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INEQUALITIES OF HERMITE-HADAMARD TYPE FOR
p-CONVEX FUNCTIONS

S. S. DRAGOMIR!»2

ABSTRACT. Some inequalities of Hermite-Hadamard type for ¢-convex func-
tions defined on real intervals are given.

1. INTRODUCTION

We recall here some concepts of convexity that are well known in the literature.
Let I be an interval in R.

Definition 1.1 ([37]). We say that f : I — R is a Godunova-Levin function or that
f belongs to the class Q (I) if f is non-negative and for all z,y € I and ¢ € (0,1)
we have

(11) Flte+(=0)9) < 5 @)+ 1= f )

Some further properties of this class of functions can be found in [28], [29], [31],
[43], [46] and [47]. Among others, its has been noted that non-negative monotone
and non-negative convex functions belong to this class of functions.

Definition 1.2 ([31]). We say that a function f : I — R belongs to the class P (I)
if it is nonnegative and for all z,y € I and t € [0, 1] we have

(1.2) flte+(1=t)y) < f(x)+f(y).

Obviously @ (I) contains P (I) and for applications it is important to note that
also P (I) contain all nonnegative monotone, convex and quasi convex functions, i.
e. nonnegative functions satisfying

(1.3) [tz + (1 =t)y) <max{f(z),f(y)}
for all z,y € I and t € [0,1].
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For some results on P-functions see [31] and [44] while for quasi convex functions,
the reader can consult [30].

Definition 1.3 ([7]). Let s be a real number, s € (0,1]. A function f : [0,00) —
[0, 00) is said to be s-convex (in the second sense) or Breckner s-convex if

flte+(1-t)y) <t°f(z) +(1—1)°f(y)
for all z,y € [0,00) and t € [0,1].
For some properties of this class of functions see [1], [2], [7], [8], [26], [27], [38],
[40] and [49].
In order to unify the above concepts for functions of real variable, S. Varosanec
introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in R, (0,1) C J and functions h and f are
real non-negative functions defined in J and I, respectively.

Definition 1.4 ([52]). Let h: J — [0,00) with h not identical to 0. We say that
f:I—[0,00) is an h-convex function if for all z,y € I we have
(1.4) fle+ A=ty <h(@)f(@)+h(1-1)f(y)
for all t € (0,1).

For some results concerning this class of functions see [52], [6], [41], [50], [48] and
[51].

We can introduce now another class of functions.
Definition 1.5. We say that the function f : I — [0,00) is of s-Godunova-Levin
type, with s € [0,1], if

1 1

1.5 t 1-1¢ < — —_—
(15 flto+(1=19) < 2F () + e ().
for all t € (0,1) and =,y € 1.

We observe that for s = 0 we obtain the class of P-functions while for s = 1 we
obtain the class of Godunova-Levin. If we denote by Qs (I) the class of s-Godunova-
Levin functions defined on I, then we obviously have

PI)=Qo(I) Qs (1) S Qs (1) S Q1 (1) =Q(])

for 0 < 81 <59 < 1.
The following inequality holds for any convex function f defined on R

b
(1.6) (b—a)f <“+b></ f@)dm(%@M, a,b€R.

2

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [42]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [5]. In
1974, D. S. Mitrinovié found Hermite’s note in Mathesis [42]. Since (1.6) was
known as Hadamard’s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality.

For related results, see [10]-[19], [22]-[25], [32]-[35] and [45].

The following inequality of Hermite-Hadamard type holds [48]
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Theorem 1.1. Assume that the function f : I — [0,00) is an h-convex function
with h € L[0,1]. Let y,x € I with y # x and assume that the mapping [0,1] > ¢ —
FI(1—t)z +ty] is Lebesgue integmble on [0,1]. Then

(1.7) th(%)f(ijy) /f )du < [f :c)—f—f(y)]/olh(t)dt

If we write (1.7) for h(t) = ¢, then we get the classical Hermite-Hadamard
inequality for convex functions

(s P(E) < [ < L)

If we write (1.7) for the case of P-type functions f : I — [0,00), i.e., h(t) =
1,t € [0,1], then we get the inequality

(1.9) f($+y)

that has been obtained for functlons of real variable in [31].
If f is Breckner s-convex on I, for s € (0,1), then by taking h (t) = ¢* in (1.7)

we get
(1.10) 93~ 1f<x+y> _x/f < (21{()7

that was obtained for functions of a real variable in [26].
If f:I—[0,00) is of s-Godunova-Levin type, with s € [0, 1), then

u)du < f(z) + f(y),

1 (z+y f@)+ 1)
1.11 < .
g () <o [ rwas T
We notice that for s = 1 the ﬁrst inequality in (1.11) still holds, i.e.
1
(1.12) 4f(x+y> /f (1—t)z + ty] dt.

The case for functions of real variables was obtained for the first time in [31].

2. ¢-CONVEX FUNCTIONS
We introduce the following class of h-convex functions.

Definition 2.1. Let ¢ : (0,1) — (0,00) a measurable function. We say that the
function f : I — [0,00) is a p-convex function on the interval I if for all z,y € T
we have

(2.1) flte+ A =t)y) <te(t)f(z)+ A -t)e(d—-1t)f(y)
for all t € (0,1).

If we denote £ (t) = t, the identity function, then it is obvious that f is h-convex
with h = fp. Also, all the examples from the introduction can be seen as p-convex
functions with appropriate choices of .

If we take ¢ (t) = 5 with s € [0,1] then we get the class of s-Godunova-Levin
functions. Also, if we put ¢ (t) = t*~! with s € (0,1), then we get the concept of
Breckner s-convexity. We notice that for all these examples we have

p+(0):= lim o (f) = co.
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The case of convex functions, i.e. when ¢ (t) = 1 is the only example from above
for which ¢4 (0) is finite, namely ¢ (0) = 1.
Consider the family of functions, for p > 1 and k > 0

(2.) 5(p.k)  0,1] 5 Ry, 8 (p, k) (£) = k(1 — )" + 1.
We observe that 61 (p, k) (0) = (p, k) (0) =k + 1, 6 (p, k) is strictly decreasing on
0,1] and & (p, k) (1) > 6 (p, k) (1) = 1.

Definition 2.2. We say that the function f : I — [0,00) is a 0 (p, k)-convex
function on the interval I if for all z,y € I we have

(2.3) flle+(1-0)y) <tk -’ +1]f(z) + (1 —t) (k" +1) f (y)
for all t € (0,1).

It is obvious that any nonnegative convex function is a §(?"*)-convex function for
any p > 1 and k > 0.
For m > 0 we consider the family of functions

n(m) :[0,1] = Ry, n (m) (t) := exp [m (1 - 1)].

We observe that n4 (m) (0) = n(m) (0) = exp (m), n(m) is strictly decreasing on
[0,1] and 7 (m) (t) = 5 (m) (1) = 1.

Definition 2.3. We say that the function f : I — [0, 00) is a n (m)-convex function
on the interval I if for all x,y € I we have

(24)  flz+ (A —-t)y) <texp[m (1 —1)]f(z)+ (1—1t)exp(mt) f(y)
for all t € (0,1).

It is obvious that any nonnegative convex function is a 1 (m)-convex function for
any m > 0.

There are many other examples one can consider. In fact any continuos function
¢ :[0,1] — [1,00) can generate a class of p-convex function that contains the class
of nonnegative convex functions.

Utilising Theorem 1.1 we can state the following result.

Theorem 2.1. Assume that the function f : I — [0,00) is a p-convex function
with bp € L[0,1]. Let y,x € I with y # = and assume that the mapping [0,1] >
t— f[(1—t)x+ty] is Lebesgue integrable on [0,1]. Then

1 T+y 1 Y 1
25 i () <5 [rwasr@ero [ o

The proof follows from (1.7) by taking h () = te (), t € (0,1).

Remark 2.1. We notice that, since fol ty (t)dt can be seen as the expectation of
a random variable X with the density function ¢, the inequality (2.5) provides
a connection to Probability Theory and motivates the introduction of p-convex
function as a natural concept, having available many examples of density functions
 that arise in applications.

We have the following particular cases:
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Corollary 2.1. Assume that the function f : I — [0,00) is a a ¢ (p, k)-convex
function on the interval I with p > 1 and k > 0. Let y,x € I with y # = and
assume that the mapping [0,1] 2 t — f[(1 —t)x + ty] is Lebesgue integrable on

0,1]. Then
(2.6) z f(x“’) _x/ f (u) du
<U@+I0|3+ orp g |

k+2p 2
2 (p+1)(p+2)
Proof. For ¢ (t) = k(1 —t)” + 1 we have ¢ (3) = Z£Z and

2p

\ A

/Otcp(t)dt /(1—t)<p(1—t)dt:/0 (1 —t) (kt? +1)dt

1 k
=k ) dt+ - = ————— + -,
/ 2 (p+1)(p+2) 2

and utilizing (2.5) we get (2.6). O
and

Corollary 2.2. Assume that the function f : I — [0,00) is an (m)-convex function
on the interval I with m > 0. Let y,xz € I with y # x and assume that the mapping
0,1] >t f(1—1t)x+ty] is Lebesgue integrable on [0 1]. Then

(2.7) f(“y) /f yau< M ) 1 r ).

Proof. For ¢ (t) = exp [m (1 —t)] we have ¢ (3) = €% and

y—x

/1tg0(t)dt /1(1—15) (1—t)dt = 1(1—t)emtdt
0 0

1 1 1
(1—-1t)d =—|(1-t)e™ mt qt
m/ ) =g [a=nelys [Lemal

—m-—1

and utilizing (2.5) we get (2.7). O

3. SOME RESULTS FOR DIFFERENTIABLE FUNCTIONS

If we assume that the function f : I — [0, 00) is differentiable on the interior of

I denoted by I then we have the following “gradient inequality” that will play an
essential role in the following.

Theorem 3.1. Let ¢ : (0,1) — (0,00) a measurable function and such that the right
limit vy (0) exists and is finite, the left limit ¢_ (1) = 1 and the left derivative in
1 denoted @' (1) exists and is finite. If the function f : I — [0,00) is differentiable
on I and p-convez, then

(3.1) 01 (0) f () = [¢L () + 1] f(y) = f' () (z — y)
for any x,y € I with z #y.
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Proof. Since f is p-convex on I, then
to(t) fa)+ A=) @ —1t)f(y) = flte+(1-1)y)
for any ¢t € (0,1) and for any z,y € I, which is equivalent to
to() f@)+[1-t)e(d—=t)=1]f(y) = fta+ (1 —-1)y) - f(y)
and by dividing by t > 0 we get
(32) o) f(x)+ ﬂ—ﬂwg—ﬂ—l fle+(A-t)y) - f(y)

fy) > ;
for any t € (0,1).
Now, since f is differentiable on y € I, then we have

flz+(A-0y) —fly) _ [l tte—y)-fQ)

(33)  lim

0+ t t—0+ t
S+t —y)-f)
- (m—y)t1_1>1(1)fl+ t(zx—y)
=(z—y) f (v)

for any = € I with z # .
Also since p_ (1) =1 and ¢’ (1) exists and is finite, we have

1-— 1—-t)—1 —1 —1
(3.4) TRl € et hl ST 1B N AC
t—0+ t s—=1— 1 —s s—1—-  s—1
sl ) rs -
s—1— s—1
=—¢_ (1)1
Taking the limit over t — 0+ in (3.2) and utilizing (3.3) and (3.4) we get the desired
result (3.1). O

Remark 3.1. If we assume that

(3.5) 0+ (0) —o- (1) 2 ¢" (1),
then the inequality (3.1) also holds for = = y.

There are numerous examples of such functions, for instance, if , as above. we
take p (t) =k(1—t)’ +1,t € [0,1] (p > 1,k > 0) then p; (0) =k +1, p_ (1) =1
and ¢’ (1) = 0, which satisfy the condition (3.5).

If we take ¢ (t) = exp[m (1 —t)] (m > 0), then ¢4 (0) = expm, ¢_ (1) =1 and
¢’ (1) = —m. We have

o (0~ ()~ () =" ~14m>0
for m > 0.
The following result holds:

Theorem 3.2. Let ¢ : (0,1) — (0,00) a measurable function and such that the right
limit o4 (0) exists and is finite, the left limit o_ (1) = 1 and the left derivative in 1
denoted ¢'_ (1) exists and is finite. Assume also that ¢’ (1) > —1. If the function
f:1—10,00) is differentiable on I and @-convex, then

e (0)  fl@)+fly o (D+1 (z+y
(36) ¢ﬁb+1' 2 = —x/‘f ydu > = o (0) f( 2)
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for any x,y € 1.

Proof. Assume that y > x with z,y € I. From (3.1) we get
x+ T+ T+
<P+(0)f(u)—[s0’(1)+1]f( 29)>f/(2y> (x_ zy)

for any u € [x,y] with u # %ﬂ
Integrating this inequality over u on [z,y] we get

e 0) [ fdu= [ @) 41) - (52

Zf/(x;y)/y(uw;ry>du0

which implies (3.6).

The case y < z goes likewise and the proof of the second inequality in (3.6) is
completed.

Assume that y > 2 with z,y € I. From (3.1) we get

(3.7) 01 (0) f(2) = [¢- () + 1] fF (A=) +ty)
> f(A-tz+ty)(x—(1-t)z—ty)
=tf (1-t)z+ty)(z—y)

for any t € (0,1) and

(3-8) e (0)f(y) = [¢- D+ F(A-t)a+ty)
>f((A=-tz+ty)(y—(1-t)a—ty)
=1-0)f (A-t)z+ty) (y—x)

for any t € (0,1).
Now, if we multiply (3.7) by 1 — ¢, (3.8) by t and add the obtained inequalities,
then we get

(3.9) e (0 [(1=1) f(2) +tf ()] = [¢L () + 1] f((A - )z +1ty)

for any ¢t € (0,1), that is of interest in itself as well.
Now, if we integrate this inequality on [0, 1] we get

(3.10) e [r@ [ a-nars ) [ ral
> [ )+ 1] [ Fl0- 0+t
0
Since
1 1 1
/0(17t)dt:/0 tdt = 3
and

1 1 y
/0 fA=taz+ty)dt= /$ I (u) du,

y—x
then by (3.11) we get the desired inequality (3.7). O
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Remark 3.2. Since the function f takes nonnegative values, then the second in-
equality in (3.6) and the inequality (3.10) are trivially satisfied if ¢’ (1) +1 <0,
so we must assume that ¢’ (1) +1 > 0.

This condition is satisfied for the function ¢ (t) = k(1 —)’ +1,t € [0,1] (p >
1,k >0).If ¢ (t) = exp[m (1 — )] (m > 0) then the condition ¢’ (1)+1=1-m >0
is satisfied only for m € (0,1).

Now, if we write the inequality (3.6) for ¢ (t) = k (1 —t)” + 1,we get

(3.11) (k+1)f()+f > —x/f du_lmf<x+y>

From (2.6) we also have
I S LN R e e ] R AL

(p+1)(p+2)
. 2P f<m+y>'
k+2r 2

2?1 k420 —k—2" (- 1)k
E+2r  k+1 (k+20)(k+1)  (k+27)(k+1)

Since

>0

and
k+1 1 k k k

- - - = >0
22 (p+D)+2) 2 (+D(+2)
it follows that the inequality (3.12) is better than (3.11).
Now, consider the family of functions

9 (kypy ) = kit (1= )7 +1
where k£ > 0,p > 0 and ¢ > 1.

Definition 3.1. We say that the function f : I — [0,00) is a ¥ (k, p, q)-convex
function on the interval I if for all z,y € I we have

(B13) ftr+ (1 —t)y) <t[ktP A1 -t) !+ 1 f(x)+ QA —t)[k(1 =)’ t7+1] f (y)
for all t € (0,1).

We observe that this class contains the class of nonnegative convex functions for
any k> 0,p >0 and ¢ > 1.

Corollary 3.1. If the function f : I — [0,00) is differentiable on I and 9 (k,p,q)-
convex with k > 0,p > 0 and g > 1 then

(3.14) f();rf( > —a:/f " >f<x+y>

for any x,y € I.

If we write the inequality (2.5) for ¢ = ¥ (k,p, q) , then we get

1 z+y 1 v
(3.15) k(%)pﬂﬂf( 5 ><y—m/m f(w) du

<@+ £ W] B30+ 2.0+ 1)+ 3]
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where
1
B (u,v) = / A=) ue >0

is Euler’s Beta function.

Since
1

k(37 41
it follows that the inequality (3.14) is better than (3.15).
Now, more generally, assume that

©(9,9) :[0,1] = [1,00), ¢ (g,9) () =g () (1 —1)"+1

where g : [0,1] — [0, 00) is continuous and ¢ > 1.
We then have

01 (9,0)(0)=g(0)+1, o_(g9,9) (1) =1, ¢" (9,9) (1) =0

@(é) ZQG) <;>q+1, /Oltcp(t)dtz/Olt(l—t)qg(t)dt+;

If we apply Theorem 2.1 to the function ¢ (g,q) we have

N =

1
<1andkﬁ(p+2,q+l)+f>§,

and

10 @+l [ ta-otewas ]z [ rwa
Zg(%) (11)q+1f<x;ry>'

If we apply Theorem 3.2 to the same function ¢ (g, q) we also have

(3.17) 0+ T s L [Ty

2
29(0)+1f<x;y>'

Consider the difference

and the difference

1
1 0)+1
A 2 2
! 1
— [ ta-0tg - 590).
0 2
We observe that if Ay, As > (<) 0 then the double inequality (3.17) is better (worse)

than (3.17).
If we take ¢ (0) = 0, then (3.17) is better than (3.16) for any ¢ > 1.
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If we take g (t) =kt + 1, k > 0 then

9()() 9(0) k()

MO U@ A ] k)T
(

showing that the second inequality in (3.1
(3.16) for any k > 0 and ¢ > 1.
We also have

1 1
Ay = / £(1— 1)1 ()dt—%g(o):/ot(l—t)q(kt—kl)dt—%

1
_k/ t? (1 dt+/t(1—t)th—
0

=k6(3,q+1)+6(2,q+1)—%

7) is better than the same inequality in

If we take

1 1
—B2at+l) 2~ G
BB,q+1) BB.q+1)
1 2)—2
__ (g+D(e+2) (>0)
2(¢+1)(¢+2)8B,q+1)
then Ay > 0 showing that the first inequality in (3.17) is better than the first
inequality in (3.16).
If we take

1
k> 2

(g+1)(g+2)—2
2(¢+1)(g+2)B8@3,q+1)

then Ay < 0 showing that the first inequality in (3.17) is worse than the first
inequality in (3.16).

0<k<

Conclusion 1. The inequalities (2.5) and (3.6) are not comparable, meaning that
some time one is better then the other, depending on the p-convex function involved.

4. SOME RELATED RESULTS

If we apply Theorem 2.1 on the subintervals [z, IT”] and [“’Tﬂ,y} (provided
x < y) and add the corresponding inequalities we get:

Proposition 4.1. Assume that the function f: I — [0,00) is a p-conver function
with bp € L[0,1]. Lety,x € I withy # = and assume that the mappings [0,1] > ¢ —
FlA—t)z+ =], f[(1—t) &5 + ty] are Lebesgue integrable on [0,1]. Then

() ()]
< _x/ f(u)du { (%Ly)+f($);rf(y)]/olt<p(t)dt.

Also, by Theorem 3.2 we have

Proposition 4.2. Let ¢ : (0,1) — (0,00) a measurable function and such that
the right limit @4 (0) exists and is finite, the left limit ¢_ (1) = 1 and the left
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derivative in 1 denoted ¢’ (1) exists and is finite. Assume also that ¢’ (1) > —1.
If the function f : I — [0,00) is differentiable on I and p-convex, then

e () ()]
<i f du<[< ) f (@ f()] ()

for any x,y € I.

Now we can prove the following result as well:

Theorem 4.1. Let ¢ : (0,1) — (0,00) a measurable function and such that the right
limit 4 (0) exists and is finite, the left limit o_ (1) = 1 and the left derivative in 1
denoted ¢'_ (1) exists and is finite. Assume also that ¢’ (1) > —2. If the function
f:1—10,00) is differentiable on I and @-convez, then

ylx/:f(u)du

+(0) Tty 1 f@)+f(y)
_w’(1)+2f< 2 >+so’(1)+2' 2

(4.3)

for any x,y € I.
Proof. Assume that x < y. From the inequality (3.1) we have

a0 e (S - Wz s w (S )

: +
for any u € [z,y] with u # =¥,

Integrating over u € [z,y] and dividing by y — 2 we have

(45) e 01 (532) = w1 [ rwa

zylx/:f’(u) (x;y—u>du.

Integrating by parts, we have

/f (mﬂ’ u)du

I
VRS
K
|+
Ned
|
I
N———
kh
—~
I
S~—

and by (4.5) we get
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which is equivalent to

e )7 (£52) 4 L)1)

2
1 Y 1 y
zy_x/mf(u)dU+[<p’_(1)+1]y_x/z £ (u) du

/ 1 Y
¢ W +2) = [ T

Since ¢’ (1) + 2 > 0, then on dividing by ¢’ (1) + 2 we get the desired result
(4.3). O
Remark 4.1. We observe that
¢+ (0) < P+ (0)
e (1) +2 L (1)+1

and if we assume that ¢ is taken to satisfy the condition

o (1) +1
o (1)+2

P+ (0) > € (07 1) s

then
1 v+ (0)
L () +2 L (1)+1
and the inequality (4.3) is better than the second inequality in (4.2).
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