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THE L-SECTIONAL CURVATURE OF S-MANIFOLDS

MEHMET AKIF AKYOL, LUIS M. FERNANDEZ, AND ALICIA PRIETO-MARTIN

ABSTRACT. We investigate L-sectional curvature of S-manifolds with respect
to the Riemannian connection and to certain semi-symmetric metric and non-
metric connections naturally related with the structure, obtaining conditions
for them to be constant and giving examples of S-manifolds in such conditions.
Moreover, we calculate the scalar curvature in all the cases.

1. INTRODUCTION.

In 1963, Yano [13] introduced the notion of f-structure on a C*° (2n + s)-
dimensional manifold M, as a non-vanishing tensor field f of type (1,1) on M which
satisfies f2 + f = 0 and has constant rank » = 2n. Almost complex (s = 0) and
almost contact (s = 1) are well-known examples of f-structures. The case s = 2
appeared in the study of hypersurfaces in almost contact manifolds [5, 8] and it
motivated that, in 1970, Goldberg and Yano [9] defined globally framed f-structures
(also called f.pk-structures), for which the subbundle ker f is parallelizable. Then,
there exists a global frame {{;,...,&} for the subbundle ker f (the vector fields
&1,...,& are called the structure vector fields), with dual 1-forms o', ... 7®.

Thus, we can consider a Riemannian metric g on M, associated with a globally
framed f-structure, such that g(fX, fY) = g(X,Y) = >0 _, n*(X)n*(Y), for any
vector fields X,Y in M and then, the structure is called a metric f-structure.
Therefore, T M splits into two complementary subbundles Im f (whose differentiable
distribution is usually denoted by £) and ker f and, moreover, the restriction of f
to Imf determines a complex structure.

A wider class of globally framed f-manifolds (that is, manifolds endowed with a
globally framed f-structure) was introduced in [3] by Blair according to the follow-
ing definition: a metric f-structure is said to be a K-structure if the fundamental
2-form @, given by ®(X,Y) = ¢g(X, fY), for any vector fields X and Y on M, is
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closed and the normality condition holds, that is, [f, f]+2 " _, dn*®&, = 0, where
[f, f] denotes the Nijenhuis torsion of f. A K-manifold is called an S-manifold if

dn® = @, for all @ = 1,...,s. If s = 1, an S-manifold is a Sasakian manifold.
Furthermore, S-manifolds have been studied by several authors (see, for example,
[4, 6, 10, 12]).

It is well known that there are not exist S-manifolds (s > 2) of constant sectional
curvature and, for Sasakian manifolds, the unit sphere is the only one. This is due
to the fact that K (X,&,) = 1 and K (£, &) = 0, for any unit vector field X € £ and
any a, 8 =1...,s. For this reason, it is interesting to study the sectional curvature
of planar sections spanned by vector fields of £ (called L-sectional curvature) and
to obtain conditions for this sectional curvature to be constant.

Further, in 1924 Friedmann and Schouten [7] introduced semi-symmetric linear
connections on a differentiable manifold. Later, Hayden [11] defined the notion of
metric connection with torsion on a Riemannian manifold. More precisely, if V is a
linear connection in a differentiable manifold M, the torsion tensor T of V is given
by T(X,Y) = VxY — Vy X — [X,Y], for any vector fields X and Y on M. The
connection V is said to be symmetric if the torsion tensor T' vanishes, otherwise
it is said to be non-symmetric. In this case, V is said to be a semi-symmetric
connection if T(X,Y) = n(Y)X — n(X)Y, for any X,Y, where 7 is a 1-form on
M. Moreover, if g is a Riemannian metric on M, V is called a metric connection
if Vg = 0, otherwise it is called non-metric. It is well known that the Riemannian
connection is the unique metric and symmetric linear connection on a Riemannian
manifold. Recently, S-manifolds endowed with a semi-symmetric either metric or
non-metric connection naturally related with the S-structure have been studied in
1, 2].

In this paper, we investigate L-sectional curvature of S-manifolds with respect
to the Riemannian connection and to the semi-symmetric metric and non-metric
connections introduced in [1, 2], obtaining conditions for them to be constant and
giving examples of S-manifolds in such conditions. Moreover, we calculate the
scalar curvature in all the cases.

2. PRELIMINARIES ON S-MANIFOLDS.

A (2n+ s)— dimensional differentiable manifold M is called a metric f-manifold
if there exist a (1,1) type tensor field f, s vector fields &;,...,&s, called structure
vector fields, s 1-forms o', ..., n* and a Riemannian metric g on M such that

21) =T+ 0 @b 1(65) = baps fla =0, %0 f =0,

a=1

(2.2) g(f X, 1Y) = g(X,Y) =Y n*(X)n*(Y),

for any X, Y € X(M), o, € {1,...,s}. In addition:

(23) na(X):g(vaa)a g(XafY):_g(fXaY)

Then, a 2-form ® is defined by ®(X,Y) = g(X, fY), forany X,Y € X (M), called
the fundamental 2-form. In what follows, we denote by M the distribution spanned
by the structure vector fields £1,...,&s and by L its orthogonal complementary
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distribution. Then, X(M)=L® M. If X € M, then fX =0 and if X € L, then
n*(X) =0, for any a € {1,...,s}, that is, f2X = —X.

In a metric f-manifold, special local orthonormal basis of vector fields can be con-
sidered: let U be a coordinate neighborhood and F; a unit vector field on U orthog-
onal to the structure vector fields. Then, from (2.1)-(2.3), fE; is also a unit vector
field on U orthogonal to F; and the structure vector fields. Next, if it is possible, let
F be a unit vector field on U orthogonal to F4, fE; and the structure vector fields
and so on. The local orthonormal basis {E1,...,E,, fE1,..., fEn,&1,...,&},, SO
obtained is called an f-basis.

Moreover, a metric f-manifold is normal if

[fvf] +22d77a ®§o¢ =0,
a=1

where [f, f] denotes the Nijenhuis tensor field associated to f. A metric f-manifold
is said to be an S-manifold if it is normal and

A AR A ()" #£0and @ =dn®, 1 < a <s.

Observe that, if s = 1, an S-manifold is a Sasakian manifold. For s > 2, examples
of S-manifolds can be found in [3, 4, 10].

If V is a linear connection on an S-manifold and K denotes the sectional curva-
ture associated with V, the L-sectional curvature K, of V is defined as Kz (X,Y) =
K(X,Y), for any X,Y € L. The scalar curvature of the S-manifold with respect
to V is given by

1 2n+s
(2.4) T=5 Z K(ei,ej),
i,j=1
for any local orthonormal frame {ey,...,e2,1s} of tangent vector fields to M.

3. THE L-SECTIONAL CURVATURE OF S-MANIFOLDS.

From now on, let M denote an S-manifold (M, f,&1,..., &0, ...,n%, g) of di-
mension 2n + s. We are going to study the sectional curvature of M with respect
to different types of connections on M.

3.1. The case of the Riemannian connection. First, let V denote the Rie-
mannian connection of g. For the sectional curvature K of V, in [6] it is proved
that

(3'1) K(SQ,X):R(&I,X,X,&X):g(fX,fX),

for any X € X(M) and a € {1,...,s}. Consequently, if s = 1, the unit sphere is
the only Sasakian manifold of constant (sectional) curvature. If s > 2, from (3.1),
we deduce that M cannot have constant sectional curvature. For this reason, it is
necessary to introduce a more restrictive curvature. In general, a plane section 7w
on a metric f-manifold M is said to be an f-section if it is determined by a unit
vector X, normal to the structure vector fields and fX. The sectional curvature of
m is called an f-sectional curvature. An S-manifold is said to be an S-space-form
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if it has constant f-sectional curvature ¢ and then, it is denoted by M(c). The
curvature tensor field R of M (c) satisfies [12]:

(32) R(X,Y,Z,W) = > {g(fX, fW)n"(Y)n*(2)
a,B=1

—g(f X, fZm™ (Y )" (W) + g(fY, fZ)n*(X)n" (W)
—g(fY, fWin™(X)n’(2)}

+£ 235 {9(f X, fW)g(fY, fZ) — g(f X, fZ)g(fY, fW)}
+EB(X, W)Y, Z) - DX, 2)B(Y, W) - 20(X, Y)O(Z, W)},

for any X, Y, Z, W € X(M).

Therefore, if M is an S-space-form of constant f-sectional curvature ¢ and con-
sidering an f-basis, from (3.1) and (3.2), we deduce that the scalar curvature of M
with respect to the curvature tensor field of the Riemanian connection V satisfies:

n(n —1)(c+ 3s)

T = f—i—n(c—&—%).

Now, in view of (3.1) it is interesting to investigate the conditions for K, to be
constant. In this context, we observe that, if n = 1, K is actually the f-sectional
curvature. Moreover, for n > 2, we can prove the following theorem.

Theorem 3.1. Let M be a (2n + s)-dimensional S-manifold with n > 2. If the
L-sectional curvature K with respect to the Riemannian connection V is constant
equal to ¢, then ¢ = s. In this case, the scalar curvature of M is:

T=ns(2n+1).

Proof. 1t is clear that if K, is constant equal to ¢, then M is an S-space-form M (c).
Consequently, from (3.2), we have

c+3s 3(c—s
B3 gx

for any orthonormal vector fields X,Y € L. Now, since n > 2, we can choose X
and Y such that g(X, fY) = 0. Thus, from (3.3) we deduce

c+ 3s
4 - )

(3.3) K (X,Y) =

that is, ¢ = s.
Now, considering a local orthonormal frame of tangent vector fields such that

eonta = Ea, for any a =1,...,s, since K(e;,e;) = Ko(es,e5) =s,4,j=1,...,2n,
i # 7, and using (3.1) and (2.4), we get the desired result for the scalar curvature.
[

By using (3.2) and (3.3), we have:

Corollary 3.2. Let M(c) be an S-space-form of constant f-sectional curvature c.
Then, M is of constant L-sectional curvature (equal to c¢) if and only if c = s
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R>"T2+(=1) with coordinates

Example 3.3. Let us consider
(Il sy Tt Yly oy Ynt 1, 215 - '728—1)

and with its standard S-structure of constant f-sectional curvature —3(s—1), given
by (see [10]):

o . 1 n+1
fazQaTan 25 dza_zyzd'rl 7a:1a"'75_1a
« i=1

s—1 n+1
1
92;77&®7la+Z;(d$i®dxi+dyi®dyi)7
n+1 s—1 n+1
0 0 0
X =3 (Vig— — Xi Yigio—,
0= 20 Xy L

where
n+1

B o =19

is any vector field tangent to R272+(s—1),
Now, let S?"*1(2) be a (2n + 1)-dimensional ordinary sphere of radius 2 and
M = §%"+1(2) x R*~! a hypersurface of R?*+2+(s=1) Let

n+1 a 8 n+1 s—1 a
& = Zzzl <_y2(9z1 +$iayi) - ;;y?@

and n°(X) = g(X, &), for any vector field X tangent to M. Then, if we put

~ - 1
ga:sga; 77a:§77a7 Oézl,...,S;

I U R < SN
f=fg=-9+—7 Zln 1%,
=

it is known ([10]) that (M, f,&1,..., &, 7", ..., 7, §) is an S-space-form of constant
f-sectional curvature ¢ = s. Moreover, from (3.2), it is easy to show that the
L-sectional curvature K, is also constant and equal to s.

3.2. The case of a semi-symmetric metric connection. In [1], a semi-symmetric
metric connection on M, naturally related to the S-structure, is defined by

(3.4) VY =VxY +) (V)X =) g(X,Y)g,

j=1 j=1
for any X,Y € X(M). For the sectional curvature K* of V*, the following theorem
was proved in [1]:

Theorem 3.4. Let M be an S-manifold. Then, the sectional curvature of V*
satisfies
(i) K5(X,)Y)=K(X,Y)—s;
(i) K*(X,€0) = K* (€0, X) = 2 s;
(iil) K*(€a,€8) = K7(§p,8a) =2 — s,
for any orthonormal vector fields X, Y € L and o, € {1,...,s}, a # .
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Therefore, from Theorem 3.1, if s # 2, an S-manifold cannot have constant
sectional curvature with respect to the semi-symmetric metric connection defined
in (3.4). For s =2, M = §?"*1(2) x R endowed with the connection V* and the
S-structure given in Example 3.3 is an S-manifold of constant sectional curvature
(equal to 0) with respect to V*. Moreover, for any s, by using Theorem 3.1 again
and (7) of Theorem 3.4, if the £-sectional curvature associated with V* is constant
equal to ¢, then ¢ = 0 and examples of such a situation are given in Example 3.3.
In this case, the scalar curvature is given by:

. (dns+s(s—1))(2 — 5)'
2

Regarding the f-sectional curvature of V*, from Theorem 4.5 in [1], we know
that it is constant if and only if the f-sectional curvature associated with the
Riemannian connection is constant too. In this case, if ¢ denotes the constant f-
sectional curvature of the Riemannian connection, ¢ — s is the constant f-sectional

curvature of V*. Furthermore, from (7) of Theorem 3.4 and (3.3) it is easy to show
that

cC— S

Kz(X,Y) = (1+39(X, fY)?),

for any orthonormal vector fields X,Y € L. Therefore, considering an f-basis, we
deduce that the scalar curvature of a (2n 4 s)-dimensional S-manifold of constant
f-sectional curvature ¢ with respect to V* satisfies:
. nn+(c—s)+ @Uns+s(s—1))(2—s)
T =
2

3.3. The case of a semi-symmetric non-metric connection. In [2], a semi-
symmetric non-metric connection on M, naturally related to the S-structure, is
defined by

S
VxY =VxY +) V)X,
j=1

for any X, Y € X(M). To consider the sectional curvature of V has no sense
because R(&q, X, X, &) = 1, while R(X, 4,84, X) = 2, for any unit vector field
X € Land any o € {1,..., s} (see [2] for the details). However, for the L-sectional
curvature K, we have that K (X,Y) = K. (X,Y), for any orthogonal vector fields
X,Y € L. Consequently, Theorem 3.3 and Example 3.3 can be applied here. In the
case of constant L-sectional curvature (equal to s) and since R(§n,&s,65,8a) = 1,
for any o, 8 € {1,...,s}, a # j3, the scalar curvature is given by:

~ -1

T=2ns(n+1)+ %

Regarding the f-sectional curvature of 6, in [2] it is proved that it is constant
if and only if the f-sectional curvature associated with the Riemannian connection
is constant too. In this case, both constant are the same and the curvature tensor
field of V is completely determined by ¢. Furthermore, since from (3.3),
c+3s  3(c—s) 9

X, fYy

T T I YY)
for any orthonormal vector fields X,Y € L, considering an f-basis, we deduce that
the scalar curvature of a (2n + s)-dimensional S-manifold of constant f-sectional

Kp(X,Y) =
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curvature ¢ with respect to V satisfies:

~_ n(n+1)(c+3s)+s(s—1).

2
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