
Hacettepe Journal of Mathematics and Statistics
Volume 47 (4) (2018), 805 � 812

A combinatorial approach to the classi�cation of
resolution graphs of weighted homogeneous plane

curve singularities

Muhammad Ahsan Binyamin∗, Ha�z Muhammad Afzal Siddiqui† and Amir

Shehzad‡

Abstract

In this article we describe the classi�cation of the resolution graphs
of weighted homogeneous plane curve singularities in terms of their
weights by using the concepts of graph theory and combinatorics. The
classi�cation shows that the resolution graph of a weighted homoge-
neous plane curve singularity is always a caterpillar.
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1. Introduction

The history of resolution of plane curve singularities is very old. It started with
Newton in 1676, who showed the existence of Puiseux series. The resolution of plane
curve singularities is an easy consequence. There is a large group of mathematicians who
introduced new methods to resolve a plane curve singularity and they found deep and
important applications of resolution of plane curve singularities. János Kollár lists about
20 ways of resolution of plane curve singularities (cf. [5]). Moreover an algebraic and
combinatorial information about plane curve singularities can be found in [7], [9].
A graph is an ordered pair G = (V,E), where V is called vertex set and E is called edge
set. |V | and |E| denote the order and the size of a graph, respectively. A tree is an acyclic
connected graph with n vertices and n − 1 edges and a caterpillar is a special type of
tree with the property that a path remains if all leaves are deleted. A vertex labeling is
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a bijection from the set of vertices V to the set of labels {1, 2, . . . , |V |}.
In [2], S. Dale Cutkosky and H. Srinivasan compute the resolution graph combinatorically
by using the characteristic pairs of an irreducible plane curve singularity. Also Y. Jingen
in [4], associates each singularity of a curve on a surface to a tree called S-tree which is
some kind of "structured graph" and obtained by using the procedure of blow-ups.
In this article we introduce a combinatorial approach to compute the resolution graph of
a weighted homogeneous plane curve singularity. As a �rst step we compute the order
and the size of the resolution graph of a weighted homogeneous plane curve singularity.
Then we de�ne a vertex labeling on the set of vertices obtained from the weights of a
weighted homogeneous plane curve singularity and �nally construct the resolution graph.

2. Basic De�nitions

In this section, we give some basic de�nitions related to the resolution of plane curve
singularities. De�nitions can be found in [3].

2.1. De�nition. Let Bl(0)C2 denote the blowing − up of 0 ∈ C2, which is the subset of
C2 × P , where P is the projective line and it is de�ned as

Bl(0)C2 = {(a, la) : a ∈ la},
where a is a point and la is a line in C2 on which point a lies.
Then there is a projection map

π : Bl(0)C2 → C2

which is called the blowing-up map.

We denote E := π−1(0) the exceptional divisor of π.
Bl(0)C2 can also be de�ned in coordinates as follows

Bl(0)C2 = {(x, y, u : v) : xv = yu} ⊂ C2 × P.
here (x, y) ∈ C2 and (u : v) are the homogeneous coordinates of P .
Let

V1 = {(x, xv, 1 : v) : x, v ∈ C2} ∼= C2

V2 = {(yu, u, u : 1) : y, u ∈ C2} ∼= C2

then V1 ∪ V2 = Bl(0)C2 is an a�ne covering.

2.2. De�nition. Let (V (f), 0) be a curve singularity. Then the closure of π−1(f \ 0) is
called the strict transform of f , and the inverse image π−1(f) is called the total transform
of f .

Let f =
r
∪
i=1

fi ⊂ C2 be a small representative of a reducible plane curve singu-

larity with branches f1, ..., fr r ≥ 1. Assume that Xi
πi→ ...

π2→X1
π1→C2 is a sequence

of blowing up points. Denote by E(i) = (π1 ◦ ... ◦ πi)−1(0) the exceptional divisor,

f (i) = (π1 ◦ ... ◦ πi)−1(f \ {0}) the strict transform and (π1 ◦ ...◦πi)−1(f) the total trans-

form of f . Let Xi+1

πi+1→ Xi be the blowing up of Xi in all points of f (i)∩E(i) which are
still singular on f (i) or non-transversal intersection of f (i) with E(i) that is the points
with intersection multiplicity of f (i) and E(i) greater than one or where two exceptional
divisors and f (i) meet.

2.3. De�nition. (i) Xk
πk→ ...

π1→X1 → C2 is called a standard resolution of (V (f), 0) if all

branches of f (k) are smooth, do not intersect each other, do intersect just one component
of E(k) and do intersect this component transversally.
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We consider the following weighted graph, the resolution graph of f .
(i) To each component of E(k) a point • is associated.
(ii) To each component of f (k) a point ∗ is associated.
(iii) Two points are connected by an edge if the corresponding components intersect.

(iv) The points of type(i) are weighted. Let E be a component of E(k).We give to the
corresponding point the weight i if E is created in the i− th level of the blowing ups that
is i is minimal such that πi+1 ◦ ... ◦ πn(E) is not a point.

2.4. De�nition. Let n, m be positive integers then by the Euclidean algorithm, we can
expand n

m
in a continued fraction in nonnegative integers ci,

(2.1)
n

m
= c1 +

1

c2 +
1

c3 +
1

. . .+
1

cn

We denote it by n
m

= [c1, c2, . . . , cn].

3. Classi�cation of Resolution Graphs of Weighted Homogeneous

plane Curve Singularities

The type of nondegenerate quasihomogeneous polynomials in two variables according
to V.I. Arnold, S. M. Gusein-Zade and A. N. Varchenko [1] is given in the following table.

Table 1

Type Quasihomogeneous polynomial Weighted Vector

I xa + yb a, b ∈ Z>0 (b, a, ab)

II xay + yb a ∈ Z>0, b ∈ Z>1 (b− 1, a, ab)

III xay + ybx a, b ∈ Z>1 (b− 1, a− 1, ab− 1)

3.1. Proposition. Any weighted homogeneous polynomial f ∈ C[x, y] de�ning an iso-

lated singularity is of the type f = f0+h, where f0 is one of the form given in the table.1
and h consist on terms having the same degree as f0.

Proof. See [1]. �

3.2. Remark. The resolution of weighted homogeneous polynomial f de�ning an iso-
lated singularity does not depend on h and depends only on weights and degree (see
Theorem-3.5 in [6]).

3.3. De�nition. (V (f), 0) ⊆ (C2, 0) is called a quasihomogeneous plane curve singular-
ity, if there exist an automorphism

φ : C[[x, y]]→ C[[x, y]]

such that φ(f) is a weighted homogeneous plane curve singularity.

The following proposition gives us a combinatorial formula to compute the order and
size of the resolution graph of a weighted homogeneous plane curve singularity.
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3.4. Proposition. Let Gf denote the resolution graph of a plane curve singularity

(V (f), 0), where f is weighted homogeneous polynomial de�ning an isolated singularity is

of the type f = f0 + h, where f0 is one of the form given in the table.1 and h consist on

terms having the same degree as f0. Then if

i: f is of type-I then the order of Gf is
n∑
i=1

ci+ gcd(a, b), where b
a
= [c1, c2, . . . , cn].

ii: f is of type-II then the order of Gf is
n∑
i=1

ci + gcd(a, b − 1) + 1, where b−1
a

=

[c1, c2, . . . , cn].

iii: f is of type-III then the order of Gf is
n∑
i=1

ci + gcd(a − 1, b − 1) + 2, where

b−1
a−1

= [c1, c2, . . . , cn].

Moreover Gf is always a caterpillar.

Proof. i: If (V (f), 0) be a weighted homogeneous plane curve singularity of type-
I. Then it is noted that number of branches of the plane curve singularity is
gcd(a, b) and resolution graphs Gf and Gf0 are same (see remark 3.2). We
consider a ≤ b. The case for a > b can be treated in a similar way.
We start the resolution of singularity by the following blow up

x→ xy, y → y

(This chart is only considered since the exceptional divisor does not intersect
the curve in the other chart.)
Then we have the strict transformation xa+yb−a = 0 and exceptional divisor E1 :
y = 0. After [ b

a
] = c1 blow ups we have the strict transformation xa+yb−c1a = 0

such that b − c1a < a. Then multiplicity of strict transformation dropped and
is equal to b− c1a and exceptional divisor Ec1 : y = 0. Then make the blow up

x→ x, y → xy

we get the strict transformation xa−(b−c1a) + yb−c1a = 0 and exceptional divi-
sor Ec1+1 : x = 0. After [a

c
] = c2 blow ups we have the strict transformation

xa−c2(b−c1a) + yb−c1a = 0 such that a − c2(b − c1a) < b − c1a. Then multiplic-
ity of strict transformation dropped and becomes equal to a − c2(b − c1a) and
exceptional divisor Ec1+c2 : y = 0. Continue in this way, after c1 + c2 + · · ·+ cn
blow ups we get the standard resolution. So the number of vertices of Gf is
n∑
i=1

ci + gcd(a, b) and if we construct the dual graph of this resolution as de-

scribed in section-2 then we �nd Gf is a caterpillar.
ii and iii can be proved similarly to i. �

3.5. Remark. In the above proposition
n∑
i=1

ci is the number of dot vertices which rep-

resents the number of blow-ups required to make the standard resolution and gcd(a, b) is
the number of star vertices of the resolution graph which denote the number of branches
of weighted homogeneous plane curve singularity of type-I.

3.6. Remark. If n
m

= [c1, c2, . . . , cn] then in the following proposition, the integers ei,

at and bs denote the sum
i∑

k=1

ck, the weight of the vertex vt and the weight of the vertex

vs respectively.

In the following proposition we describe a combinatorial construction to compute the
resolution graph of a weighted homogeneous plane curve singularity of type-I.
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3.7. Proposition. Let (V (f), 0) be a weighted homogeneous plane curve singularity of

type-I then its resolution grpah Gf can be obtained by using the following construction.

Proof. Since (V (f), 0) be a weighted homogeneous plane curve singularity of type-I, then
from Proposition-3.4 we have the set of vertices

V = {vi : 1 ≤ i ≤
n∑
i=1

ci + gcd(a, b)},

where b
a
= [c1, c2, . . . , cn]. Then we can de�ne the integers such that e1 < e2 < · · · < en,

where ei =
i∑

k=1

ck and a partion on the set of vertices V such that V = V
(1)
• ∪ V (2)

• ∪

V
(3)
• ∪ V∗, where

V (1)
• = {vi : 1 ≤ i ≤ e1},

V (2)
• = {vi : e1 + 1 ≤ i ≤ e1 + l},

V (3)
• = {vi : e1 + l + 1 ≤ i ≤ en},

where

l =


n−2
2∑
j=1

(e2j+1 − e2j), if n is even;

n−1
2∑
j=1

(e2j+1 − e2j), if n is odd;

V∗ = {v∗i : 1 ≤ i ≤ gcd(a, b)}.
Now de�ne

A := {e2 + 1, . . . , e3, e4 + 1, . . . , e5, . . . , e2[n−1
2

]
+ 1, . . . , e

2[n−1
2

]+1
} = {ae1+1, . . . , ae1+l}

and

B := {e1+1, . . . , e2, e3+1, . . . , e4, . . . , e2[n−1
2

]+1
+1, . . . , e2[n

2
]} = {ben , ben−1, . . . , be1+l+1}.

Note that |V (2)
• | = |A| and |V (3)

• | = |B|.
Let

s =

{
1, if n is even;
0, if n is odd;

and q = e1 + l + 1 + s then we obtain the following resolution graph

21 e1 ae +11 a - 2q        
en bq be

n

e  +1n

e  +2n

e  +gcd(a,b)n

* *
*

�
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3.8. Example. Consider (V (f), 0) be a weighted homogeneous plane curve singularity
with weights (230, 1055).
Then V = {v1, v2, . . . , v13, v∗1 , v∗2 , v∗3 , v∗4 , v∗5} (see Proposition-3.4). Now by using the
Proposition-3.7 we can construct the following data:
Step− 1 : Construct

e1 = 4, e2 = 5, e3 = 6, e4 = 8, e5 = 10, e6 = 11, e7 = 13.

Step− 2 : Since n = 7 which is odd therefore V = V
(1)
• ∪ V (2)

• ∪ V (3)
• ∪ V∗, where

V (1)
• = {v1, v2, v3, v4},

V (2)
• = {v5, v6, v7, v8, v9},

V (3)
• = {v10, v11, v12, v13},

and

V∗ = {v∗1 , v∗2 , v∗3 , v∗4 , v∗5}.
Step− 3 :

A = {6, 9, 10, 12, 13} = {a5, a6, a7, a8, a9}
and

B = {5, 7, 8, 11} = {b13, b12, b11, b10}.
Step− 4 : Attach all ∗ vertices with v9 then we get the resolution graph as given in
Figure 1.

1 32 4 6 79 10 12 13 11 8 5

14

15
16 17

18

* ****

Figure 1. Resolution graph of a weighted homogeneous plane curve
singularity with weights (230, 1055).

In the following two propositions we describe a combinatorial construction to compute
the resolution graph of weighted homogeneous plane curve singularities of type II and
III.

3.9. Proposition. Let (V (f), 0) be a weighted homogeneous plane curve singularity of

type-II then its resolution graph Gf is one of the graphs given in Table 2.

Proof. Since (V (f), 0) be a weighted homogeneous plane curve singularity of type-II,
then we have

V = {vi : 1 ≤ i ≤
n∑
i=1

ci + (gcd(a, b− 1) + 1)},

Make a partition of V such that V = V
′
∪ V (1)

∗ , where

V
′
= {vi : 1 ≤ i ≤

n∑
i=1

ci + gcd(a, b− 1)}

and

V (1)
∗ = {v∗i : i = gcd(a, b− 1) + 1}.

For V
′
follow the construction as explained in Proposition-3.7. Assign the weight

en + gcd(a, b− 1) + 1 to the ∗ vertex v∗i for i = gcd(a, b− 1) + 1. If a ≤ b− 1 then attach
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Table 2

Type Condition Resolution Graph

II a ≤ b− 1
21 e1 ae +11 a - 2q        

en bq be
n

e  +1n

e  +2n

e  +gcd(a,b)n

* *
**

e  + gcd(a,b)+1n

II a > b− 1
21 e1 ae +11 a - 2q        

en bq be
n

e  +1n

e  +2n

e  +gcd(a,b)n

* *
* *

e  + gcd(a,b)+1n

v∗i with the • vertex of weight 1. If a > b − 1 then attach v∗i with the vertex of V
′(3)
•

with smallest weight. �

3.10. Proposition. Let (V (f), 0) be a weighted homogeneous plane curve singularity of

type-III then its resolution grpah Gf is the following:

21 e1 ae +11 a - 2q        
en bq be

n

e  +1n

e  +2n

e  +gcd(a,b)n

* *
* *

e  + gcd(a,b)+2n

*
e  + gcd(a,b)+1n

Figure 2. Resolution graph of (V (f), 0)

Proof. Since (V (f), 0) be a weighted homogeneous plane curve singularity of type-III,
then we have

V = {vi : 1 ≤ i ≤
n∑
i=1

ci + (gcd(a− 1, b− 1) + 2)},

Make a partition of V such that V = V
′
∪ V (1)

∗ , where

V
′
= {vi : 1 ≤ i ≤

n∑
i=1

ci + gcd(a− 1, b− 1)}

and
V (1)
∗ = {v∗i : i = gcd(a− 1, b− 1) + 1, gcd(a− 1, b− 1) + 2},

For V
′
follow the construction as explained in Proposition-3.7. Assign the weights

en+gcd(a−1, b−1)+1, en+gcd(a−1, b−1)+2, to the ∗ vertices v∗i for i = gcd(a−1, b−1)+1
and i = gcd(a− 1, b− 1)+ 2 respectively. Attach v∗i for i = gcd(a− 1, b− 1)+ 1 with the

• vertex of weight 1 and attach v∗i for i = gcd(a− 1, b− 1) + 2 with the • vertex of V
′(3)
•

with smallest weight. �
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