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Abstract 
 
In this paper, we consider hyperbolic-type equations with initial and Dirichlet boundary 
conditions in a bounded domain. Under some suitable assumptions on the initial data 
and source term, we obtain nonexistence of global solutions for arbitrary initial energy. 
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Hiperbolik tipten bir denklemin çözümlerinin matematiksel 
davranışı 

 
 
Özet 
 
Bu makalede sınırlı bir bölgede hiperbolik tipten başlangıç ve Dirichlet sınır koşullu 
problem ele alınmıştır. Başlangıç ve kaynak terim üzerine bırakılan bazı uygun koşullar 
altında çözümlerin global yokluğu keyfi başlangıç enerjisi için çalışılmıştır. 
 
Anahtar kelimeler: Hiperbolik denklem, yokluk, damping terim. 
 
 
 
 
 
 

                                                           
*
 Erhan PİŞKİN, episkin@dicle.edu.tr, https://orcid.org/0000-0001-6587-4479 

  Hazal YÜKSEKKAYA, hazally.kaya@gmail.com, https://orcid.org/0000-0002-1863-2909 



PİŞKİN E., YÜKSEKKAYA H. 

118 

1. Introduction 
 
Let Ω be a bounded domain with smooth boundary ∂Ω in �ⁿ. We study the following 
hyperbolic equation 
 ���� + ∆�� − ∆� + �� = |�|����,									��, �	 ∈ 
 × �0, �	,���, 0	 = ����	,						����, 0	 = ����	,													� ∈ 
											���, �	 = ��� ���, �	 = 0,																																				� ∈ �
									 
                                        (1) 

 
where � ≥ 1 is real numbers, � is the outer normal. 
  
When without fourth order term ∆��, the equation (1) reduces to the following form 
 ��� − ∆� + �� = |�|����.		                             (2) 
 
Many authors has been extensively studied existence and blow up result (see[1-5]). The 
first serious study on the equation (2) was made by Levine [2,3]. He introduced the 
concavity method and studied that nonexistence of global solutions with negative initial 
energy. Later, Georgiev and Todorova [1] extended Levine's result. In 1999, Vitillaro 
[5] improved the result of Georgiev and Todorova for positive initial energy. 
    Without the −∆� term, the equation (1) can be written in the following form 
 ��� + ∆�� + �� = |�|����.		               (3) 
 
Messaoudi [6] studied the local existence and blow up of the solution to the equation 
(3). Wu and Tsai [7] obtained global existence and blow up of the solution of the 
problem (3). Later, Chen and Zhou [8] studied blow up of the solution of the problem 
(3) for positive initial energy. 
 
In this paper, we prove the nonexistence of global solutions for the problem (1). There 
are several books (e.g. [9-11]) with very detailed and extensive study on blow up 
theory. 
 
This paper is organized as follows. In Section 2, we present some lemmas and notations 
needed later of this paper. In Section 3 and 4, nonexistence of the solution is discussed. 
 
 
2. Preliminaries 
 
In this section, we will give some lemmas and a local existence theorem. Let ‖. ‖ and ‖. ‖	 denote the usual ��	�
	 norm and �		�
	 norm, respectively. Also, ���,�	�
	 =����
	 is a Hilbert spaces (see [12, 13], for details) 
 
Lemma 1 (Sobolev-Poincare inequality) [12]. Let � be a number with 2 ≤ � < ∞	(� =
1, 2) or 2 ≤ � ≤ ����� 	�� ≥ 3	, then there is a constant �∗ = �∗�
, �		such that 
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 ‖�‖	 ≤ �∗‖∇�‖ for � ∈ ����
	. 
 
We define the energy function as follows  
 ���	 = �� ‖��‖� + �� �‖∇�‖� + ‖∆�‖�	 − ��
� ‖�‖�
��
�.                                                   (4) 

 
Lemma 2. ���	 is a nonincreasing function for � ≥ 0 and 
 ����	 = −‖��‖� ≤ 0.                      (5) 
 
Proof.   Multiplying the equation of (1) by �� and integrating over Ω using integrating 
by parts, we get 
 ���	 − ��0	 = −� ‖��‖��� ��  for � ≥ 0.                                      (6) 

 
Next, we state the local existence theorem of problem (1), whose proof can be found in 
[14]. 
 
Teorem 3 (Local existence). Suppose that ���,��	 ∈ ����Ω	 × ���
	 holds, then there 
exists a unique solution � of (1) satisfying 
 � ∈ ���0,�	;����Ω	�,              �� ∈ ���0,�	; ���Ω	�⋂�	
��Ω × �0,�	�. 
 
Moreover, at least one of the following statements holds: 
 
(i) � = ∞, 
(ii) ‖��‖� + ‖∆�‖� → ∞ as � → ��. 
 
 
3. Nonexistence of solutions with arbitrary initial energy 
 
In this section, we prove nonexistence of the solution for the problem (1) with negative 
and nonnegative initial energy. 
 
Lemma 4 [15]. Let us have � > 0 and let ���	 ∈ ���0, ∞	 be a nonnegative function 
satisfying 
 �����	 − 4�� + 1	����	 + 4�� + 1	���	 ≥ 0.            (7) 
 
If 
 ���0	 >  ���0	 + !�,                          (8) 
 

with  � = 2�� + 1	 − 2"�� + 1	�,  then ����	 > !� for � > 0, where  !� is a constant. 
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Lemma 5 [15]. If ���	 is a nonincreasing function on �
��, ∞#
 and satisfies the 
differential inequality 
 ��′(�)#� ≥ $ + %����	#�
�

�, for  � ≥ ��,              (9) 
 

where $ > 0, % ∈ �, then there exists a finite time �∗ such that 
 
lim�→�∗� ���	 = 0. 
 
Upper bounds for �∗ are estimated as follows: 
 

(i) If % < 0 and ����	 < &'� (1,)− ��* then �∗ ≤ �� + 1√−% ln
)− $%)−$% − ����	. 

 
(ii) If % = 0, then 
 �∗ ≤ �� + ����	�����	. 
 
(iii) If % > 0, then 
 �∗ ≤ �����√�  or �∗ ≤ �� + 2����

�� ��√� ,1 − �1 + -����	�� �
��. 

where  - = /��0�
�
�. 

 
Definition 6. A solution � of (1) is called blow up if there exists a finite time �∗ such 
that 
 

lim�→�∗� 1� ��Ω �� + � � ��Ω
�� ����2 = ∞.                                (10) 

 
Let 
 $��	 = � ��Ω �� + � � ��Ω

�� ����, for � ≥ 0.                     (11) 

 

Lemma 7. Assume 
���� ≥ � ≥ 0, then we have 

 $����	 ≥ 4�� + 1	 � ���Ω �� − 4�2� + 1	��0	 + 4�2� + 1	 � ‖��‖��� ��.                 (12) 
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Proof. By differentiating (11) with respect to �, we have 
 $���	 = 2� ��� �� + ‖�‖�Ω ,                                                                                       (13) 

 $����	 = 23 ��� �� +
Ω

23 �
Ω

��� �� + 2 3 �
Ω

�� �� 

           = 2�‖��‖� + ‖�‖�
��
�� − 2�‖∇�‖� + ‖∆�‖�	.                                                 (14) 

 
Then from (1) and (14) we have 
 $����	 = 4�� + 1	3 ���

Ω
�� − 4�2� + 1	��0	 

               +4��‖∇�‖� + ‖∆�‖�	 + /2 − ����
���
� 0 ‖�‖�
��
� 
               +4�2� + 1	 � ‖��‖���� ��. 
 

Since 
���� ≥ � ≥ 0, we obtain (12) . 

 

Lemma 8. Assume  
���� ≥ � ≥ 0 and one of the following statements are satisfied 

(i)	��0	 < 0 and  � ���� �� > 0,Ω  

(ii) ��0	 = 0 and � ���� �� > 0,Ω  

(iii) ��0	 > 0 and $��0	 >  � 1$�0	 + �����
��2 + ‖��‖�                                                                            (15) 

holds. 
 
Then $���	 > ‖��‖� for � > �∗, where �� = �∗ is given by (16) in case (i) and  �� = 0 in cases (ii) and (iii), where !� and �∗ are defined in (20) and (16), respectively. 
 
Proof.  (i) If ��0	 < 0, then from (12), we have 
 $���	 ≥ 2� ���� �� + ‖��‖�Ω − 4�2� + 1	��0	�, � ≥ 0. 

 
Thus we get $���	 > ‖��‖� for  � > �∗, where 
 �∗ = &$� 4������‖��‖�����
������ , 05.                                                                                            (16) 

 

(ii) If ��0	 = 0 and � ���� �� > 0,Ω 	then $����	 ≥ 0 for � ≥ 0.  
We have $���	 > ‖��‖�, � ≥ 0. 
(iii) If ��0	 > 0, we first note that 
 

2� � ���Ω
�� ���� = ‖�‖� − ‖��‖�.                                                                             (17) 
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From Hölder's and Young's inequalities, we get 
 ‖�‖� ≤ ‖��‖� + � ‖�‖��� + � ‖��‖���.����                                                                   (18)  

 
By Hölder's and Young's inequalities, and (18), we get 
 $���	 ≤ $��	 + ‖��‖� + � ���Ω �� + � ‖��‖��� ��.                                                       (19) 

 
Hence, by (12) and (19), we have 
 $����	 − 4�� + 1	$���	 + 4�� + 1	$��	 + !� ≥ 0. 
 
where 
 !� = 4�2� + 1	��0	 + 4�� + 1	 � ���Ω �� − 4� � ‖��‖��� ��.                    (20) 

 
Let 
 %��	 = $��	 + �����
�� , � > 0.   

 
Then %��	 satisfies Lemma 4. Consequently, we get from (15)  $���	 > ‖��‖�, � > 0, 
where r₂ is given in Lemma 4. 
 

Teorem 9. Assume	���� ≥ � ≥ 0 and one of the following statements are satisfied 

(i) ��0	 < 0 and � ���� �� > 0,Ω  

(ii) ��0	 = 0 and � ���� �� > 0,Ω  

(iii) 0 < ��0	 < ��������‖��‖��� !�����
�������‖��‖�"  and (15) holds.  

 
Then the solution � blow up in finite time �∗  in the case of (10). In case (i), 
 �∗ ≤ �� − �����������.                                                                                                            (21) 

 

Furthermore, if  ����	 < &'� (1,)− ��*  we have 	�∗ 	≤ �� + �√�� ln #�	

#�	


������,                                                                                         (22) 

 
where  
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$ = ����
�
����	 1�$����	 − ‖��‖�	� − 8��0	���

����	2 > 0,                                     (23) % = 8����0	.                                                                                                                (24) 
 
In case (ii), 
 �∗ ≤ �� − �����������.                                                                                                            (25) 

 
In case (iii), 
 �∗ ≤ �����√�  or �∗ ≤ �� + 2����

�� /��0�
�
� �√� 61 − 71 + /��0�
�

� ����	8� �
��9.                     (26) 

 
where $, % and ���	 are defined in (23), (24) and (27),  respectively. 
 
Proof.  Set 
 ���	 = �$��	 + ��� − �	‖��‖�#�� , for � ∈ �0,��#,                                                      (27) 
 
where �� > 0 is a certain constant which will be specified later. Then we get 
 ����	 = −��$��	 + ��� − �	‖��‖�#�����$���	 − ‖��‖�# 
          = −���
�

���	�$���	 − ‖��‖�#,                                                                           (28) 
 �����	 = −���
����	$����	�$��	 + ��� − �	‖��‖�# 
                +���
�

���	�1 + �	�$���	 − ‖��‖�#�                                                            (29) 
 
and 
 �����	 = −���
�

���	:��	,             (30) 
 
where 
 :��	 = $����	�$��	 + ��� − �	‖��‖�# − �1 + �	�$���	 − ‖��‖�#�.                            (31) 
 
For simplicity of calculation, we define ;� = 3 ��

Ω
�� ,			�� = 3 ���

Ω
��, 

 <� = 3‖�‖���,			=� = 3‖��‖���.
�
�

�
�  
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By (13), (17) and Hölder’s inequality, we have 
 $���	 = 2 3 ���

Ω
�� + ‖��‖� + 233 �������

Ω

�
�  

         ≤ �"��;� + "<�=�� + ‖��‖�.                                                                           (32) 
 
If case (i) or (ii) holds, by (12) we have 
 $����	 ≥ �−4 − 8�	��0	 + 4�1 + �	��� + =�	.                                                         (33) 
 
Thus, from (31)-(33) and (27), we obtain 
 

���� ≥ ��−4 − 8����0� + 4�1 + ����� + 	��
���
����− 4�1 + ���
���� +
��	���.  

 
From (11), 
 $��	 = 3 ��

Ω
�� + 33 ��

Ω

�
� �� �> 

        = ;� + <� 
 
and (27), we get 
 :��	 ≥ �−4 − 8�	��0	������	 
            +4�1 + �	���� + =�	��� − �	‖��‖� + ?��	#, 
 
where 
 ?��	 = ��� + =�	�;� + <�	 − �"��;� + "<�=��� 
 
By the Schwarz inequality, and ?��	 being nonnegative, we have 
 :��	 ≥ �−4 − 8�	��0	���

���	,				� ≥ ��.                                                                     (34)
  
 
Therefore, by (30) and (34), we get 
 �����	 ≤ 4��1 + 2�	��0	��
�

���	, � ≥ ��.                                                                (35) 
 
By Lemma 8, we know that �′��	 < 0 for � ≥ ��. Multiplying (35) by �′��	 and 
integrating it from �� to �, we get 
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 ��′��	#� ≥ $ + %��
�
���	 

 
for � ≥ ��, where $, % are defined in (23) and (24) respectively. 
If case (iii) holds, similar to the steps of case (i), we get $ > 0 if and only if 
 ��0	 < �$����	 − ‖��‖�	�

8�$���	 + ��� − �	‖��‖�#. 
 
Then by Lemma 5, there exists a finite time �∗ such that lim�→�∗� ���	 = 0 and upper 
bound of �∗ is estimated according to the sign of ��0	. This means that (10) holds. 
 
 
4. Nonexistence of solutions with negative initial energy 
 
In this section, we prove global nonexistence with negative initial energy. 
 
Lemma 10. Suppose that @��	 is a twice continuously differentiable function satisfying 
 (@����	 + @���	 ≥ ��@�
$��	,			� > 0,			�� > 0,			A > 0,@�0	 > 0,			@��0	 ≥ 0																																																											
                                            (36) 

 
where �� > 0,A > 0	 are constants. Then		@��	  blows up in finite time. 
 
Proof.  See [16]. 
 
Teorem 11. In addition to the conditions of Theorem 3, if 
 ��0	 ≤ 0 and � ��Ω �� �� ≥ 0 

 
then the corresponding solution blows up in finite time. 
 
Proof.  Multiplying Eq. (1) by �� , and integration by parts, we have 
 %%� 1�� ‖��‖� + �� ‖∆�‖� + �� ‖∇�‖� − ��
� ‖�‖�
��
�2 = −‖��‖��. 

 
So the corresponding energy to problem (1) is defined as 
 ���	 = 1

2 ‖��‖� + 1
2 �‖∆�‖� + ‖∇�‖�	 − 1� + 1 ‖�‖�
��
� 

 
and one can find that ���	 ≤ ��0	 easily from 
 3�′��	�
� = −3‖��‖�� ≤ 0.

�
�  
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Let 
 @��	 = ��� ‖�‖�Ω ��,                                                                                                    (37) 

 
where � is a solution construct in theorem of Local existence. One can see that the 
derivative of  @��	 with respect to time 
 @���	 = � ���Ω ��                                                                                                       (38) 

 
is well defined and Lipschitz continuous. Moreover, one can get by (37) and (38) 
 @����	 = 3 ���

Ω
�� + 3|�|�����

Ω
�� − 3 �∆�

Ω
� �� 

              +� �∆� �� − � ���ΩΩ �� 

           = ‖��‖� + ‖�‖�
��
� − ‖∆�‖�� − ‖∇�‖�� − � ��� ��Ω  

           = ‖��‖� + ‖�‖�
��
� − ‖∆�‖�� − ‖∇�‖�� − @���	 
 
and here we can write, 
 @����	 + @���	 = ‖��‖� + ‖�‖�
��
� − ‖∆�‖�� − ‖∇�‖��. 
 
If we substituting and adding 2���	 to the right side of the equation, we get 
 @����	 + @���	 = 2‖��‖� − 2���	 + ����
� ‖�‖�
��
�.  

Due to the 
 ‖��‖� ≥ 0 and ���	 ≤ 0 
 
conditions, we can write 
 @����	 + @���	 ≥ ����
� ‖�‖�
��
�.                           (39) 

 

Let's make an estimate for the term of ‖�‖�
��
�  in this expression. By Hölder's 

inequality, 
 3|�|�
Ω

�� ≤ B3|�|�
�
Ω

��C ��
�B3 ��
Ω

C�
��
, ‖�‖�
��
� ≥ /� |�|�Ω ��0���

� |Ω|���� .                                                                                (40) 
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If the expression (40) is written at (39), thus 
 @����	 + @���	 ≥ � − 1� + 1 |Ω|���� B3|�|�

Ω
��C�
��

 

                         = 2���
� ����
� |Ω|���� �@��	#���� , 

 @����	 + @���	 ≥ ��@�
$��	. 
 

Then by Lemma 10 with ��0	 ≤ 0 and  � ��Ω �� �� ≥ 0 

 �� = 2���
� ����
� |Ω|����  and A = ���� , 

 
we see that @��	 blows up in finite time. 
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