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THE L-SECTIONAL CURVATURE OF S-MANIFOLDS

MEHMET AKIF AKYOL, LUIS M. FERNÁNDEZ, AND ALICIA PRIETO-MARTÍN

Abstract. We investigate L-sectional curvature of S-manifolds with respect
to the Riemannian connection and to certain semi-symmetric metric and non-

metric connections naturally related with the structure, obtaining conditions

for them to be constant and giving examples of S-manifolds in such conditions.
Moreover, we calculate the scalar curvature in all the cases.

1. Introduction.

In 1963, Yano [13] introduced the notion of f -structure on a C∞ (2n + s)-
dimensional manifold M , as a non-vanishing tensor field f of type (1, 1) on M which
satisfies f3 + f = 0 and has constant rank r = 2n. Almost complex (s = 0) and
almost contact (s = 1) are well-known examples of f -structures. The case s = 2
appeared in the study of hypersurfaces in almost contact manifolds [5, 8] and it
motivated that, in 1970, Goldberg and Yano [9] defined globally framed f -structures
(also called f .pk-structures), for which the subbundle ker f is parallelizable. Then,
there exists a global frame {ξ1, . . . , ξs} for the subbundle ker f (the vector fields
ξ1, . . . , ξs are called the structure vector fields), with dual 1-forms η1, . . . , ηs.

Thus, we can consider a Riemannian metric g on M , associated with a globally
framed f -structure, such that g(fX, fY ) = g(X,Y ) −

∑s
α=1 η

α(X)ηα(Y ), for any
vector fields X,Y in M and then, the structure is called a metric f -structure.
Therefore, TM splits into two complementary subbundles Imf (whose differentiable
distribution is usually denoted by L) and ker f and, moreover, the restriction of f
to Imf determines a complex structure.

A wider class of globally framed f -manifolds (that is, manifolds endowed with a
globally framed f -structure) was introduced in [3] by Blair according to the follow-
ing definition: a metric f -structure is said to be a K-structure if the fundamental
2-form Φ, given by Φ(X,Y ) = g(X, fY ), for any vector fields X and Y on M , is
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closed and the normality condition holds, that is, [f, f ]+2
∑s
α=1 dη

α⊗ξα = 0, where
[f, f ] denotes the Nijenhuis torsion of f . A K-manifold is called an S-manifold if
dηα = Φ, for all α = 1, . . . , s. If s = 1, an S-manifold is a Sasakian manifold.
Furthermore, S-manifolds have been studied by several authors (see, for example,
[4, 6, 10, 12]).

It is well known that there are not exist S-manifolds (s ≥ 2) of constant sectional
curvature and, for Sasakian manifolds, the unit sphere is the only one. This is due
to the fact that K(X, ξα) = 1 and K(ξα, ξβ) = 0, for any unit vector field X ∈ L and
any α, β = 1 . . . , s. For this reason, it is interesting to study the sectional curvature
of planar sections spanned by vector fields of L (called L-sectional curvature) and
to obtain conditions for this sectional curvature to be constant.

Further, in 1924 Friedmann and Schouten [7] introduced semi-symmetric linear
connections on a differentiable manifold. Later, Hayden [11] defined the notion of
metric connection with torsion on a Riemannian manifold. More precisely, if ∇ is a
linear connection in a differentiable manifold M , the torsion tensor T of ∇ is given
by T (X,Y ) = ∇XY − ∇YX − [X,Y ], for any vector fields X and Y on M . The
connection ∇ is said to be symmetric if the torsion tensor T vanishes, otherwise
it is said to be non-symmetric. In this case, ∇ is said to be a semi-symmetric
connection if T (X,Y ) = η(Y )X − η(X)Y , for any X,Y , where η is a 1-form on
M . Moreover, if g is a Riemannian metric on M , ∇ is called a metric connection
if ∇g = 0, otherwise it is called non-metric. It is well known that the Riemannian
connection is the unique metric and symmetric linear connection on a Riemannian
manifold. Recently, S-manifolds endowed with a semi-symmetric either metric or
non-metric connection naturally related with the S-structure have been studied in
[1, 2].

In this paper, we investigate L-sectional curvature of S-manifolds with respect
to the Riemannian connection and to the semi-symmetric metric and non-metric
connections introduced in [1, 2], obtaining conditions for them to be constant and
giving examples of S-manifolds in such conditions. Moreover, we calculate the
scalar curvature in all the cases.

2. Preliminaries on S-manifolds.

A (2n+s)− dimensional differentiable manifold M is called a metric f -manifold
if there exist a (1, 1) type tensor field f , s vector fields ξ1, . . . , ξs, called structure
vector fields, s 1-forms η1, . . . , ηs and a Riemannian metric g on M such that

(2.1) f2 = −I +

s∑
α=1

ηα ⊗ ξα, ηα(ξβ) = δαβ , fξα = 0, ηα ◦ f = 0,

(2.2) g(fX, fY ) = g(X,Y )−
s∑

α=1

ηα(X)ηα(Y ),

for any X,Y ∈ X (M), α, β ∈ {1, . . . , s}. In addition:

(2.3) ηα(X) = g(X, ξα), g(X, fY ) = −g(fX, Y ).

Then, a 2-form Φ is defined by Φ(X,Y ) = g(X, fY ), for anyX,Y ∈ X (M), called
the fundamental 2-form. In what follows, we denote byM the distribution spanned
by the structure vector fields ξ1, . . . , ξs and by L its orthogonal complementary
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distribution. Then, X (M) = L ⊕M. If X ∈ M, then fX = 0 and if X ∈ L, then
ηα(X) = 0, for any α ∈ {1, . . . , s}, that is, f2X = −X.

In a metric f -manifold, special local orthonormal basis of vector fields can be con-
sidered: let U be a coordinate neighborhood and E1 a unit vector field on U orthog-
onal to the structure vector fields. Then, from (2.1)-(2.3), fE1 is also a unit vector
field on U orthogonal to E1 and the structure vector fields. Next, if it is possible, let
E2 be a unit vector field on U orthogonal to E1, fE1 and the structure vector fields
and so on. The local orthonormal basis {E1, . . . , En, fE1, . . . , fEn, ξ1, . . . , ξs},, so
obtained is called an f -basis.

Moreover, a metric f -manifold is normal if

[f, f ] + 2

s∑
α=1

dηα ⊗ ξα = 0,

where [f, f ] denotes the Nijenhuis tensor field associated to f . A metric f -manifold
is said to be an S-manifold if it is normal and

η1 ∧ · · · ∧ ηs ∧ (dηα)n 6= 0 and Φ = dηα, 1 ≤ α ≤ s.

Observe that, if s = 1, an S-manifold is a Sasakian manifold. For s ≥ 2, examples
of S-manifolds can be found in [3, 4, 10].

If ∇ is a linear connection on an S-manifold and K denotes the sectional curva-
ture associated with ∇, the L-sectional curvature KL of ∇ is defined as KL(X,Y ) =
K(X,Y ), for any X,Y ∈ L. The scalar curvature of the S-manifold with respect
to ∇ is given by

(2.4) τ =
1

2

2n+s∑
i,j=1

K(ei, ej),

for any local orthonormal frame {e1, . . . , e2n+s} of tangent vector fields to M .

3. The L-sectional curvature of S-manifolds.

From now on, let M denote an S-manifold (M,f, ξ1, . . . , ξs, η
1, . . . , ηs, g) of di-

mension 2n + s. We are going to study the sectional curvature of M with respect
to different types of connections on M .

3.1. The case of the Riemannian connection. First, let ∇ denote the Rie-
mannian connection of g. For the sectional curvature K of ∇, in [6] it is proved
that

(3.1) K(ξα, X) = R(ξα, X,X, ξα) = g(fX, fX),

for any X ∈ X (M) and α ∈ {1, . . . , s}. Consequently, if s = 1, the unit sphere is
the only Sasakian manifold of constant (sectional) curvature. If s ≥ 2, from (3.1),
we deduce that M cannot have constant sectional curvature. For this reason, it is
necessary to introduce a more restrictive curvature. In general, a plane section π
on a metric f -manifold M is said to be an f -section if it is determined by a unit
vector X, normal to the structure vector fields and fX. The sectional curvature of
π is called an f -sectional curvature. An S-manifold is said to be an S-space-form
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if it has constant f -sectional curvature c and then, it is denoted by M(c). The
curvature tensor field R of M(c) satisfies [12]:

(3.2) R(X,Y, Z,W ) =

s∑
α,β=1

{g(fX, fW )ηα(Y )ηβ(Z)

−g(fX, fZ)ηα(Y )ηβ(W ) + g(fY, fZ)ηα(X)ηβ(W )

−g(fY, fW )ηα(X)ηβ(Z)}

+
c+ 3s

4
{g(fX, fW )g(fY, fZ)− g(fX, fZ)g(fY, fW )}

+
c− s

4
{Φ(X,W )Φ(Y, Z)− Φ(X,Z)Φ(Y,W )− 2Φ(X,Y )Φ(Z,W )},

for any X,Y, Z,W ∈ X (M).
Therefore, if M is an S-space-form of constant f -sectional curvature c and con-

sidering an f -basis, from (3.1) and (3.2), we deduce that the scalar curvature of M
with respect to the curvature tensor field of the Riemanian connection ∇ satisfies:

τ =
n(n− 1)(c+ 3s)

2
+ n(c+ 2s).

Now, in view of (3.1) it is interesting to investigate the conditions for KL to be
constant. In this context, we observe that, if n = 1, KL is actually the f -sectional
curvature. Moreover, for n ≥ 2, we can prove the following theorem.

Theorem 3.1. Let M be a (2n + s)-dimensional S-manifold with n ≥ 2. If the
L-sectional curvature KL with respect to the Riemannian connection ∇ is constant
equal to c, then c = s. In this case, the scalar curvature of M is:

τ = ns(2n+ 1).

Proof. It is clear that if KL is constant equal to c, then M is an S-space-form M(c).
Consequently, from (3.2), we have

(3.3) KL(X,Y ) =
c+ 3s

4
+

3(c− s)
4

g(X, fY )2,

for any orthonormal vector fields X,Y ∈ L. Now, since n ≥ 2, we can choose X
and Y such that g(X, fY ) = 0. Thus, from (3.3) we deduce

c+ 3s

4
= c,

that is, c = s.
Now, considering a local orthonormal frame of tangent vector fields such that

e2n+α = ξα, for any α = 1, . . . , s, since K(ei, ej) = KL(ei, ej) = s, i, j = 1, . . . , 2n,
i 6= j, and using (3.1) and (2.4), we get the desired result for the scalar curvature.

�

By using (3.2) and (3.3), we have:

Corollary 3.2. Let M(c) be an S-space-form of constant f -sectional curvature c.
Then, M is of constant L-sectional curvature (equal to c) if and only if c = s
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Example 3.3. Let us consider R2n+2+(s−1) with coordinates

(x1 . . . , xn+1, y1, . . . , yn+1, z1, . . . , zs−1)

and with its standard S-structure of constant f -sectional curvature −3(s−1), given
by (see [10]):

ξα = 2
∂

∂zα
, ηα =

1

2

(
dzα −

n+1∑
i=1

yidxi

)
, α = 1, . . . , s− 1,

g =

s−1∑
α=1

ηα ⊗ ηα +
1

4

n+1∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi),

fX =

n+1∑
i=1

(Yi
∂

∂xi
−Xi

∂

∂yi
) +

s−1∑
α=1

n+1∑
i=1

Yiyi
∂

∂zα
,

where

X =

n+1∑
i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) +

s−1∑
α=1

Zα
∂

∂zα

is any vector field tangent to R2n+2+(s−1).
Now, let S2n+1(2) be a (2n + 1)-dimensional ordinary sphere of radius 2 and

M = S2n+1(2)×Rs−1 a hypersurface of R2n+2+(s−1). Let

ξs =

n+1∑
i=1

(
−yi

∂

∂xi
+ xi

∂

∂yi

)
−
n+1∑
i=1

s−1∑
α=1

y2
i

∂

∂zα

and ηs(X) = g(X, ξs), for any vector field X tangent to M . Then, if we put

ξ̃α = sξα; η̃α =
1

s
ηα; α = 1, . . . , s;

f̃ = f ; g̃ =
1

s
g +

1− s
s2

s∑
α=1

ηα ⊗ ηα,

it is known ([10]) that (M, f̃ , ξ̃1, . . . , ξ̃s, η̃
1, . . . , η̃s, g̃) is an S-space-form of constant

f -sectional curvature c = s. Moreover, from (3.2), it is easy to show that the
L-sectional curvature KL is also constant and equal to s.

3.2. The case of a semi-symmetric metric connection. In [1], a semi-symmetric
metric connection on M , naturally related to the S-structure, is defined by

(3.4) ∇∗XY = ∇XY +

s∑
j=1

ηj(Y )X −
s∑
j=1

g (X,Y ) ξj ,

for any X,Y ∈ X (M). For the sectional curvature K∗ of ∇∗, the following theorem
was proved in [1]:

Theorem 3.4. Let M be an S-manifold. Then, the sectional curvature of ∇∗
satisfies

(i) K∗(X,Y ) = K(X,Y )− s;
(ii) K∗(X, ξα) = K∗(ξα, X) = 2− s;
(iii) K∗(ξα, ξβ) = K∗(ξβ , ξα) = 2− s,

for any orthonormal vector fields X,Y ∈ L and α, β ∈ {1, . . . , s}, α 6= β.
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Therefore, from Theorem 3.1, if s 6= 2, an S-manifold cannot have constant
sectional curvature with respect to the semi-symmetric metric connection defined
in (3.4). For s = 2, M = S2n+1(2) ×R endowed with the connection ∇∗ and the
S-structure given in Example 3.3 is an S-manifold of constant sectional curvature
(equal to 0) with respect to ∇∗. Moreover, for any s, by using Theorem 3.1 again
and (i) of Theorem 3.4, if the L-sectional curvature associated with ∇∗ is constant
equal to c, then c = 0 and examples of such a situation are given in Example 3.3.
In this case, the scalar curvature is given by:

τ∗ =
(4ns+ s(s− 1))(2− s)

2
.

Regarding the f -sectional curvature of ∇∗, from Theorem 4.5 in [1], we know
that it is constant if and only if the f -sectional curvature associated with the
Riemannian connection is constant too. In this case, if c denotes the constant f -
sectional curvature of the Riemannian connection, c− s is the constant f -sectional
curvature of ∇∗. Furthermore, from (i) of Theorem 3.4 and (3.3) it is easy to show
that

K∗L(X,Y ) =
c− s

4
(1 + 3g(X, fY )2),

for any orthonormal vector fields X,Y ∈ L. Therefore, considering an f -basis, we
deduce that the scalar curvature of a (2n+ s)-dimensional S-manifold of constant
f -sectional curvature c with respect to ∇∗ satisfies:

τ∗ =
n(n+ 1)(c− s) + (4ns+ s(s− 1))(2− s)

2
.

3.3. The case of a semi-symmetric non-metric connection. In [2], a semi-
symmetric non-metric connection on M , naturally related to the S-structure, is
defined by

∇̃XY = ∇XY +

s∑
j=1

ηj(Y )X,

for any X,Y ∈ X (M). To consider the sectional curvature of ∇̃ has no sense

because R̃(ξα, X,X, ξα) = 1, while R̃(X, ξα, ξα, X) = 2, for any unit vector field
X ∈ L and any α ∈ {1, . . . , s} (see [2] for the details). However, for the L-sectional

curvature K̃L, we have that K̃L(X,Y ) = KL(X,Y ), for any orthogonal vector fields
X,Y ∈ L. Consequently, Theorem 3.3 and Example 3.3 can be applied here. In the

case of constant L-sectional curvature (equal to s) and since R̃(ξα, ξβ , ξβ , ξα) = 1,
for any α, β ∈ {1, . . . , s}, α 6= β, the scalar curvature is given by:

τ̃ = 2ns(n+ 1) +
s(s− 1)

2
.

Regarding the f -sectional curvature of ∇̃, in [2] it is proved that it is constant
if and only if the f -sectional curvature associated with the Riemannian connection
is constant too. In this case, both constant are the same and the curvature tensor
field of ∇ is completely determined by c. Furthermore, since from (3.3),

K̃L(X,Y ) =
c+ 3s

4
+

3(c− s)
4

g(X, fY )2,

for any orthonormal vector fields X,Y ∈ L, considering an f -basis, we deduce that
the scalar curvature of a (2n + s)-dimensional S-manifold of constant f -sectional
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curvature c with respect to ∇̃ satisfies:

τ̃ =
n(n+ 1)(c+ 3s) + s(s− 1)

2
.
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Übertragung, Math. Zeitschr., Vol:21 (1924), 211-223.

[8] S.I. Goldberg and K.Yano, Globally framed f -manifolds, Illinois J. Math.,

Vol:15 (1971), 456-474.

[9] S.I. Goldberg and K.Yano, On normal globally framed manifolds, Tôhoku
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