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Metaheuristic kriging: A new spatial estimation
method
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Abstract

Kriging is one of the most widely used spatial estimation method. In
kriging estimation, weights assigned to the neighboring data are de-
termined by minimizing the estimation error variance (EEV). Due to
the minimization of the EEV the variability of the estimation result
is lower than the original data. This paper presents the metaheuristic
kriging (MK) as a new estimation method which has similar structure
with kriging. But unlike kriging MK does not minimize the estimation
error variance, instead converges to the EEV minimum which provides
MK to increase the variability of the estimation. The MK uses the
metaheuristic di�erential evolution algorithm in minimization of the
EEV which gives names the MK. As a case study, Ordinary kriging
(OK) and MK are applied to the Jura data set to estimate the spatial
distribution of the Nickel (Ni) content. Results of the estimations are
compared. Results shows that metaheuristic kriging over performed to
the ordinary kriging in terms of variability of the estimation. The MK
can be used any place where kriging is applied due to the variability
of the estimation is higher than OK. The parameters used in MK are
case speci�c so parameter tuning have to be made in the estimations
to reach the desired outcomes. This study only exposes the univariate
spatial estimation.
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1. Introduction

Estimation of the spatial distribution problem is encountered in many areas such as
mining, environmental science, agriculture, public health, meteorology, civil engineering,
hydrogeology, �sheries [2, 3, 4, 5, 7, 10]. Due to the limited time and economic reasons
data collected in the mentioned �elds are limited. So the estimation of the spatial dis-
tribution of the target variable have to be made by using only the available data which
makes the estimation of the spatial distribution at every location important.

In estimation of the spatial distribution inverse distance weighting, nearest neigh-
borhood, bilinear, kriging interpolation and geostatistical simulation methods are used.
Among them kriging and geostatistical simulation are most widely used and most so-
phisticated methods. Kriging produces the best estimate of the spatial distribution by
minimizing the estimation error variance and estimation results are unbiased form the
view point of the mean. Local estimates are the best estimates due to the minimization
of the estimation error variance. But this method has some shortcoming like results are
less variable and spatial continuity is di�erent than original variable. To overcome this
problem geostatistical simulation can be used. In geostatistical simulation results shows
similar variability and similar spatial continuity to original variable. But this method
has shortcoming; estimation error variance is the twice of the kriging estimation vari-
ance which makes estimations less reliable and restricts the use of the method only in
characterization of the uncertainty of the spatial distribution rather than mapping of the
spatial distribution. For the estimation of the spatial distribution of the random variable
a method that both minimizes the estimation error variance as much as possible like the
kriging and mimics the spatial continuity of the original variable like geostatistical sim-
ulation is required. For this purpose, covariance matching constrained kriging (CMCK)
is proposed by the Aldworth and Cressie [1]. But CMCK does not always guaranties to
produce an estimation result.

In this study, Metaheuristic Kriging (MK) is introduced as a new estimation method.
The method uses the EEV in estimation like kriging. But, unlike kriging method does
not minimize the EEV. Instead method converges to the minimum of the estimation
error variance using the optimization method Di�erential Evolution (DE) which is the
member of the metaheuristic optimization. This convergence forces the estimations to
become more variable than kriging estimations which is desired property. As an example
MK is applied in Jura data set where the Ni concentration selected as target variable.
Experimental variograms of the Ni are calculated and model �tted to these variograms.
Spatial distribution of the Ni concentrated mapped for both Ordinary Kriging (OK) and
MK. Estimation results of the both method are compared with raw data.

2. Methodology

2.1. Kriging. Kriging aims to estimate the value of the random variable, Z, at given
support z(x1, x2, ..., xn) at the points (x1, x2, ..., xn). Data can be in one, two or three
dimension but in most applications generally in two or three dimensions. Estimation of
the Z at location x0 by;

(2.1) Ẑ(X0) =
∑N

i=1 λiz(xi)

where λi are weights. Lambdas are determined by the minimization of the cost function
which is most widely named as estimation error variance. EEV can be in terms of
variogram and estimation weights as;

(2.2) 2
∑N

i=1 λiγ(xi, x0) −
∑N

i=1

∑N
j=1 λiλjγ(xi, xj)
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where γ(xi, xj) is the variogram of distance between the xi and xj data points and
γ(xi, x0) is the variogram value of the distance between data used in estimation and
estimation. Variogram is a measure of the spatial dependence and widely used in spatial
estimation. The EEV function (Eq. 2.2) is convex, continues, di�erentiable and has
one global minimum. One may �nd the minimum of such a function by using partial
derivatives. The partial derivative of the estimation error function respect to estimation
weights (lambdas) yields the system of equations which is known as the kriging equation;

(2.3) ∆λ = b

where, ∆ matrix of the all possible combinations of the variogram values between the
data used in estimation; b is all possible combinations of the variogram values between
data and estimation location.
Solution of this equation for λ ;

(2.4) λ = ∆−1b

Where lambdas are used in estimation of the random variable Z.

2.2. Metaheuristic Kriging. Metaheuristic optimization methods which often nature
inspired are general family of the algorithms that aims to �nd the near minimum of
the complex optimization problems. Ant colony, arti�cial bee colony, particle swarm
and di�erential evolution optimization algorithms are just few examples of the meta-
heuristic optimization algorithms. By nature, metaheuristic optimization techniques are
non-deterministic which means that in every minimization problem di�erent results are
expected but these results are approximate to the real solution. Di�erential evolution
(DE) algorithm is widely used in metaheuristic optimization which is �rst proposed by
the Price and Storn in 1995 as a technical report [8]. Algorithm �nds the near optimal
solution of the cost function by iteratively perturbing the candidate solution. DE is well
known algorithm and the details of the algorithm is not exposed here, readers are referred
the seminal work by the Price et al. [6]. Algorithm have four basic steps which are ini-
tialization, mutation, crossover and selection. First the population (Px) which contains
the candidate solutions (xi,g) is created as

(2.5)
Px,g = (Xi,g), i = 0, 1, .., Np − 1, g = 0, 1, ..., gmax,

xi,g = (xj,i,g), j = 0, 1, ...D − 1

where g indicates the generation number.
Once the initialization step is completed, DE mutates the candidate solution and produces
trial Pv,g and mutated vectors Vi,g using the mutation scale factor (SF)

(2.6)
Pv,g = (vi,g), i = 1, 2, .., Np, g = 1, 2, ..., gmax,

vi,g = (vj,i,g), j = 1, 2, ...D

In order to �nish the search strategy after the mutation uniform crossover is performed
which basically copies the values form candidate solutions one to other and creates the
trial vector ui,g using the crossover parameter value (CR):

(2.7)
Pv,g = (ui,g), i = 1, 2, .., Np, g = 1, 2, ..., gmax,

ui,g = (uj,i,g), j = 1, 2, ...D

Finally, selection step is performed by comparing trial vector with target vector. If the
target vector produces better result than the trial vector trial vector is rejected, otherwise
trial vector is replaced with target vector in next generation. The DE algorithm is easy
to use, robust and have few control parameters like CR, SF, P and GEN [9]. The
determination of these parameters are case speci�c. But with increasing number of P
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and GEN solution converges to the optimality. MK shares the same root with kriging
but ignores the minimization of the estimation error variance assumption. Instead, �nds
the near optimal solution of the Eq. 2.2 using the di�erential evolution algorithm. The
parameters of the P and GEN are selected at lower values than ordinary DE optimization
problem which avoids the DE algorithm to �nd the optimal solution. This non-optimal
solution gives �exibility to increase the variability of the estimation which is root of the
MK. The MK estimation steps are very similar to the OK estimation. The steps are as
follows;

(1) Experimental variogram calculation and model variogram �tting
(2) Eliminating anisotropy structure in data (if exists)
(3) Selecting neighboring data for estimation location
(4) Calculating estimation weights for neighboring data by using di�erential opti-

mization algorithm by converging the minimum of the estimation error variance
(5) Determining estimation results by weights.
(6) Repeating steps 1 to 5 for each estimation location
(7) Comparing the estimation results with raw data, if the results needs improve-

ment, modify the P and GEN parameters in di�erential evolution algorithm.

Due to the similar structure with kriging, the parameters of the estimations are mainly
can be selected similar to the kriging practices. The �rst three steps of the metaheuristic
kriging estimation are identical to the ordinary kriging estimation. So, the variogram
modelling, anisotropic correction and conditioning data selection steps are as the same
as the OK. This makes MK easy to implement and compare with OK rationally. Only
the di�erence from the OK is that determination of the weights are made based on the
di�erential evolution algorithm. IN MK, like every metaheuristic optimization algorithms
selection of the algorithm speci�c parameters are subjective and changes respect to spe-
ci�c application. While the convergence to the DE algorithm is good to the real solution
the setting the DD and DF parameter to the high values makes MK results similar to
OK results. So, variability of the estimation results has to be checked and parameters
of the DD and DF have to be changed in order to capture the required variability. This
property makes the MK an iterative method.

3. Case Study

3.1. Data. In this study comparative study of the metaheuristic kriging with ordinary
kriging is made. For demonstration purpose Jura data set is used. Data set collected by
the Swiss Federal Institute of Technology form the topsoil in Swiss Jura. Ni concentration
of the topsoil samples are measured at 259 sampling sites which is heavy metal and can
be reason of serious concerns when is in excessive amount. The map of sample locations
is given in Fig. 1.

Histogram and the summary statistics of the Ni concentration is in Fig. 2.

3.2. Variogram Modelling. For the purpose of variogram modelling, experimental
variograms are calculated at four main direction having azimuth 00, 450, 900 and 1350.
Experimental variograms are given in Fig. 3.

As seen from Fig. 3 Ni shows similar spatial variability in the all directions omni-
directional experimental variogram is calculated and model �tted to the experimental
variogram. Spherical model used as a variogram model. This variograms are given in
Fig. 4

Nugget, sill and range of the variogram model is 10, 57 and 960 m respectively which
means that data relation disappears beyond the 960 m.
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Figure 1. Sampling locations

Table 1. Summary statistics of the estimation results with raw data

Raw Data OK MK
Minimum 4.20 5.28 4.21
Median 20.56 21.89 20.37
Average 19.73 21.17 20.25
Maximum 53.20 41.62 44.78
Variance 67.78 33.93 42.97

3.3. Spatial Estimation. Spatial distribution of the Ni is estimated using Metaheuris-
tic Kriging and Ordinary Kriging. The search neighborhood strategy and variogram
model parameters are identical for both methods. For this reason, variogram parameters
are used in estimations and search radius is selected as 1000 m which is slightly greater
than range of the variogram are used in estimation for both methods. For metaheuristic
kriging additional DD and DF parameters are selected as 4 and 10 respectively. Resulting
map of the estimates are given in Fig.5 for OK and MK.

Summary statistics of the estimates with raw data are given in both methods in Table
1.

Summary statistics of the estimations shows that both methods are unbiased where
mean of the both methods are close to the mean of the raw data. Metaheuristic kriging
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Figure 2. Histogram of the Ni concentration with summary statistics
(NS: Number of samples, Min: Minimum, Md: Median, Mn: Mean, Max: Maximum, Var: Variance)

Figure 3. Experimtantal variogram values

resulted are higher ranged in terms of minimum and the maximum when compared to the
ordinary kriging. But still smoothing e�ects applies for the both methods but smoothing
e�ect is less in metaheuristic kriging that ordinary kriging. Metaheuristic kriging over
performed the ordinary kriging from the viewpoint of the variability where variance of
the metaheuristics kriging is closer to the raw data then ordinary kriging. Variograms of
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Figure 4. Omni-direction variogram with variogram model

Figure 5. OK (left) and MK (right) estimation map

the estimates are calculated and given in Fig. 6 with raw data variogram.

As seen from the Fig. 6 metaheuristic kriging experimental variograms are closer to
the raw data variograms. Which means that metaheuristic kriging better result than
ordinary kriging in terms of spatial continuity and variability.

Swath plots can be used to assess the locational unbiasedness of the estimation results.
To assess the unbiasedness of the estimates swath plots of the for the X and Y directions
are plotted for the raw data, ordinary kriging estimates and metaheuristic kriging and
given in Fig. 6.



490

Figure 6. Experimental variograms of raw data, MK and OK

Figure 7. Swath plots of the raw data, MK and OK estimation results

Fig. 7 shows that in East and West directions both methods produced acceptable
results from the viewpoint of the directional conditional averages.

4. Discussion

Due to the collected data is limited, in order to estimate the spatial distribution of the
random variable geostatistical methods are widely used. Kriging and geostatistical simu-
lations are most popular methods. Kriging produces an estimation result by minimizing
the estimation error variance while geostatistical simulation produces multiple realization
of the spatial distribution by not minimizing the estimation error variance. The short
coming of the kriging and geostatistical simulations are over smoothed and unreliable
estimation results which only use in assessment of the risk in estimation respectively.
The method having the advantage of the both kriging and geostatistical simulation can
be very useful in mapping the spatial distribution of the random variable. CMCK is a
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method that captures the advantage of the both method. But, one shortcoming of the
method is that it does not guaranties to produce an estimation result.

In this study MK is proposed as a new method in estimation of the spatial distribution
of the random variable. MK is very similar to kriging but only di�erence with kriging
is the determination of the weights of the data in estimation. Unlike kriging, MK does
not minimize the estimation error variance instead slightly approaches the minimum of
the estimation error variance. The MK uses the DE optimization algorithm which is a
metaheuristic optimization algorithm. MK produces estimation results which is more
variable than kriging estimation results which is desired property. Swath plots of the
estimations and raw data are also drawn. Results shows that estimation results are
acceptable and conditionally unbiased.

As an application Ni distribution of the Jura data set is estimation using OK and
MK. Experimental variograms are calculated and variogram model are �tted. Variograms
shows that Ni shows isotropic distribution. The variogram model of the omni-directional
variogram is spherical with 10, 57 and 960 m with nugget, sill and range respectively.
Results of the estimations shows that MK better performed than OK in realization of
the variability of the data.

OK is widely used in many areas like mining, environmental science, agriculture,
public health, meteorology, civil engineering, hydrogeology, �sheries. While MK shares
the same root with OK, it can be used in these areas also where spatial mapping of the
variable is required.

In metaheuristics optimization determination of the method speci�c parameter is sub-
jective. By being the member of the metaheuristic optimization DE also inherit this
disadvantage. This makes method iterative to reach the desired outcomes. Also, DE has
good property of the converging to the minimum. When DD and DF parameters set
to the high values results of the MK approaches to the OK results which decreases the
variability of the estimation results.

In this study only single variable is estimated and mapped. But in most case secondary
data increases the estimation quality especially in heterotopic cases. Multivariate exten-
sion of the MK can be considered for future studies.
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