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Abstract— Relational databases are currently being used effectively in many hospitals and clinics to store patient records 

and assay results. With the rapid development of sequencing technologies, sequencing costs have declined considerably. 

In addition, the number of personalized medicine practices is increasing day by day, and accordingly the size of the 

personal genetic data that needs to be stored and questioned is also increasing. Although relational databases are 

appropriate for storing patient records and assay results, additional designs and solutions are needed to efficiently store 

personal genetic data. In this study, a novel solution is proposed for the integration of variation-based personal genetic 

data into relational database. Within the scope of this solution, formats for both non-structural and structural variation 

types have been developed and compression algorithms have been used. The proposed method was tested with real data 

of 2504 people, published by 1000 Genome Project. Compared to the space required to store the raw sequence data, it 

was seen that the proposed method yielded a space gain of 99.74%.  

Keywords— relational database, data format, genetic data, variation 

 

Varyasyon Bazlı Kişisel Genetik Verilerin İlişkisel 

Veritabanı ile Organizasyonu  
 

Özet— İlişkisel veritabanları halihazırda birçok hastanede ve klinikte hasta kayıtlarını ve tahlil sonuçlarını depolamak 

için etkin bir şekilde kullanılmaya devam etmektedir. Sekanslama teknolojilerinin gelişmesiyle birlikte sekanslama 

maliyetleri önemli bir ölçüde düşmüştür. Bunun yanında, kişiselleştirilmiş tıp uygulamalarının sayısı her geçen gün 

artmaktadır ve buna bağlı olarak depolanması ve sorgulanması gereken kişisel genetik verilerin boyutu da yükselmektedir. 

Her ne kadar ilişkisel veritabanları hasta kayıtlarını ve tahlil sonuçlarını depolamak için uygun olsa da kişisel genetik 

verilerin verimli bir şekilde depolanması için ek tasarımlara ve çözümlere ihtiyaç vardır. Bu çalışmada, varyasyon bazlı 

kişisel genetik verilerin ilişkisel veritabanına entegrasyonu için yeni bir çözüm önerilmektedir. Bu çözüm kapsamında, 

hem yapısal olmayan hem de yapısal varyasyon tipleri için formatlar geliştirilmiştir ve sıkıştırma algoritmaları 

kullanılmıştır. Önerilen yöntem 1000 Genom Projesi’nin yayınlamış olduğu 2504 kişiye ait gerçek veriler ile test 

edilmiştir. Ham sekans verilerinin depolanması için gerekli olan alan ile karşılaştırıldığında, önerilen yöntemin % 

99,74'lük bir alan kazancı sağladığı görülmüştür. 

Anahtar Kelimeler— ilişkisel veritabanı, veri formatı, genetik veri, varyasyon 

1. INTRODUCTION 

The desire of human being to recognize itself, its 

environment, nature and the universe has been enduring 

since the beginning of human history. This human desire 

for discovering and recognizing has caused numerous 

investigations and scientific studies in numerous fields, 

and as a result of these efforts, important turning points in 

the history of mankind have taken place. When we evaluate 

the situation in terms of bioinformatics field, the discovery 

of the cell, the discovery of DNA, the understanding of the 

working principle of the cell, and immediately after them 

the actualization of the human genome project [1] are 

considered important turning points. In particular, the 

human genome project has paved the way for countless 

scientific researches that will enable important discoveries 

and information to be released in terms of human life and 

human health. At this point, the international HapMap 

project [2] and 1000 genome project [3-6], which catalog 

the genetic variations, must be put in a separate place. Both 
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these enormous projects, as well as countless scientific 

researches carried out before or after these projects, have 

made it possible for human beings to recognize their own 

biology and properties (relationship between genetic and 

diseases) to a very large extent [7-11]. In addition to this, 

the boundaries of traditional medicine have been overcome 

and personalized medicine concept and approach has 

entered into our lives [12-15]. For a particular disease, 

traditional medicine applies the same treatment to 

everyone and gives everyone the same drug. Unlike 

traditional medicine, personalized medicine has adopted 

the person-specific treatment and the person-specific drug 

approaches. At this point, the most important mainstay of 

personalized medicine is genetic characteristics and 

genetic variations [12]. Therefore, it is necessary to 

identify the genetic factors that cause diseases and that 

reveal physical and behavioral similarities / differences 

between individuals. For this reason, the need for the 

storage and processing of genetic data of a large number of 

people has arisen.  

Relational databases have been used effectively to store 

and query data in numerous fields since the day they were 

first created [36-37]. An important one of these fields is 

medicine [38]. In hospitals and clinics, relational databases 

have been used to record and query patient records and 

laboratory results and are still in use today. Besides, the 

size of the genetic data produced is increasing day by day 

because of the reasons such that the development of 

sequencing technology at a dizzying pace [16], 

correspondingly, the reduction of sequencing costs, 

understanding the effects of genetic characteristics on 

human health and disease, the acceleration of personalized 

medicine, the anticipation that preventive medicine will 

greatly reduce the general health expenditures. On the 

other hand, sequencing devices often produce raw 

sequence data in the form of files, usually in fasta [17] or 

in their own format. It is very difficult to organize and 

manage personal genetic data in this way. Even, as the 

number of people increases, it becomes impossible. In this 

kind of approach, clinicians and researchers have to cope 

with a large number of files and folders. Apart from that, 

variations and genotypes/haplotypes are very significant in 

personalized medicine. Naturally, clinicians obtain the 

variations from the raw sequence data and usually keep 

these variation data in excel spreadsheets. On the one hand, 

the patient's records and laboratory results are stored in the 

relational database, on the other hand the patient's personal 

variation information is stored in the form of an excel table. 

Therefore, it is necessary to transfer personal genetic data 

to the relational database in order to store and manage 

personal genetic data in a structured and systematic 

manner, and to easily evaluate genetic data together with 

other information about the patient held in the database.  

As is known, human DNA consists of approximately 3.2 

billion base pairs and chromosomes are in pairs. From a 

computer science perspective, this data corresponds to a 

string of approximately 3.2 billion lengths. Assuming that 

we represent each base with 1 byte and that the pairs of 

chromosomes are identical, the space occupied by this data 

is approximately 3.2 GB.  On the other hand, this data is 

the raw sequence data produced by the sequencing device, 

that is, the unprocessed data. As we have already 

mentioned, the practices of personalized medicine mainly 

use personal variation data (genotype). Sequence 

alignment algorithms are utilized to obtain variations from 

the raw sequence data, but the execution of these 

algorithms takes a long time [18-20]. The use of variation 

data in personalized medicine applications and the 

necessity of using costly sequence alignment algorithms to 

obtain this data has led to the necessity of organizing 

variation-based personal genetic data in a structured way. 

The logic here is: Instead of using sequence alignment 

algorithms each time to obtain variations, identifying the 

variations (genotypes/haplotypes) once and store them 

permanently. The crucial question that needs to be asked at 

this point is: What is the average number of variations 

detected in a person's entire genome and what is the 

average length of those variations? The answer to this 

question will demonstrate the feasibility and efficiency of 

the proposed method. In a study [21] conducted using the 

variation data published by the 1000 genome project, it was 

determined that the average number of 

genotypes/haplotypes in the whole genome of a person is 

approximately 4.5 million. In addition, in the same study, 

it was determined that the average length of these 

variations was below 3 bases. These results have shown 

that it is a very accurate and logical decision to store 

personal genetic data in a variation-based manner. 

2. RELATED WORK 

When we consider human genome from computational 

perspective, we will see a string made up of letters 

A,G,C,T. Since Dna sequence is a string consisting of 

letters A, G, C, T, researches have intensively used textual 

data compression techniques to reduce the huge storage 

costs. Textual data compression techniques are basically 

classified under four main headings: Substitutional-

Statistical methods, Grammar-based methods, 

Transformational methods, and Table compression 

methods. Among these methods, Substitutional-Statistical 

methods have showed the greatest improvements. The 

basic logic of this class of methods is, as the name implies, 

combining the substitutional techniques and statistical 

techniques in order to improve the compression ratio. 

Biocompress 1 [22] is the first example of Substitutional-

Statistical methods. Later, many studies were published. 

Among them, the well-known studies are DNACompress 

[23] and DNAPack [24]. Although these studies combine 

the substitutional and statistical techniques to improve the 

compression performance, XM [25] a pure statistical 

compression method, yielded better results than DNAPack, 

the best performing of the Substitutional-Statistical 

methods that we investigated. If XM is used to compress 

the human genome, approximately 1,20 GB and 1,18 GB 

will be sufficient to store female genome and male genome, 

respectively. 

The 1000 Genomes Project published the variation data of 

2504 anonymous people as VCF [26] and BCF [27] files. 
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The VCF (Variant Call Format) format [28] is a tab 

delimited text file format for storing variations and 

individual genotypes. Although VCF is widely used in the 

community, it has substantial drawbacks. Because the file 

is text, it requires a lot of space on disk and is excessively 

slow to parse. BCF is a binary, compressed equivalent of 

VCF. A BCF file is composed of a series of compressed 

blocks of binary records. BCF files are faster and take up 

less space compared to VCF files. Because these two file 

formats are equivalent, both have some common 

shortcomings. While storing the genetic data of many 

people; low allele frequencies lead to so much redundant 

space usage. These formats don't provide any structure to 

divide the chromosome into regions and to store the data in 

this way. Finally, to add the variation-based genetic data of 

a new person to the file, the file needs to be updated from 

beginning to end. 

Structural approaches for storing and querying genomic 

data are Genomics Algebra [29], the Phd thesis of Tata [30] 

and GQL [31]. J. Hammer and M. Schneider have proposed 

an integrating approach that is based on two fundamental 

structures. These are genomics algebra and genomics 

functions. While genomic algebra consists of genomic data 

types (e.g., genome, gene, protein, nucleotide), genomic 

functions consist of functions (e.g., translate, transcribe). 

They propose extending SQL by embedding these two 

structures into it. However, in order to extend SQL, data 

structures that will be running in the background should be 

created and added to the system. For instance, to add a new 

function such as get_variations( ) to SQL, necessary data 

structure should be added to the system too. The second 

and the third studies, the Phd thesis of Tata and GQL, are 

very similar to the first study. They are also based on 

genome query algebra and use a standard SQL-like syntax. 

In fact, the main difference between the first study and 

others is that while the first study recommends making 

additions to existing database management systems, other 

studies recommend constructing the system from scratch. 

Naturally, they have also data-structures requirement. 

These three studies have other common shortcomings too. 

The space requirements of the methods were not 

calculated. The methods were not tested on real personal 

genetic data. 

As mentioned earlier, within this study, the variation data 

published by the 1000 genome project has been used. This 

dataset contains whole-genome genetic data of 2504 

individuals selected from different populations and is open 

to the use of researchers. This dataset has also been used in 

many scientific studies for different purposes [32-35].  

3. RELATIONAL DATABASE SCHEMA 

The relational database schema, designed to hold variation-

based personal genetic data in relational database, appears 

in Figure 1. As shown in Figure 1, the relational database 

consists of four tables. The names of these four tables are 

“Records”, “Reference_Chromosomes”, “Individuals” and 

“Variations”. Each of these tables will be discussed 

separately in the following sections. 

 
Figure 1. Relational Database Schema 

 

3.1. Table Individuals 

The table "Individuals", as the name suggests, is a table 

designed to hold information about individuals. Normally, 

this table is one of the indispensable tables in any hospital 

information system. Naturally, the integration of personal 

genetic data into the hospital information system will be 

carried out through this table. Consciously, the table was 

kept as simple as possible and the reason for this will be 

explained below. This table has a total of five fields. The 

first of these, the field with the name "Individual_ID", is 

the primary key of the table. Therefore, thanks to this 

index, other information about any person whose 

“Individual_ID” is known, can be retrieved from the 

Individuals

Individual_ID int

Name nvarchar(20)

Family_ID char(7)

Population char(3)

Gender tinyint

Column Name Data Type Allow Nulls

Records

Record_ID int

Individual_ID int

Chromosome_ID int

Variations varbinary(MAX)

Column Name Data Type Allow Nulls

Reference_Chromosomes

Chromosome_ID int

Chromosome_Number tinyint

Genome_Assembly nvarchar(50)

Start_Index int

End_Index int

Length int

Sequence varchar(MAX)

Column Name Data Type Allow Nulls

Variations

ID int

Variation_ID nvarchar(MAX)

Chromosome_ID int

Type char(1)

Position int

Reference_Bases varchar(MAX)

Alterations varchar(MAX)

Info nvarchar(MAX)

Column Name Data Type Allow Nulls
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database very quickly. In addition, this field is the foreign 

key in the "Records" table, which will be explained in 

detail later and the relationship between these two tables 

appears in Figure 1. Other fields of the "Individuals" table 

hold the name, family id, population and sex of the person 

and the names of these fields are "Name", "Family_ID", 

"Population" and "Gender", respectively. In fact, the fields 

of the Individuals table can be further increased in line with 

the needs of clinical applications; but because we used 

fundamentally the variant data that the 1000 genomes 

project published, we had to adhere to some of the designs 

in this project. On the other hand, basically, even only 3 

fields ("Individual_ID", "Name" and "Gender") are 

sufficient to hold variation-based personal genetic data. 

From these areas, the "Gender" field is important for 

reading (transforming into genotype / haplotype objects 

from the byte sequence created in accordance with the 

general format) individual genotypes or haplotypes of sex 

chromosomes. Since females have two X chromosomes, 

the variation-based genetic data for female x chromosomes 

must be stored in a diploid format and read. On the other 

hand, males have one x and one y chromosome. For this 

reason, variation-based genetic data for male sex 

chromosomes should be stored and read in haploid format. 

3.2. Table Reference_Chromosomes 

Another one, from the tables that are required to hold 

variation-based personal genetic data, is the 

"Reference_Chromosomes" table. As is known, the 

personal variations are determined by the alignment of the 

raw sequence data of the person to the reference 

chromosome. Therefore, the reference chromosome used 

for this operation is important. If the reference 

chromosome used to align the raw sequence data is 

changed, the individual variations that will emerge will 

also change. For this reason, the reference chromosome 

used for alignment is one of the indispensable data in a 

database that holds variation-based personal genetic data. 

Accordingly, the "Reference_Chromosomes" table has 

been designed and added to the schema. 

This table consists of a total of seven fields and each 

reference chromosome corresponds to a row of this table. 

The fields of the table were named as "Chromosome_ID", 

"Chromosome_Number", "Genome_Assembly", 

"Start_Index", "End_Index", "Length" and "Sequence", 

respectively. From these fields, the "Chromosome_ID" 

field is the primary key of the table. Also, this field is the 

foreign key in the "Records" table, and the relationship 

between these two tables is also shown in Figure 1. The 

second field of the table, "Chromosome_Number", as the 

name implies, holds the number of the chromosome. At 

this point, let's say that number 23 represents the X 

chromosome and number 24 represents the Y 

chromosome. The third field of the table, 

"Genome_Assembly", holds the assembly of the reference 

chromosome. Thanks to this field, different versions 

(assembly) of the same chromosome (e.g. chromosome-1) 

can be stored in the table. In this way, we have the 

possibility to store multiple records (provided that the 

assemblies are different) of the same chromosome of the 

same person in the "Records" table. The other three fields 

of the table, "Start_Index", "End_Index" and "Length" 

represent the start position, end position and length of the 

reference chromosome, respectively. 

The last field of the table, "Sequence", as the name 

suggests, holds the reference chromosome sequence. 

Because chromosomes are made up of millions of base 

pairs, the data held in this field is quite big. For example, 

suppose that the chromosome consists of 300,000,000 base 

pairs. In this case, the sequence data held in this field takes 

up approximately 300 MB. Although this data is quite 

large, it can be retrieved from the database in a short time 

because it is a single data (whole). On the other hand, any 

part of the raw sequence data can be fetched by the 

SqlDataReader.GetChars() method in the 

System.Data.SqlClient library, which is provided by .net.  

Actually, the structure of the "Reference_Chromosomes" 

table also provides the possibility of storing reference 

chromosome sequences in pieces; but, the structure of the 

"Records" table and the general format we have designed 

prevent it. To store the reference chromosome sequences 

in pieces, one more table should be added to the database, 

and the newly added table must be associated with the 

"Reference_Chromosomes" table.  

3.3. Table Records 

The "Records" table is the most significant table of our 

relational database and consists of only four fields. These 

fields are "Record_ID", "Individual_ID", 

"Chromosome_ID", and "Variations", respectively. The 

field "Record_ID" is the primary key of this table. On the 

other hand, the "Individual_ID" field of this table is linked 

to the "Individual_ID" field of the "Individuals" table. The 

same also applies to the "Chromosome_ID" field and the 

"Chromosome_ID" field of the 

"Reference_Chromosomes" table. The field, where the 

variation-based personal genetic data is stored, is the 

"Variations" field. As can be noted, the data type of this 

field is varBinary (MAX), that is, the data is stored in the 

form of a byte array in this field. In our practice, the 

personal genetic data encoded in the form of a byte 

sequence in accordance with the general format is held in 

this field in a compressed form. The details about 

compression will be given in the section that describes the 

analysis results. To summarize, one row of the "Records" 

table holds genotypes/haplotypes associated with a 

chromosome of a person. In this way, for a single 

assembly, the data of the whole female genome is kept in 

23 rows. This number is 24 for men. 

3.4. Table Variations 

The "Variations" table is designed to hold generic 

variations. Both non-structural variations and structural 

variations are stored in this table. For this purpose, there 

are eight fields on the table. Also, the only table that the 

"Variations" table is linked to is the 
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"Reference_Chromosomes" table and the fields 

"Chromosome_ID" of both tables are linked together to 

form this relationship. Naturally, the "Chromosome_ID" 

field of the "Variations" table is the foreign key. Other 

fields of the table and the intended use of these fields are 

as follows: The "ID" field is the primary key of the table. 

The field "Variation_ID" represents the id of the generic 

variation. At this point, the "ID" field and the 

"Variation_ID" field should not be confused. The "ID" 

field uniquely identifies the variation in the table and this 

field is automatically assigned a value by the database 

itself. On the other hand, the "Variation_ID" field also 

uniquely identifies the variation and the variation IDs are 

determined by the organizations with international 

validity; but, for newly discovered variations, the value of 

this field is null. Already, the IDs of thousands of newly 

detected variations have been indicated as null in the 

variation catalog published by 1000 genomes project. The 

fourth field of the table, the "Type" field, indicates the type 

of variation and this field only takes two values: while the 

'N' character represents non-structural variations, the 'S' 

character represents structural variations.  

Other areas of the table named "Position", 

"Reference_Bases" and "Alterations" hold the position at 

which the variation occurs, the reference allele and the 

alternate alleles of the variation, respectively. In addition, 

alternate alleles are separated from each other by ‘;’ in the 

"Alterations" field. The last field of the table, "Info", holds 

the other information associated with the variation. The 

information in this field is stored in the form of colon 

separated <property>=<value> pairs. 

4. ENCODING AND DATA FORMATS 

4.1. Encoding the Sequence 

As known, DNA sequence is made up of nucleotide bases 

and there are four bases. These are Adenine, Guanine, 

Cytosine and Thymine. Apart from these, sequencing 

devices return “N” character for the bases which cannot be 

identified. Therefore, there are totally 5 characters. Three 

bits are sufficient to represent these 5 characters. But, since 

a byte is composed of 8 bits, we preferred using 4 bits to 

represent the bases. Naturally, one byte can store two 

characters. Accordingly, the formula “Ceiling(Length/2)” 

is used to compute the number of bytes adequate to store 

the sequence, where “Length” stands for the length of the 

sequence in the formula.  

Table 1. The Format for Small Indels 
 

Variation Type Field Description Type 

Substitution & 

Insertion 

L_T 
Length of the Sequence(Higher 4 bits) and Type of 

the Variation(Lower 4 bits) 
Unsigned Byte 

If Length 

< 15 
Alt 

A byte array storing the sequence, 

byte[Ceiling(Length/2)] 
Byte Array 

If Length 

= 15 

Len Length of the Sequence 
Unsigned 16 Bit 

Integer 

Alt 
A byte array storing the sequence, 

byte[Ceiling(Length/2)] 
Byte Array 

Deletion 

L_T 
Length of the Sequence(Higher 4 bits) and Type of 

the Variation(Lower 4 bits) 
Unsigned Byte 

If Length 

< 15 
- Null, no information is stored - 

If Length 

= 15 
Len Length of the Sequence 

Unsigned 16 Bit 

Integer 

 

4.2. Small Indels Variation Format 

The basic element of the data format we developed is 

variation. There are two different formats for non-

structural variations. While the same format was designed 

for both substitution and insertion, a different format was 

designed for deletion. The cause that gives rise to this 

situation is while we should store the sequence in insertion 

and substitution, we don’t need to store the sequence in 

deletion. The first field of both formats is “L_T”. While 

higher 4 bits of “L_T” indicates the length of the sequence, 

lower 4 bits indicates the type of the variation. If the value 

of the higher 4 bits of “L_T” is 15, there are two 

alternatives. The length of the sequence might be either 15 

or more than 15. Therefore, there is also an extra field 

“Len” in the case where the value of the higher 4 bits of 

“L_T” is 15. The field “Len” stores the length of the 

sequence. The last field of the format devised for 

substitution and insertion is “Alt” and this field is used to 

store the sequence. Since we don’t need to store the 

sequence in deletion, there is no “Alt” field in the deletion 
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format. You can attain the other details about the variation 

format from Table 1.  

4.3. Structural Variation Format  

As is known, the structural variations are basically divided 

into five. These are Cnv (Copy number variation), Del 

(Deletion), Dup (Duplication), Ins (Insertion) and Inv 

(Inversion). Furthermore, the structural variation of the 

insertion type is also divided into four within itself, 

depending on the type of the inserted element. As a result, 

there are a total of 8 different structural variations. The 

information that defines these eight different structural 

variations and naturally, that needs to be stored shows 

similarities and/or differences. Therefore, it would be a 

right and rational approach to group structural variations 

that have more common features and to design a common 

format for each group. This choice will both provide a 

significant convenience in terms of design and reduce 

space requirement. From this point of view, 5 structural 

variations with the most common features were collected 

in one group and the other 3 structural variations were 

collected in a separate group. The formats designed for 

these two groups appear in Table 2 and Table 3, 

respectively. For the sake of clarity, the table structure 

created for small indels is adopted here as well. In addition, 

since the formats of the structural variations are more 

complex, they were divided into a certain number of 

sections. Our goal in doing so is to be able to explain the 

formats more easily. Accordingly, the thick lines in the 

tables separate these sections. For example, in Table 2 

there are two thick lines and these two thick lines separate 

three sections.

Table 2. Structural Variation Formats-1 
 

Variation Type Field Description Type 

CNV & DEL & 

DUP & INS:MT 

& INV 

CNV 

DEL 

DUP 

nCNA_Type 
How many CNAs (Higher 4 bits) and 

Type of the Variation (Lower 4 bits) 
Unsigned Byte 

CNA Copy Number Allele: How many copies 
Signed 

byte[nCNA] 

INS:MT 

INV 
U_Type 

Higher 4 bits unused and Type of the 

Variation (Lower 4 bits) 
Unsigned Byte 

L_ID Length of the Variation ID Unsigned Byte 

ID Variation ID Char[L_ID] 

L_CS Length of the Source Call Set Unsigned Byte 

CS Source Call Set Char[L_CS] 

END End coordinate of the Variation 
Unsigned 32 Bit 

Integer 

If not INS:MT - Null, no information is stored - 

If INS:MT 

M_Start 
Mitochondrial start coordinate of 

inserted sequence 

Signed 32 Bit 

Integer 

M_End 
Mitochondrial end coordinate of inserted 

sequence 

Signed 32 Bit 

Integer 

EInfo_Type 

Existence of Extra Info (higher 4 bits) 

and Type of the field L_EInfo (Unsigned 

Byte=1, Unsigned 16 Bit Integer=2) 

Unsigned Byte 

If EInfo=1 

L_EInfo Length of the Extra_Info Appropriate type 

Extra_Info 

Extra Information for the Variation 

(colon separated <property>=<value> 

pairs) 

Char[L_EInfo] 

 

The fields of the format designed to hold the information 

of five structural variations and their characteristics are as 

follows: The first part of the table is divided into two 

according to the types of the variations. If the type of 

variation is Cnv, Del or Dup, the first part consists of two 

fields. These fields are “nCNA_Type” and “CNA”. The 

"nCNA_Type" is of type unsigned byte and the first four 

bits of this field are used to hold the number of CNAs. On 

the other hand, the last four bits represent the type of 

variation. The field “CNA” is an array of type signed byte 

and holds the copy numbers. If the type of the variation is 

Ins:Mt or Inv, the first section consists of a single field, and 

the name of this single field is "U_Type". "U Type" is of 

type unsigned byte and the last four bits of this field are 

used to hold the type of the variation; the first four bits are 

not used. 
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The first five fields of the second section are standard, and 

these fields are "L_ID", "ID", "L_CS", "CS" and "END", 

respectively. From these fields, "L_ID" can be handled 

together with "ID". The same situation applies to "L_CS" 

and "CS". The "L_ID" field is used to keep the length of 

the variation-id represented by "ID". Similarly, the "L_CS" 

field is used to hold the length of the Source Call Set 

represented by "CS". The last field existing as the standard 

of the second section is "END" and holds the end 

coordinate of the variation. Apart from these five standard 

fields, if the type of the variation is Ins:Mt, there are two 

extra fields in this section. These fields, whose names are 

"M_Start" and "M_End" denotes mitochondrial start and 

end coordinates of the inserted sequence. Accordingly, the 

type of these fields is Signed 32 Bit Integer.  

The third section, that is, the last section, is basically 

designed to hold extra information concerning the 

variation. The first field of this section is standard. The first 

four bits of this field, whose name is "EInfo_Type", 

indicate whether extra information is available. The fact 

that the first four bits are 1 means that extra information is 

available. If the first four bits are 1, there are two other 

fields at the end of this section to keep the other 

information associated with the variation. The names of 

these fields are "L_EInfo" and "Extra_Info". The 

"L_EInfo" field represents the length of the "Extra_Info" 

field. On the other hand, the type of the "L_EInfo" field is 

determined according to the last four bits of the 

"EInfo_Type" field. If the last four bits of "EInfo_Type" 

are 1, the type of "L_EInfo" is unsigned byte; on the 

contrary, if this value is 2, the type of "L_EInfo" is 

unsigned 16 Bit Integer. The last field of this last section, 

the "Extra_Info" field, is the actual field that holds the other 

information associated with the variation. The information 

in this field is stored in the form of colon separated 

<property>=<value> pairs.  

The common format developed for the second group of 

structural variations (INS:ME:ALU, INS:ME:LINE1, 

INS:ME:SVA) appears in Table 3. As can be seen from the 

table, this common format, developed for three structural 

variations, consists of three sections and these three 

sections are separated from each other by two thick lines. 

The fields of each section and their characteristics are as 

follows: In the first section there are eight different fields 

and the names of these fields are "MEINFO_Type", 

"SVLEN", "L_ID", "ID", "L_CS", "CS", "L_TSD" and 

"TSD", respectively. The field "MEINFO_Type" is of type 

unsigned byte and the first four bits of this field determine 

whether mobile element information exists or not. If the 

first four bits are 1, the second section stores the 

information about the mobile element, but, if the first four 

bits are 0, then the second section stores nothing, in other 

words, the second section doesn’t exist. On the other hand, 

the last four bits of "MEINFO_Type" represent the type of 

the variation. The second field of the first section, 

"SVLEN", denotes the length of the structural variation 

and the type of this field is Signed 32 Bit Integer. From the 

remaining fields of the first section, "L_ID", "L_CS" and 

"L_TSD" are used to store the lengths of the fields "ID", 

"CS" and "TSD", respectively. The “ID" field represents 

the variation-id and, accordingly, its type is a char array. 

On the other hand, while "CS" holds the Source Call Set, 

"TSD" holds Precise Target Site Duplication for bases. 

Likewise, the types of these fields are also char arrays.  

The second section is basically designed to store 

information regarding the mobile element. As we have 

already mentioned, the presence of this section depends on 

the first four bits of the first field of the first section. In 

accordance with the purpose of this section, there are five 

standard fields. The first field of this section, "L_MEN", is 

used to keep the length of the mobile element name 

represented by the field "MEN". The names of the two 

subsequent fields are "ME_SPos" and "ME_EPos". These 

fields are used to hold the start and end positions of the 

mobile element, respectively, and the types of both fields 

are Signed 32 Bit Integer. The last field of this section, 

whose name is “Polarity”, denotes the polarity of the 

mobile element. Accordingly, the value of this field can be 

either ‘+’ or’-‘. Because one byte (or one character) is 

sufficient to represent these values, the type of the 

“Polarity” field was determined as char.  

The third section is basically designed to hold extra 

information regarding the variation. The first field of this 

section is standard. The first four bits of this field, whose 

name is "EInfo_Type", indicate whether extra information 

is available. The fact that the first four bits are 1 means that 

extra information is available. If the first four bits are 1, 

there are two other fields at the end of this section to keep 

the other information associated with the variation. The 

names of these fields are "L_EInfo" and "Extra_Info". The 

"L_EInfo" field represents the length of the "Extra_Info" 

field. On the other hand, the type of the "L_EInfo" field is 

determined according to the last four bits of the 

"EInfo_Type" field. If the last four bits of "EInfo_Type" 

are 1, the type of "L_EInfo" is unsigned byte; on the 

contrary, if this value is 2, the type of "L_EInfo" is 

unsigned 16 Bit Integer. The last field of this last section, 

the "Extra_Info" field, is the actual field that holds the other 

information associated with the variation. The information 

in this field is stored in the form of colon separated 

<property>=<value> pairs. 
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Table 3. Structural Variation Formats-2 
 

Variation Type Field Description Type 

INS:ME:ALU & 

INS:ME:LINE1 & 

INS:ME:SVA 

MEINFO_Type 
Mobile element info (Higher 4 bits) and 

Type of the Variation(Lower 4 bits) 
Unsigned Byte 

SVLEN Structural Variation Length 
Signed 32 Bit 

Integer 

L_ID Length of the Variation ID Unsigned Byte 

ID Variation ID Char[L_ID] 

L_CS Length of the Source Call Set Unsigned Byte 

CS Source Call Set Char[L_CS] 

L_TSD Length of TSD Unsigned Byte 

TSD 
Precise Target Site Duplication for 

bases (if unknown, value will be null) 
Char[L_TSD] 

If MEINFO=0 - Null, no information is stored - 

If MEINFO=1 

L_MEN Length of MEN Unsigned Byte 

MEN Mobile element name Char[L_MEN] 

ME_SPos Mobile element Start Position 
Signed 32 Bit 

Integer 

ME_EPos Mobile element End Position 
Signed 32 Bit 

Integer 

Polarity Polarity ( ‘+’ or ‘-‘ ) Char 

EInfo_Type 

Existence of Extra Info (higher 4 bits) 

and Type of the field L_EInfo 

(Unsigned Byte=1, Unsigned 16 Bit 

Integer=2) 

Unsigned Byte 

If EInfo=1 

L_EInfo Length of the Extra_Info Appropriate type 

Extra_Info 

Extra Information for the Variation 

(colon separated <property>=<value> 

pairs) 

Char[L_EInfo] 

 

4.4. General Format  

The general format, which was designed for the storage of 

the personal genotypes or haplotypes (depending on the sex 

of the individual and/or chromosome), can be seen from 

Table 4. As it can be seen from the table, the general format 

was devised to store all or a portion of the personal 

genotypes/haplotypes for the variations detected on any 

chromosome of an individual. In short, the general format 

can be defined as: chromosomes are composed of regions; 

each region is made up of records.  

The details of the format are as follows: Since the 

variations are detected by aligning a sequence to the 

reference sequence, the assembly of the human reference 

genome should be specified. Accordingly, the first two 

fields of the general format are used for that purpose. The 

names of these fields are “L_Hga” and “Hga”, respectively. 

“L_Hga” holds the character length of the human genome 

assembly, represented by the field “Hga”. Additionally, the 

types of these fields are unsigned byte and char array. The 

third field of the format is “N_Regions”. “N_Regions” is 

used to hold the number of regions. After that field, the part 

comes where the indices of the regions are held.  

The indices section is actually a list and its length equals 

the value of the "N_Regions" field. On the other hand, the 

fact that this section is a list is indicated with a rational 

visual approach in the table. Each element of the indices 

section is composed of three different fields. These fields 

are “C_SPos”, “C_EPos” and “SO_CReg”. The fields 

“C_SPos”, “C_EPos” and “SO_CReg” hold the start 

position and end position of the region on the chromosome, 

and the start offset of the compressed region in the byte 

array, respectively. Regions are kept in order according to 

their start and end positions. This simple but significant 

approach gives us the possibility to make binary search. In 

this way, the region or regions that match the given 

position information can be determined in a very short 

time. Besides, since the initial offset (SO_CReg) in the 
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compressed byte array of any detected region is also held, 

there is also the opportunity to position directly in that 

position and bring the relevant region. Here, the 

corresponding region is fetched as a compressed byte array 

and then it is decompressed.

Table 4. General Format 
 

Field Description Type 

L_Hga Length of the Human Genome Assembly  Unsigned Byte 

Hga Human Genome Assembly (ex. GRCh37) Char[L_Hga] 

N_Regions Number of Regions 
Unsigned 32 Bit 

Integer 

List of Indexes (n=N_Regions) 

 

C_SPos Chromosomal Start Position of the Region 
Unsigned 32 Bit 

Integer 

C_EPos Chromosomal End Position of the Region 
Unsigned 32 Bit 

Integer 

SO_CReg Start offset of the compressed region 
Unsigned 32 Bit 

Integer 

List of Uncompressed/Compressed Regions (n=N_Regions) 

 

N_Rec Number of Records in the Region 
Unsigned 32 Bit 

Integer 

List of Records (n=N_Rec) 

 

If
 H

ap
lo

id
 V_Pos Position of the Variation 

Unsigned 32 Bit 

Integer 

Var Variation Variation  

If
 D

ip
lo

id
 

V_Pos Position of the Variation 
Unsigned 32 Bit 

Integer 

I_Byte 

For Diploid Genotypes, there are five situations: 

Only first allele has the variation, I_Byte=00000000 

Only second allele has the variation, I_Byte=00000001 

Both alleles have the same variation, I_Byte=00000010 

The alleles have different variations, I_Byte=00000011 

The alleles have the same Structural variations, but different 

CNA, I_Byte=00000100 

Unsigned Byte 

Var 
If the value of I_Byte is 00000011, two variations Variation[] 

Else, one variation Variation 

 

The next section of the general format holds compressed 

regions. This section is a list of compressed regions, and 

the length of this list is, as you will guess, equal to the 

length of the index list. Although we express compressed 

regions and index region as a list, the whole of the general 

format is actually a byte array, and as we have already 

mentioned, we have the possibility to position on any offset 

of this array. When looking at the format of a compressed 

region in Table 4, basically two components are seen. The 

first of these, the field with the name “N_Rec” shows the 

number of records (personal genotype or haplotype) in the 

compressed region, and the type of this field is Unsigned 

32 Bit Integer. The second component is a list of records. 

On the other hand, there are two different Record formats, 

one for haploid calls and the other for diploid calls. Haploid 

format consists of two fields (“V_Pos”, “Var”) whereas 

diploid format consists of three (“V_Pos”, “I_Byte”, 

“Var”). The extra field “I_Byte” of the diploid format is 

used to represent five situations whose details are given in 

Table 4. For haploid calls, e.g. on Y, male 

nonpseudoautosomal X, only one allele value should be 

given. Accordingly, one variation is stored in the “Var” 

field of Haploid format. For diploid calls, e.g. on 

chromosome 1, female nonpseudoautosomal X, two 

alleles’ values should be given. Here, based on the value of 

the field “I_Byte”, either one variation or two variations 

can be stored in the “Var” field of Diploid format. 

5. THE RESULTS OF THE ANALYSIS MADE ON 

THE RELATIONAL DATABASE 

In the process of recording variation-based personal 

genetic data into the relational database, the data are passed 

through many stages and/or undergoing transformation. 

These stages are the encoding of class objects according to 

the general format (conversion to byte array), the 

compression (in parts) of the data encoded in the form of 

byte array and storage of the compressed byte array into 

the database, respectively. On the other hand, in the process 

of reading the data stored in the database and transforming 
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it into class objects, these steps are implemented backward. 

Namely; first, the data held in the form of compressed byte 

array is fetched from the database, then, this data is 

decompressed, and finally, the decompressed data is 

transformed into class objects. Table 5 below shows the 

analysis results regarding time requirements of the 

operations carried out at the mentioned stages. In addition, 

the results of the analysis on the size of the area occupied 

by the data at each step are also given in Table 6. The 

values indicated on both tables are the average of 2504 

people. Also, analyzes on time and space requirements 

were performed separately for each chromosome. At this 

point, since the sex chromosomes of females and males are 

different, analyzes of the X chromosome were made 

separately for females and males. Accordingly, the rows 

starting with "X) F" and "X) M" on both tables indicate the 

mean values of the females and males, respectively. The 

various physical characteristics of the test computer are as 

follows: (Asus K55VJ-SX077D, Windows 8.1 Pro 64 bit, 

Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz, 6 MB 

Intel® Smart Cache, 8 GB DDR3 1600 MHz, 750 GB 

7200rpm). Also, Sql Server 2008 R2 was selected as the 

database management system. 

Table 5, which shows the time requirements of the 

processes that need to be realized in the system, consists of 

a total of 12 columns, if we do not take the first column 

into account. Eight of these columns are dedicated to 

compression and decompression operations, two of them 

are to the operations of writing to the database and reading 

from the database, one of them is to encoding operation and 

one of them is to decoding operation. In the process of 

recording variation-based personal genetic data into the 

relational database, encoding operation (conversion to byte 

array) and the compression of the byte array lead to extra 

source usage (RAM) and delay. On the other hand, similar 

source usage and delay are valid for the decompression and 

the decoding operations in the process of reading the data 

stored in the database. The time losses caused by these four 

operations appear in Table 5.

Table 5. Time Table for the Operations Related to the Relational Database (in millisecond) 
 

Chr No 

Encoding 

General 

format 

Gzip Algorithm Deflate Algorithm Database 

Decoding Gzip Fastest Gzip Optimal Deflate Fastest Deflate Optimal 
Write Read 

Comp Decomp Comp Decomp Comp Decomp Comp Decomp 

1) 117.04 79.37 47.08 173.81 42.19 62.73 40.05 165.84 35.61 54.32 26.85 278.5 

2) 122.1 82.78 51.07 183.35 46.79 66.29 42.61 173.58 39.21 58.53 34.35 296.58 

3) 106.07 76.23 42.12 156.5 38.07 53.07 34.6 147.57 31.36 57.3 41.55 246.44 

4) 120.45 73.89 44.36 167.7 40.65 61.63 36.91 161.98 33.45 120.42 44.4 262.69 

5) 101.12 69.64 37.74 138.11 32.71 47.83 31.67 133.62 28.7 150.52 42.54 217.56 

6) 107.04 78.49 40.97 154.84 35.74 50.22 32.23 140.67 29.06 110.09 41.78 220.71 

7) 96.08 70.06 35.3 132.07 31 46.36 29.6 128.2 26.29 124.45 42.5 201.61 

8) 88.52 66.94 32.97 121.96 28.74 43.95 26.69 118.89 24.71 129.08 41.63 182.9 

9) 70.46 52.98 25.32 97.58 22.61 33.86 21.32 92.41 18.98 89.15 38.99 145.07 

10) 84.09 56.54 31.93 116.22 27.18 43.4 25.32 109.11 23 110.41 39.77 172.93 

11) 83.19 59.33 32.4 114.88 27.79 43.91 26.86 113.79 24.41 143.48 40.36 179.57 

12) 81.12 60.48 29.26 110.96 25.78 44.15 23.74 104.6 21.6 94.37 39.49 155.42 

13) 65.58 45.52 23.56 85.74 22.01 36.49 19.57 88.92 18.02 95.04 33.17 126.62 

14) 59.34 46.27 19.98 74.66 17.68 28.49 16.44 72.66 15.91 80.23 32.31 104.82 

15) 51.83 39.96 18 70.28 16.19 26.22 14.7 63.97 13.39 59.5 30.27 93.12 

16) 53.01 45.79 18.45 75.39 16.42 25.65 15.26 67.76 14.36 59.43 31.56 97.95 

17) 45.42 37.67 17.13 65.67 15.58 23.07 13.86 63.05 12.57 34.74 28.88 82.26 

18) 46.8 39.78 17.5 66.05 15.67 30.77 15.26 65.2 13.23 23.2 29.52 89.28 

19) 37.97 39.95 14.65 55.5 12.92 22.37 11.68 52.16 10.56 30.99 29.05 73.96 

20) 34.8 35.41 14.77 53.64 11.88 21.16 10.68 53.15 9.84 39.77 28.6 63.46 

21) 25.25 23.38 9.83 44.15 8.25 14.44 7.93 33.6 6.92 15.99 22.88 39.96 

22) 22.62 26.43 8.86 37.47 7.61 16.9 7.04 31.15 6.33 28.44 21.04 31.65 

X)F 55.71 38.88 21.99 79.36 20.42 29.94 17.96 78.39 16.33 108.98 43.69 107.13 

X)M 32.59 30.94 17.09 60.13 13.49 21.83 11.86 51.53 11.1 56.01 34.34 48.6 

Y) 0.24 0.86 0.14 1.16 0.14 0.71 0.12 0.8 0.12 13.9 14.21 0.33 

Female 
Total 

1675.61 1245.77 635.24 2375.89 563.88 872.9 521.98 2260.27 473.84 1818.43 805.18 3470.19 

Male 

Total 
1652.73 1238.69 630.48 2357.82 557.09 865.5 516 2234.21 468.73 1779.36 810.04 3411.99 

 

For compression operation, basically two different classes 

(algorithms) in the "System.IO.Compression" library that 

".net" provides were compared. The names of these classes 

are "GZipStream" and "DeflateStream". In addition, two 

different compression levels (“Fastest” and “Optimal”) of 

both algorithms were tested and these levels indicate 

whether to emphasize speed or compression efficiency 

when compressing the stream. Therefore, a total of 4 
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different compression methods are compared. The 

comparison results are as follows: Except for one or two 

results, the “Gzip” algorithm completes the compression 

process longer than the “Deflate” algorithm. This applies 

to both "Fastest" and "Optimal" levels. That is, the "fastest" 

level of the Deflate algorithm is the method that performs 

the compression process fastest. On the other hand, in the 

same way, the “Gzip” algorithm completes the 

decompression process longer than the “Deflate” 

algorithm. Moreover, surprisingly, the "optimal" levels of 

both algorithms perform decompression operation more 

quickly than their "fastest" levels. Therefore, the algorithm 

performing the fastest decompression is “Deflate-optimal”. 

Table 6 shows the size of the area occupied by the data in 

the recording process. In this table, except for the last two 

rows in which the total values for the whole genome of 

females and males are shown, the values in the other rows 

are in bytes. The values on the last two rows of the table 

are in MB. As can be seen from the table, the algorithm and 

its' level with the best compression performance is Deflate-

Optimal. Both the Optimal level of the Deflate algorithm 

and the other three alternatives achieved quite successful 

results. All of these four methods have reduced the size of 

the byte array encoded according to the general format by 

approximately 50% and there is little difference between 

the results of the methods. 

Two criteria have been taken into consideration in 

determining the method to be used for the compression of 

the byte array. These criteria are the compression ratio and 

the duration of the decompression process. At this point, 

the question "why was the duration of the decompression 

process chosen as a criterion?" may come to mind. As the 

genetic data of any person is recorded only once into the 

database, naturally, the compression process is also 

performed once. On the other hand, since the process of 

reading from the database is repeated in each clinical 

application, the decompression process is also carried out 

many times. From this point of view, the duration of the 

decompression process has been selected as the criterion. 

Surprisingly, in terms of both the compression ratio and the 

duration of the decompression operation, the best 

algorithm is "Deflate-optimal". Therefore, this algorithm 

has been used as the compression method in our 

application as well. Accordingly, the variation-based 

genetic data for the whole genome of females occupies 

15.270 MB in the database. This value is 15.086 MB for 

males. 

Table 6. Size Requirement Table for the Operations Related to the Relational Database (in bytes) 
 

Chr No 
General 

format 

Gzip Algorithm Deflate Algorithm 
Number of 

Regions Gzip Fastest Gzip Optimal 
Deflate 

Fastest 

Deflate 

Optimal 

1) 2408112 1253248 1224781 1250774 1222307 137 

2) 2541726 1320030 1289846 1317418 1287234 145 

3) 2166207 1121046 1095114 1118818 1092886 123 

4) 2290589 1178695 1150662 1176340 1148307 130 

5) 1883022 977429 955463 975492 953527 107 

6) 2020235 1034925 1010897 1032850 1008822 115 

7) 1789965 923548 901590 921706 899748 102 

8) 1653394 847277 826890 845575 825188 94 

9) 1303419 673591 657558 672248 656214 74 

10) 1551477 801238 782168 799641 780571 88 

11) 1558968 805382 786268 803777 784664 89 

12) 1475290 767316 749813 765797 748294 84 

13) 1170156 607522 593367 606316 592161 66 

14) 1006770 522732 510626 521693 509587 57 

15) 906607 471686 460954 470749 460017 52 

16) 946070 485095 473347 484117 472370 54 

17) 839810 438596 428962 437727 428093 48 

18) 884164 457790 446836 456876 445922 50 

19) 707567 363672 355261 362939 354528 40 

20) 652718 337391 329537 336714 328860 37 

21) 465189 239537 233823 239051 233338 26 

22) 420671 217256 212262 216817 211823 24 

X)F 1103835 579597 568871 578456 567730 63 

X)M 655681 373474 372391 372683 371600 43 

Y) 4845 2959 3013 2941 2995 1 

Female Total 30.275 MB 15.663 MB 15.301 MB 15.632 MB 15.270 MB 1805 

Male Total 29.852 MB 15.469 MB 15.117 MB 15.439 MB 15.086 MB 1786 

 

In clinical applications, the data to be processed in RAM 

are class objects. In the process of converting the personal 

genetic data held in the database into class objects, the data 

passes through multiple stages and the space occupied by 
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the data at each step must also be taken into consideration. 

Let's explain this with an example. The whole genome data 

of females takes up 15.27 MB in the database. When this 

data is stored in memory, it again occupies 15.27 MB in 

the same way. Because this data is a compressed data, it is 

decompressed primarily and as a result of the 

decompression process, a separate byte array that occupies 

30.275 MB emerges. It is no longer necessary to keep the 

compressed data in memory at this point, and for this 

reason, the compressed data is discarded. Then, a byte 

array encoded according to the general format and 

occupying 30.275 MB in memory is passed through decode 

operation and the personal genotype objects are generated. 

After the personal genotype objects are generated, the byte 

array encoded according to the general format is discarded 

from the memory. Therefore, the areas used in these two 

intermediate stages are seen as temporary losses. 

 

6. CONCLUSION 

In this study, a relational database was utilized for the 

organization of variation-based personal genetic data, and 

the space requirements and query performances of this 

database was computed. Relational databases have been 

successfully used in many areas so far. But unfortunately, 

there are several challenges confronted when using 

relational databases for storing personal genetic data. In 

order to store all the variations existing in the genome of a 

person in relational database, normally, millions of rows 

are required. In practice this is almost impossible. 

However, based on our storage approach and the designed 

data formats, variations of each chromosome are stored in 

type of "varbinary (MAX)". In this way only 23 rows are 

used to store variation-based genetic data for the entire 

genome of females. In contrast to females, the number of 

rows required to store variation-based genetic data for the 

whole genome of males is 24. By using this proposed 

method, the space required to store all the variations in the 

genome of a person is approximately 0.26 % of the space 

required to store the raw sequence of this person. This 

means that, on average, our method provides a space 

saving of approximately 99.74%. In addition, our method 

yielded better results than the accomplished compression 

methods. The space need of our method is 0.015 GB as 

opposed to 1.2 GB obtained by the accomplished 

compression methods. 
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