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MATRICES OF GENERALIZED DUAL QUATERNIONS

MEHDI JAFARI

Abstract. After a brief review of some algebraic properties of a generalized
dual quaternion, we investigate properties of matrix associated with a gener-

alized dual quaternion and examine De Moivre’s formula for this matrix, from

which the n-th power of such a matrix can be determined. We give the relation
between the powers of these matrices.

1. Introduaction

Mathematically, quaternions represent the natural extension of complex num-
bers, forming an associative algebra under addition and multiplication. Dual num-
bers and dual quaternions were introduced in the 19th century by W.K. Clifford [5],
as a tool for his geometrical investigation. Study [17] and Kotel’nikov [12] system-
atically applied the dual number and dual vector in their studies of line geometry
and kinematics and independently discovered the transfer principle.

The use of dual numbers, dual numbers matrix and dual quaternions in instan-
taneous spatial kinematics are investigated in [15,18]. The Euler’s and De-Moivre’s
formulas for the complex numbers are generalized for quaternions in [4]. These
formulas are also investigated for the cases of split and dual quaternions in [11,14].
Some algebraic properties of Hamilton operators are considered in [1,2] where dual
quaternions have been expressed in terms of 4×4 matrices by means of these opera-
tors. Properties of these matrices have applications in mechanics, quantum physics
and computer-aided geometric design [3,20]. Recently, we have derived the De-
Moivre’s and Euler’s formulas for matrices associated with real, dual quaternions
and every power of these matrices are immediately obtained [9,10].

A generalization of real and dual quaternions are also investigated by author
and et al. [6,7]. Here, after a review of some algebraic properties of generalized
dual quaternions, we study the Euler’s and De-Moivre’s formulas for generalized
dual quaternions and for the matrices associated with them. Also, the n-th roots of
these matrices are obtained. Finally, we give some examples for more clarification.
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2. Preliminaries

In this section, we give a brief summary algebra of generalized dual quaternions.
For detailed information about this concept, we refer the reader to [7, 8].

Definition 2.1. A generalized dual quaternion Q is written as

Q = A◦1 +A1i+A2j +A3k,

where A·, A1, A2 and A3 are dual numbers and i, j, k are quaternionic units which
satisfy the equalities

i2 = −α, j2 = −β, k2 = −αβ,
ij = k = −ji, jk = βi = −kj,

and

ki = αj = −ik, α, β ∈ R.
As a consequence of this definition, a generalized dual quaternion Q can also be

written as;

Q = q + εq∗, q, q∗ ∈ Hαβ

where q and q∗, real and pure generalized dual quaternion components, respectively.
A quaternion Q = A01 +A1i+A2j+A3k is pieced into two parts with scalar piece

SQ = A· and vectorial piece
−→
V Q = A1i+A2j +A3k. We also write Q = SQ +

−→
V Q.

The conjugate of Q = SQ +
−→
V Q is then defined as Q = SQ −

−→
V Q. If SQ = 0, then

Q is called pure generalized dual quaternion, we may be called its generalized dual
vector. The set of all generalized dual vectors denoted by D3

αβ [15].

Dual quaternionic multiplication of two dual quaternions Q = SQ +
−→
V Q and P

= SP +
−→
V P is defined;

QP = SQSP − g(
−→
V Q,

−→
V P ) + SP

−→
V Q + SQ

−→
V P +

−→
V Q ∧

−→
V P

= A◦B◦ − (αA1B1 + βA2B2 + αβA3B3) +A◦(B1, B2, B3) +B◦(A1, A2, A3)

+(β(A2B3 −A3B2), α(A3B1 −A1B3), (A1B2 −A2B1)).

Also, It could be written

QP =


A◦ −αA1 −βA2 −αβA3

A1 A◦ −βA3 βA2

A2 αA3 A◦ −α A1

A3 −A2 A1 A◦



B◦
B1

B2

B3

 .
So, the multiplication of dual quaternions as matrix-by-vector product. The

norm of Q is defined as NQ = QQ = QQ = A2
0 + αA2

1 + βA2
2 + αβA2

3. If NQ = 1,
then Q is called a unit generalized dual quaternion.The set of all generalized dual

quaternions (abbreviated GDQ) are denoted by H̃αβ .

Theorem 2.1. Every unit generalized dual quaternion is a screw operator [8].
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We investigate the properties of the generalized dual quaternions in two different
cases.

Case 1: Let α, β be positive numbers.

Definition 2.2. Let Ŝ3
D be the set of all unit generalized dual quaternions and

Ŝ2
D the set of unit generalized dual vector, that is,

Ŝ3
D =

{
Q ∈ H̃αβ : NQ = 1

}
⊂ H̃αβ ,

Ŝ2
D =

{−→
V Q = (A1, A2, A3) : g(

−→
V Q,

−→
V Q) = αA2

1 + βA2
2 + αβA2

3 = 1
}
.

Definition 2.3. Every nonzero unit generalized dual quaternion can be written in
the polar form

Q = A0 +A1i+A2j +A3k

= cosφ+
−→
W sinφ,

where cosφ = A0, sinφ =
√

αA2
1 + βA2

2 + αβA2
3. φ = ϕ+ εϕ∗ is a dual angle and

the unit generalized dual vector
−→
W is given by

−→
W =

A1i+A2j +A3j√
αA2

1 + βA2
2 + αβA2

3

=
A1i+A2j +A3j√

1−A2
0

,

with αA2
1 + βA2

2 + αβA2
3 6= 0.

Note that
−→
W is a unit generalized dual vector to which a directed line in R3

αβ

corresponds by means of the generalized E. Study map [16].

Theorem 2.2. (De-Moivre’s formula) Let Q = e
−→
Wφ = cosφ+

−→
W sinφ ∈ Ŝ3

D, where

φ = ϕ+ εϕ∗ is dual angle and
−→
W ∈ Ŝ2

D. Then for every integer n;

Qn = cosnφ+
−→
W sinnφ.

Proof. The proof follows immediately from the induction (see [13]). �

Every generalized dual qauetrnion can be separated into two cases:
1) Generalized dual quaternions with dual angles (φ = ϕ+ εϕ∗); i.e.

Q =
√
NQ(cosφ+

−→
W sinφ).

2) Generalized dual quaternions with real angles (φ = ϕ, ϕ∗ = 0); i.e.

Q =
√
NQ(cosϕ+

−→
W sinϕ).

Theorem 2.3. Let Q = cosϕ +
−→
W sinϕ ∈ Ŝ3

D.De-Moivre’s formula implies that
there are uncountably many unit dual generalized quaternions Q satisfying Qn = 1
for n > 2 [13].
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Case 2: Let α be a positive and β a negative numbers.
In this case, for a generalized dual quaternion Q = A0 + A1i + A2j + A3k, we

can consider three different subcases.

Subcase (i): The norm of generalized dual quaternion is negative, i.e.

NQ = A2
0 + αA2

1 + βA2
2 + αβA2

3 < 0,

since 0 < A2
0 < −αA2

1 − βA2
2 − αβA2

3 thus αA2
1 + βA2

2 + αβA2
3 < 0. In this case,

the polar form of Q is defined as

Q = r(sinh Ψ +
−→
W cosh Ψ)

where we assume

r =
√
|NQ| =

√
|A2
◦ + αA2

1 + βA2
2 + αβA2

3|,

sinh Ψ =
A0√
|NQ|

, cosh Ψ =

√
−αA2

1 − βA2
2 − αβA2

3√
|NQ|

.

The unit dual vector
−→
W (axis of quaternion) is defined as

−→
W = (w1, w2, w3) =

1√
−αA2

1 − βA2
2 − αβA2

3

(A1, A2, A3).

Theorem 2.4. (De-Moivre’s formula) Let Q = sinh Ψ +
−→
W cosh Ψ be a unit gen-

eralized dual quaternion with NQ < 0. Then for every integer n;

Qn = sinhnΨ +
−→
W coshnΨ.

Proof. The proof follows immediately from the induction [13]. �

Subcase (ii): The norm of generalized dual quaternion is positive and the norm
of its vector part to be negative, i.e.

NQ > 0, N−→
V Q

= αA2
1 + βA2

2 + αβA2
3 < 0,

In this case, the polar form of Q is defined as

Q = r(cosh Φ +
−→
W sinh Φ)

where we assume

r =
√
NQ =

√
A2

0 + αA2
1 + βA2

2 + αβA2
3,

cosh Φ =
A0√
NQ

, sinh Φ =

√
−αA2

1 − βA2
2 − αβA2

3√
NQ

.

The unit dual vector
−→
W (axis of quaternion) is defined as

−→
W = (w1, w2, w3) =

1√
−αA2

1 − βA2
2 − αβA2

3

(A1, A2, A3).
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Theorem 2.5. Let Q = cosh Φ +
−→
W sinh Φ be a unit generalized dual quaternion

with NQ > 0 and N−→
V Q

< 0. Then for every integer n;

Qn = coshnΦ +
−→
W sinhnΦ.

Proof. The proof follows immediately from the induction [13]. �

Subcase (iii): The norm of generalized dual quaternion is positive and the norm
of its vector part to be positive, i.e.

NQ > 0, N−→
V Q

= αA2
1 + βA2

2 + αβA2
3 > 0,

In this case, the polar form of Q is defined as

Q = r(cos Θ +
−→
W sin Θ)

where we assume

r =
√
NQ =

√
A2
◦ + αA2

1 + βA2
2 + αβA2

3,

cos Θ =
A0√
NQ

, sin Θ =

√
αA2

1 + βA2
2 + αβA2

3√
NQ

.

The unit dual vector
−→
W (axis of quaternion) is defined as

−→
W = (w1, w2, w3) =

1√
αA2

1 + βA2
2 + αβA2

3

(A1, A2, A3).

Theorem 2.6. Let Q = cos Θ +
−→
W sin Φ be a unit generalized dual quaternion with

NQ > 0 and N−→
V Q

> 0. Then for every integer n;

Qn = cosnΘ +
−→
W sinnΘ.

Proof. The proof follows immediately from the induction. �

2.1. 4× 4 Dual Matrix representation of GDQ.
In this section, we introduce the R-linear transformations representing left mul-

tiplication in H̃αβ and look for also the De-Moiver’s formula for corresponding
matrix representation. Let Q be a generalized dual quaternion, then the linear

map
+

hQ : H̃αβ → H̃αβ defined as follows;

+

hQ(P ) = QP, P ∈ H̃αβ .

The Hamilton’s operator
+

H, could be represented as the matrix

+

H(Q) =


A0 −αA1 −βA2 −αβA3

A1 A0 −βA3 βA2

A2 αA3 A0 −αA1

A3 −A2 A1 A0

 .
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Theorem 2.7. If Q and P are two generalized dual quaternions, λ is a real number,
then the following identities hold;

i. Q = P ⇔
+

H(Q) =
+

H(P )

ii.
+

H(Q+ P ) =
+

H(Q) +
+

H(P )

iii.
+

H(λQ) = λ
+

H(Q)

iv.
+

H(QP ) =
+

H(Q)
+

H(P )

v.
+

H(Q−1) = [
+

H(Q)]−1, NQ 6= 0.

vi.
+

H(Q) = [
+

H(Q)]T

vii. det
+

[H(Q)] = (NQ)2

viii. tr
+

[H(Q)] = 4A◦

Proof. The proof can be found in [7]. �

Following the usual matrix nomenclature, a matrix Â is called a dual quasi-
orthogonal matrix if ÂT εÂ = Aε, where A is a dual number and ε is a 4 × 4
diagonal matrix. A matrix Â is called dual quasi-orthonormal matrix if A = 1 [8].

Theorem 2.8. Matrices generated by operators by
+

H is a dual quasi-orthogonal

matrices; i.e. [
+

H(Q)]T ε
+

H(Q) = NQε where

ε =


1 0 0 0
0 α 0 0
0 0 β 0
0 0 0 αβ

 .
Also,

+

H(Q) is a dual quasi-orthonormal matrices if Q is a unit generalized dual
quaternion [8].

Theorem 2.9. The φ map defined as

φ : (H̃αβ ,+, .)→ (M(4,D),⊕,⊗)

φ(A0 +A1i+A2j +A3k)→


A0 −αA1 −βA2 −αβA3

A1 A0 −βA3 βA2

A2 αA3 A0 −αA1

A3 −A2 A1 A0

 ,
is an isomorphism of algebras.

Proof. We first demonstrate its homomorphic properties. If Q = A01+A1i+A2j+
A3k and P = B01 +B1i+B2j +B3k are any two GDQ, then
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φ{Q+ P} = φ{(A0 +B0) + (A1 +B1)i+ (A2 +B2)j + (A3 +B3)k}

=


A0 +B0 −α(A1 +B1) −β(A2 +B2) −αβ(A3 +B3)

(A1 +B1) A0 +B0 −β(A3 +B3) β(A2 +B2)
(A2 +B2) α(A3 +B3) A0 +B0 −α(A1 +B1)
(A3 +B3) −(A2 +B2) (A1 +B1) A0 +B0



=


A0 −αA1 −βA2 −αβA3

A1 A0 −βA3 βA2

A2 αA3 A0 −αA1

A3 −A2 A1 A0

+


B0 −αB1 −βB2 −αβB3

B1 B0 −βB3 βB2

B2 αB3 B0 −αB1

B3 −B2 B1 B0


= φ{Q} ⊕ φ{P},

φ{QP} = φ{A0B0 − (αA1B1 + βA2B2 + αβA3B3) +A◦(B1, B2, B3) +B◦(A1, A2, A3)

(β(A2B3 −A3B2), α(A3B1 −A1B3), (A1B2 −A2B1))}

=


A0 −αA1 −βA2 −αβA3

A1 A0 −βA3 βA2

A2 αA3 A0 −αA1

A3 −A2 A1 A0

⊗

B0 −αB1 −βB2 −αβB3

B1 B0 −βB3 βB2

B2 αB3 B0 −αB1

B3 −B2 B1 B0


�

We can express the matrix
+

H(Q) in polar form. Let Q be a unit generalized dual
quaternion and α, β > 0. Since

Q = A0 +A1e1 +A2e2 +A3e3

= cosφ+
−→
W sinφ

= cosφ+ (w1, w2, w3) sinφ

so we have
A0 −αA1 −βA2 −αβA3

A1 A0 −βA3 βA2

A2 αA3 A0 −αA1

A3 −A2 A1 A0

 =


cosφ −αw1 sinφ −βw2 sinφ −αβw3 sinφ
w1 sinφ cosφ −βw3 sinφ βw2 sinφ
w2 sinφ αw3 sinφ cosφ −αw1 sinφ
w3 sinφ −w2 sinφ w1 sinφ cosφ

 .
Theorem 2.10. (De-Moivre’s formula) For an integer n and matrix

A =


cosφ −αw1 sinφ −βw2 sinφ −αβw3 sinφ
w1 sinφ cosφ −βw3 sinφ βw2 sinφ
w2 sinφ αw3 sinφ cosφ −αw1 sinφ
w3 sinφ −w2 sinφ w1 sinφ cosφ

 (1.1)

the n-th power of the matrix A reads

An =


cosnφ −αw1 sinnφ −βw2 sinnφ −αβw3 sinnφ
w1 sinnφ cosnφ −βw3 sinnφ βw2 sinnφ
w2 sinnφ αw3 sinnφ cosnφ −αw1 sinnφ
w3 sinnφ −w2 sinnφ w1 sinnφ cosnφ

 .
Proof. The proof follows immediately from the induction. �
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Special cases:

1) If φ,w1, w2 and w3 be real numbers, then Theorem 3.4 holds for real quater-
nions (see [10]).

2) If α = β = 1, then Theorem 3.4 holds for dual quaternions (see [9]).

Example 2.1. Let Q = 1√
2

+ 1
2 ( 1√

α
, 1√

β
, ε) be a unit generalized dual quaternion.

The matrix corresponding to this quaternion is

A =


1√
2
−
√
α
2 −

√
β
2 −αβε2

1√
2α

1√
2

−βε2
√
β
2

1√
2β

αε
2

1√
2

−
√
α
2

ε
2 − 1√

2β
1√
2α

1√
2

 ,

=


cos π4 −αw1 sin π

4 −βw2 sin π
4 −αβw3 sin π

4
w1 sin π

4 cos π4 −βw3 sin π
4 βw2 sin π

4
w2 sin π

4 αw3 sin π
4 cos π4 −αw1 sin π

4
w3 sin π

4 −w2 sin π
4 w1 sin π

4 cos π4


every powers of this matix are found to be with the aid of Theorem 3.4 , for
example, 6−th and 15-th power is

A6 =


0

√
α
2

√
β
2

1√
2
εαβ

− 1√
2α

0 1√
2
εβ −

√
β
2

− 1√
2β

− 1√
2
εα 0

√
α
2

− 1√
2
ε 1√

2β
− 1√

2α
0

 ,

A15 =


1√
2

√
α
2

√
β
2 αβ ε2

− 1√
2α

1√
2

β ε2 −
√
β
2

1
2
√
β

−α ε2
1√
2

√
α
2

− ε2
1

2
√
β
− 1√

2α
1√
2

 .

2.2. Euler’s Formula for Matrices of GDQ.

Definition 2.4. Let A be a dual matrix. We choose

A =


0 −αw1 −βw2 −αβw3

w1 0 −βw3 βw2

w2 αw3 0 −αw1

w3 −w2 w1 0


then one immediately finds A2 = −I4. We have a netural generalization of Euler’s
formula for matrix A;
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eAφ = I4 +Aφ+
(Aφ)2

2!
+

(Aφ)3

3!
+

(Aφ)4

4!
+ ...

= I4(1− φ2

2!
+
φ4

4!
−)...+A(φ− φ3

3!
+
φ5

5!
− ...)

= cosφ+A sinφ,

=


cosφ −αw1 sinφ −βw2 sinφ −αβw3 sinφ
w1 sinφ cosφ −βw3 sinφ βw2 sinφ
w2 sinφ αw3 sinφ cosφ −αw1 sinφ
w3 sinφ −w2 sinφ w1 sinφ cosφ

 .

2.3. n-th Roots of Matrices of GDQ.
Let Q be a unit generalized dual quaternion with real angle, i.e. φ = ϕ and

ϕ∗ = 0. The matrix associated with the quaternion Q is of the form (1.1 ). In a
more general case, we assume for the matrix of (1.1 )

A =


cos(ϕ+ 2kπ) −αw1 sin(ϕ+ 2kπ) −βw2 sin(ϕ+ 2kπ) −αβw3 sin(ϕ+ 2kπ)
w1 sin(ϕ+ 2kπ) cos(ϕ+ 2kπ) −βw3 sin(ϕ+ 2kπ) βw2 sin(ϕ+ 2kπ)
w2 sin(ϕ+ 2kπ) αw3 sin(ϕ+ 2kπ) cos(ϕ+ 2kπ) −αw1 sin(ϕ+ 2kπ)
w3 sin(ϕ+ 2kπ) −w2 sin(ϕ+ 2kπ) w1 sin(ϕ+ 2kπ) cos(ϕ+ 2kπ)

 ,
where k ∈ Z.
The equation Xn = A has n roots. Thus

A
1
n

k =


cos(ϕ+2kπ

n ) −αw1 sin(ϕ+2kπ
n ) −βw2 sin(ϕ+2kπ

n ) −αβw3 sin(ϕ+2kπ
n )

w1 sin(ϕ+2kπ
n ) cos(ϕ+2kπ

n ) −βw3 sin(ϕ+2kπ
n ) βw2 sin(ϕ+2kπ

n )

w2 sin(ϕ+2kπ
n ) αw3 sin(ϕ+2kπ

n ) cos(ϕ+2kπ
n ) −αw1 sin(ϕ+2kπ

n )

w3 sin(ϕ+2kπ
n ) −w2 sin(ϕ+2kπ

n ) w1 sin(ϕ+2kπ
n ) cos(ϕ+2kπ

n )

 .

For k = 0, the first root is

A
1
n
0 =


cos(ϕn ) −αw1 sin(ϕn ) −βw2 sin(ϕn ) −αβw3 sin(ϕn )
w1 sin(ϕn ) cos(ϕn ) −βw3 sin(ϕn ) βw2 sin(ϕn )
w2 sin(ϕn ) αw3 sin(ϕn ) cos(ϕn ) −αw1 sin( θn )
w3 sin(ϕn ) −w2 sin(ϕn ) w1 sin(ϕn ) cos(ϕn )

 ,
for k = 1, the second root is

A
1
n
1 =


cos(ϕ+2π

n ) −αw1 sin(ϕ+2π
n ) −βw2 sin(ϕ+2π

n ) −αβw3 sin(ϕ+2π
n )

w1 sin(ϕ+2π
n ) cos(ϕ+2π

n ) −βw3 sin(ϕ+2π
n ) βw2 sin(ϕ+2π

n )

w2 sin(ϕ+2π
n ) αw3 sin(ϕ+2π

n ) cos(ϕ+2π
n ) −αw1 sin(ϕ+2π

n )

w3 sin(ϕ+2π
n ) −w2 sin(ϕ+2π

n ) w1 sin(ϕ+2π
n ) cos(ϕ+2π

n )

 .

Similarly, for k = n− 1, we obtain the n-th root.
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2.4. Relation Between Power of Matrices. The relations between the powers
of matrices associated with a generalized dual quaternion can be realized by the
following Theorem.

Theorem 2.11. Q be a unit generalized dual quaternion with the polar form Q =

cosϕ+
−→
W sinϕ. If m = 2π

ϕ ∈ Z+ − {1}, then n ≡ p(mod m) is possible if and only

if Qn = Qp.

Proof. Let n ≡ p(mod m). Then we have n = a.m+ p, where a ∈ Z.

Qn = cosnϕ+
−→
W sinnϕ

= cos(am+ p)ϕ+
−→
W sin(am+ p)ϕ

= cos(a
2π

ϕ
+ p)ϕ+

−→
W sin(a

2π

ϕ
+ p)ϕ

= cos(pϕ+ a2π) +
−→
W sin(pϕ+ a2π)

= cos(pϕ) +
−→
W sin(pϕ)

= Qp.

Now suppose Qn = cosnϕ +
−→
W sinnϕ and Qp = cos pϕ +

−→
W sin pϕ . Since

Qn = Qp, we have cosnϕ = cos pϕ and sinnϕ= sin pϕ, which means nϕ = pϕ+2πa,
a ∈ Z. Thus n = a 2π

ϕ + p, n ≡ p(mod m).

�

Example 2.2. Let Q = 1√
2

+ 1
2 ( 1√

α
, 1√

β
, ε) be a unit generalized dual quaternion.

From the theorem 6.1, m = 2π
π/4 = 8, we have

Q = Q9 = Q17 = ...

Q2 = Q10 = Q18 = ...

Q3 = Q11 = Q19 = ...

Q4 = Q12 = Q20 = ... = −1

...

Q8 = Q16 = Q24 = ... = 1.

Theorem 2.12. Q be a unit dual quaternion with the polar form Q = cosϕ +−→
W sinϕ. Let m = 2π

ϕ ∈ Z+ − {1} and the matrix A corresponds to Q. Then n ≡
p(mod m) is possible if and only if An = Ap.

Proof. Proof is same as above. �

Example 2.3. Let Q = − 1
2 + (ε, 1√

2β
, 1
2
√
αβ

) = cos 2π
3 +

−→
W sin 2π

3 be a unit

generalized dual quaternion. The matrix corresponding to this dual quaternion is

A =


− 1

2 −αε −
√

β
2 − 1

2

√
αβ

ε − 1
2 − 1

2

√
β
α

√
β
2

1√
2β

1
2

√
α
β − 1

2 −αε
1

2
√
αβ

− 1√
2β

ε − 1
2

 ,
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From the Theorem 6.2, m = 2π
2π/3 = 3, we have

A = A4 = A7 = ...

A2 = A5 = A8 = ...

A3 = A6 = A9 = ... = I4

The square roots of the matrix A can be achieved too;

A
1
2

k =


cos
(

2kπ+120·

2

)
−αw1 sin

(
2kπ+120·

2

)
−βw2 sin

(
2kπ+120·

2

)
−αβw3 sin

(
2kπ+120·

2

)
w1 sin

(
2kπ+120·

2

)
cos
(

2kπ+120·

2

)
−βw3 sin

(
2kπ+120·

2

)
βw2 sin

(
2kπ+120·

2

)
w2 sin

(
2kπ+120·

2

)
αw3 sin

(
2kπ+120·

2

)
cos
(

2kπ+120·

2

)
−αw1 sin

(
2kπ+120·

2

)
w3 sin

(
2kπ+120·

2

)
−w2 sin

(
2kπ+120·

2

)
w1 sin

(
2kπ+120·

2

)
cos
(

2kπ+120·

2

)


The first root for k = 0 reads

A
1
2
0 =


1
2 −αε −

√
β
2 − 1

2

√
αβ

ε 1
2 − 1

2

√
β
α

√
β
2

1√
2β

1
2

√
α
β

1
2 −αε

1
2
√
αβ

− 1√
2β

ε 1
2


and the second one for k = 1 becomes

A
1
2
1 =


− 1

2 αε
√

β
2

1
2

√
αβ

−ε − 1
2

1
2

√
β
α −

√
β
2

− 1√
2β

− 1
2

√
α
β − 1

2 αε

− 1
2
√
αβ

1√
2β

−ε − 1
2

 .

Also, it is easy to see that A
1
2
0 +A

1
2
1 = 0.

Remark 2.1. Let α be a positive number and β be a negative number, the Theorem
3.4 holds.
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