7r—i2-120 —wo sin (2k7r—',2-120 ) wy sin (2kﬂ-§120 ) cos <2k7r-5120 )
The first root for k£ = 0 reads
1 _ _. /8 _1
5 Qe 5 svap
Az = 2 2V a 2
1 fa 1 e
V283 24/ B 2
S I 1
2v/ap V2B 2

and the second one for £ = 1 becomes

-3 oE \/é 3vap
A12 = 2 2 « 2
1L _1 /a _1 Qe
V2B 2\ B 2
1 L —c _1
2V ap 283 2

1 1
Also, it is easy to see that Aj + A7 =0.

Remark 2.1. Let a be a positive number and S be a negative number, the Theorem
3.4 holds.
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