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Abstract
In this paper, we consider hyperbolic-type equaiwiith initial and Dirichlet boundary
conditions in a bounded domain. Under some suitaBkimptions on the initial data

and source term, we obtain nonexistence of globlatkisns for arbitrary initial energy.
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Hiperbolik tipten bir denklemin ¢dézimlerinin matetikael
davrangi

Ozet
Bu makalede sinirli bir bolgede hiperbolik tipteaslangic ve Dirichlet sinir kaullu
problem ele alinmtir. Baslangic ve kaynak terim tzerine birakilan bazi uygosullar

altinda ¢ozumlerin global yok$u keyfi balangic enerjisi icin cakiimistir.
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1. Introduction

Let Q be a bounded domain with smooth bound#lyin R". We study the following
hyperbolic equation

Upe + A%u — Au+ up = |ul? 1y, (x,t) € 2 x(0,T),
u(x,0) =uyg(x), u(x,0)=1u;x), X €N (1)

u(x,t) = %u(x, t) =0, x € 0N

whereq > 1 is real numbersj is the outer normal.
When without fourth order ter@?u, the equation (1) reduces to the following form
Upe — Au + up = |ul9 1w (2)

Many authors has been extensively studied existendeblow up result (see[1-5]). The
first serious study on the equation (2) was madd.éyine [2,3]. He introduced the
concavity method and studied that nonexistencdadfad solutions with negative initial
energy. Later, Georgiev and Todorova [1] extendedine's result. In 1999, Vitillaro
[5] improved the result of Georgiev and Todorovagositive initial energy.

Without the-Au term, the equation (1) can be written in the folleg form

Upe + Au? + u, = |ul9 1. (3)

Messaoudi [6] studied the local existence and blpwof the solution to the equation
(3). Wu and Tsai [7] obtained global existence &@hmlv up of the solution of the
problem (3). Later, Chen and Zhou [8] studied blaguvof the solution of the problem
(3) for positive initial energy.

In this paper, we prove the nonexistence of glaodutions for the problem (1). There
are several books (e.g. [9-11]) with very detaibatl extensive study on blow up
theory.

This paper is organized as follows. In Section € present some lemmas and notations
needed later of this paper. In Section 3 and 4exigtence of the solution is discussed.

2. Preliminaries

In this section, we will give some lemmas and alaxistence theorem. Lt|| and
Il.1l, denote the usudP (2) norm andLP (22) norm, respectively. Alsdyy™* (2) =
HJ*(2) is a Hilbert spaces (see [12, 13], for details)

Lemma 1 (Sobolev-Poincare inequality) [12]. Letbe a number wit@ < p < oo (n =
1, 2)or2<p< % (n = 3), then there is a constafit = C, (2, p) such that
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lull, < C.IIVul| for u € Hg(2).

We define the energy function as follows

_1 2,1 2 2 1 q+1
E@) = 3 lluell® + 5 Avull® + 11Aull®) — — llullgys- (4)
Lemma 2.E(t) is a nonincreasing function for= 0 and
E'(t) = —|lucll* < 0. (5)

Proof. Multiplying the equation of (1) by, and integrating ove® using integrating
by parts, we get

E(t) — E(0) = — [/ llu,ll* dr fort > 0. (6)

Next, we state the local existence theorem of gmb(1), whose proof can be found in
[14].

Teorem 3 (Local existence). Suppose thaty, 1,) € H5(Q) x L?>(22) holds, then there
exists a unique solutiam of (1) satisfying

u € C([0,T); HZ (), u, € C([0,7); L2(Q))NLP*(Q x (0, T)).
Moreover, at least one of the following statemératisis:

() T = oo,

(i) Jluell? + ||Aul|> > o ast - T~.

3. Nonexistence of solutions with arbitrary initialenergy

In this section, we prove nonexistence of the smutor the problem (1) with negative
and nonnegative initial energy.

Lemma 4 [15]. Let us have > 0 and letB(t) € C?(0,%) be a nonnegative function
satisfying

B"(t) —4(+1)B'(t) +4(6 + 1)B(t) = 0. )
If
B'(0) > r,B(0) + K,, 8)

withr, =2(6 +1) —2{/(6 + 1)8, thenB'(t) > K, fort > 0, where K, is a constant.
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Lemma 5 [15]. If H(t) is a nonincreasing function oft,, o] and satisfies the
differential inequality

1
[H'()]? = a + b[H(t)]**5, for t > t,, (9)
wherea > 0,b € R, then there exists a finite tinT& such that
limt_,T*— H(t) = 0.

Upper bounds fof* are estimated as follows:

(i) If b < 0 andH(t,) < min{1, /—%} then

a
T <ty+ ! 1 b
=1 n .
v—>b a
— %~ H(to)
@) If b =0, then
H(to)
T " <ty +——.
0 H'(ty)

(iii) If b > 0, then

36+1 Sc

1
T* s@orT* Stg+2 2 £|1-(1+cH(ty) 26]

a

1
245
where ¢ = (%) 8

Definition 6. A solutionu of (1) is called blow up if there exists a fintimme T* such
that

lim, 7+ [fQ u?dx + fot Jo @ dxdr] = o0, (10)
Let
a(t) = [, u?dx + fot Jo, w?dxdz, fort > 0. (11)

Lemma 7.Assumeq;—1 > § > 0, then we have

a"(t) = 46 + 1) [, uf dx — 4(26 + DE(0) +4(26 + 1) [, llu,lI? dz. (12)
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Proof. By differentiating (11) with respect to we have

a'(t) =2 [, uugdx + Jull?, (13)
a'(t) = 2f u?dx+2] uuttdx+2f uu, dx
Q Q Q
1
= 2(lluell® + ullgi) = 20Vull® + laul®). a1

Then from (1) and (14) we have

" (£) = 46 + 1) j U2 dx — 4(26 + 1)E(0)
Q
4(26+1)
Fa8 (Il + 18ull?) + (2 = 2222 [l 3]
+4(26 + 1) [ llucll3 de.

Since™= > § > 0, we obtain (12) .

Lemma 8.Assumeq4;1 > § = 0 and one of the following statements are satisfied
(i) E(0) < 0and [, uu; dx >0,

(i) E(0) = 0 andf, uou; dx >0,

(i) E(0) > 0 and

@'(0) > 75 |a(0) + 755 | + o ? (15)
holds.

Thena'(t) > |luyl|? for t > t*, wheret, = t* is given by (16) in case (i) and
to = 0 in cases (ii) and (iii), wherg; andt* are defined in (20) and (16), respectively.

Proof. (i) If E(0) < 0, then from (12), we have
a'(t) = 2 [, uguydx + [lugll* — 4(28 + 1E(0)t, t = 0.
Thus we gett'(t) > |lu,l|? for t > t*, where

* _ a’' (0)=lluoll*
Lt =max {4(28+1)E(0) ’ 0}' (16)

(i) If E(0) = 0 andf, uou, dx > 0, thena”(t) = 0 fort > 0.
We havea’(t) > [|u,ll?, t = 0.
(iii) If E(0) > 0, we first note that

2 [0 [, uu, dxde = |[ull® = [lu, 1% (17)
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From Hoélder's and Young's inequalities, we get

ull? < lluoll? + f; llull?dz + [} lluclIdz. (18)
By Holder's and Young's inequalities, and (18),gs¢€

a'(t) < a() + lluoll? + [, u? dx + [ llu1? dr. (19)

Hence, by (12) and (19), we have

a'"(t) -4+ Da'(t) +4(6 + Da(t) + K, = 0.

where

Ky =426 + DE(0) +4(5 + 1) [, ud dx — 46 [} llu.||? dr. (20)

Let

Ky

20+’ t>0.

b(t) = a(t) +

Thenb(t) satisfies Lemma 4. Consequently, we get from (&5)t) > |lu,l|?, t > 0,
where g is given in Lemma 4.

Teorem 9.Assumeq;—1 > § = 0 and one of the following statements are satisfied
(i) E(0) <0andf, uou, dx >0,
(i) E(0) =0andf, ugu;dx >0,

(a' (to)-Iluoll?)’
a(to)+(T1—to)lluell?

(i) 0 < E(0) < - and (15) holds.

Then the solutiom blow up in finite timel'* in the case of (10). In case (i),

* _ H(fo)
T* < to— ey (21)

Furthermore, ifH(t,) < min {1, /—%} we have

a

1 b
T" <ty+—=In——f) (22)
PV —5—H(to)

where
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2 1

a = 82H5(to) | (@' (t0) = lluo1)? = BEO)H3(to)] > 0, (23)
b = 852E(0). (24)
In case (ii),

* H(fo)
T S tO - H’(to). (25)
In case (iii),

1 1 _i

. _ HE) o 38+ 1\ 245 5 a\%*5 2

T* ST O <ty +2°% (%) ﬁ{1—[1+(;) Hty)| (26)

wherea, b andH (t) are defined in (23), (24) and (27), respectively.

Proof. Set

H(t) = [a(t) + (T, — t)|lugll?179, for t € [0, T], (27)
whereT; > 0 is a certain constant which will be specified lalehen we get

H'(6) = =8[a() + (T3 = O lluol*] 0~ a'(©) = luoll*]
= —SH™3(0)[a'(©) — lluolI2], (28)

H'(8) = —SH™5(Da" (®)a(®) + (T; — Olluoll?]

FSHMS(O (A + &)a'(©) - Il (29)
and
H'(t) = —SHY“ 5OV (D), (30)
where
V() = a" ©a®) + (T) = Dlluoll?] = (1 + )@’ (© — lluol212. (31)

For simplicity of calculation, we define

Puzfuzdx, Ruzfufdx,
) Q

t t
Qu = f lull?dz, S, = f s 2.
0 0
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By (13), (17) and Holder’s inequality, we have

a'(t) = Zf uu, dx + |[upll? + fo uudxdt

< (JR P +/QuSy) + ||u0||2 (32)
If case (i) or (ii) holds, by (12) we have
a'(t) = (=4 —-86)E0)+ 41+ &R, + Sy). (33)

Thus, from (31)-(33) and (27), we obtain

V(t) > [(—4—88)E(0) +4(1 + 6)(Ry, + Su)]H_zlS(t) —4(1 4 8)(JRuP. + ,/Qusu)z.
From (11),

t
a(t)=]u2dx+jfu2dxds
00

Q
=P, + Qy

and (27), we get

V(E) = (=4 — 88)E(0)H3(t)
+4(1 4+ &) [(Ry + STy — DlluglI* + 6(D)],

where

B(t) = (Ry + S)(By + Q) — (VRuPs + /0uSe)’

By the Schwarz inequality, ami{t) being nonnegative, we have

V(t) = (—4 — 88)E(O)H3(1), t= to (34)

Therefore, by (30) and (34), we get

H'(t) < 45(1 + 28)E(0)HY5(0), t = t,. (35)

By Lemma 8, we know thatl’'(t) < 0 for t > t,. Multiplying (35) by H'(t) and
integrating it fromt, to t, we get
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[H' (D] = a + bHX'5(0)

for t > t,, wherea, b are defined in (23) and (24) respectively.
If case (iii) holds, similar to the steps of cagewe geta > 0 if and only if

(a'(to) — lluoll*)?

Q) < latty) + (T, — O luglPT

Then by Lemma 5, there exists a finite tilffesuch thalim,_,-- H(t) = 0 and upper
bound ofT* is estimated according to the sign&g0). This means that (10) holds.

4. Nonexistence of solutions with negative initi@nergy
In this section, we prove global nonexistence wilgative initial energy.
Lemma 10.Suppose thap(t) is a twice continuously differentiable functiortistying

{w”(t) +'(t) = Coyp**(t), t>0, C, >0, a>0,

Y(0) >0, P'(0) =0 (36)

whereC, > 0, > 0 are constants. Thet(t) blows up in finite time.
Proof. See [16].

Teorem 11.In addition to the conditions of Theorem 3, if

E(0) <0andf, upu;dx =0

then the corresponding solution blows up in firitee.

Proof. Multiplying Eq. (1) byu;, and integration by parts, we have
L3 el 4 5 Nl 4+ S 19l? = == ll ] = —leli3

So the corresponding energy to problem (1) is eeffis

1 1 -
E(®) = 5 el + 5 Qo + 19ll?) = — Il

and one can find thadt(t) < E(0) easily from

t t
fE'(t) - —fIIuTIIdT <o,
0 0
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Let

P(e) =2, llull? dx, 73

whereu is a solution construct in theorem of Local exisee One can see that the
derivative of y(t) with respect to time

P'(t) = [, uu,dx (38)

is well defined and Lipschitz continuous. Moreowate can get by (37) and (38)

Y (t) =fu§ dx+j|u|q_1u2 dx—quzudx
Q Q Q
+ [, vAudx — [ uu,dx

+1
= lluell® + llullgyy — NAull3 — [IVullf — f, wu,dx
q Q

1 ’
= [lull* + IIuIIZL — lAull3 — IVull3 —¢'(t)
and here we can write,
" I 1
Y)Y = lludl®* + IIuIIZL — |[Aull3 — [[Vull3.

If we substituting and addir2f (t) to the right side of the equation, we get

17 / -1
P+’ (@) = 2llull* = 2E() + % llulldis
Due to the

lusll? = 0 andE(t) <0

conditions, we can write

1 ! -1
YO+’ (0) 2 T lullf (39)
Let's make an estimate for the term Ibillgﬁ in this expression. By Hdlder's
inequality,

2 q+1
q+1 2

flul2 dx < flulq+1 dx fdx )
0

Q Q
q+1

Rl
halig3} = (1, i dx) * lol=. (40)
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If the expression (40) is written at (39), thus

q+1

2

WO + () > —|n|1_ f ul? dx

PO + 9" (1) = Cop (D).

Then by Lemma 10 witB(0) < 0 and [, uou; dx =0

we see thaty(t) blows up in finite time.
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