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Abstract

The purpose of this work is to study the exponential decay of the energy for the one-dimensional transmission
wave equation with a boundary velocity feedback.
Thanks to the perturbed energy method developed by some authors in several contexts, and under certain
conditions, we prove that the feedback controller exponentially stabilizes the equilibrium to zero of the system
below, i.e. the feedback leads to faster energy decay.
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1. Introduction

In this paper we are concerned with the following system:

utt = a2uxx in (0, L/2)× (0,∞), (1.1)

vtt = b2vxx in (L/2, L)× (0,∞), (1.2)

u(0, t) = 0; b2vx(L, t) = −λvt(L, t); t ≥ 0, (1.3)

u(L/2, t) = v(L/2, t); a2ux(L/2, t) = b2vx(L/2, t); t ≥ 0, (1.4)
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u(x, 0) = u0(x); v(x, 0) = v0(x); ut(x, 0) = u1(x); vt(x, 0) = v1(x), (1.5)

called the transmission problem of the wave equation with a boundary velocity feedback control, where a, b, λ
are positive constants.
The two constants a and b called the wave speeds in (0, L/2), (L/2, L) respectively, λ is the control gain,
and the function φ = −λvt(L, t) represents the feedback control.
Let us point out that in physics, feedback means the return of a portion of the output of a circuit or device
to its input, and a system in which the value of some output quantity is controlled by feeding back the
value of the controlled quantity and using it to manipulate an input quantity so as to bring the value of the
controlled quantity closer to a desired value. Also known as closed-loop control system (see [15]).
In recent years, questions of stabilization and decay of energy of solutions for hyperbolic equations, in
particular, wave models, have been studied by many mathematicians, by using methods different.
In our article we interested to the perturbed energy method who developed in

[
[2], [3], [4], [12], [13], [14]

]
.

There exists several degrees of stability that one can study. The first degree consists at analyze merely the
decreasing of the energy of the solutions towards zero, i.e. :

E(t)→ 0 when t→ +∞.

For the second, one studies intermediate situations in which the solutions decreases of the polynomial type
for example:

E(t) ≤ C

tα
, for t > 0,

Where C And α Are positive constants with C depends on the initial data. In this case, one must take initial
data more regular in the operator’s domain.
As for the third, one is been interested in the decreasing of the fastest energy, namely when this one tends
to 0 in an exponential manner i.e. :

E(t) ≤ Ce−δt for t > 0,

where C and δ are positive constants with C depends on the initial data.
We wish to stabilze the system ((1.1) - (1.5)), we seek a suitable feedback such that for any initial data (of
finite energy E(0) <∞), the energy of the solution of the problem ((1.1) - (1.5)) tends to zero exponentially
as t→ 0 (see [8]).

In this research we show how the feedback controller exponentially stabilizes the system ((1.1) - (1.5)),
under suitable conditions.
The well-posedness of problem ((1.1) - (1.5)) is by now well known in the case where a = b (see [2], [10]),
and can be similarly treated without any difficulty in the case where a 6= b.
We define the energy functional E(t) of the system ((1.1) - (1.5)):(see [16])

E(t) =
1

2

∫ L/2

0

(
|ut(x, t)|2 + a2 |ux(x, t)|2

)
dx+

1

2

∫ L

L/2

(
|vt(x, t)|2 + b2 |vx(x, t)|2

)
dx,

and construct the following perturbed energy functional Eε (see [7])

F (t) = 2

∫ L/2

0
xut(x, t)ux(x, t)dx+ 2

∫ L

L/2
xvt(x, t)vx(x, t)dx, (1.6)

Eε(t) = E(t) + εF (t), (1.7)

where ε is a positive constant, choosing sufficiently small.
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2. Preliminaries

Before proving the below main result theorem, we first establish the following lemmas.

Lemma 2.1.
(
Young’s inequality

)
Let 0 < p, q <∞, 1p + 1

q = 1. Then

ab ≤ ap

p
+
bq

q
(a, b > 0).

The proof of the lemma above is referred to ([6] p 622-625)

Lemma 2.2. The energy E(t) of the system (1.1)-(1.5) is decreasing function for all t ≥ 0.

Proof. We examine the derivative of the energy

dE

dt
=

1

2

∫ L/2

0

∂

∂t

(
u2t (x, t)

)
+ a2

∂

∂t

(
u2x(x, t)

)
dx+

1

2

∫ L

L/2

∂

∂t

(
v2t (x, t)

)
+ b2

∂

∂t

(
v2x(x, t)

)
dx,

using the identities

ututt =
1

2

∂

∂t
(u2t ), and utuxx =

∂

∂x
(uxut)−

1

2

∂

∂t
(u2x),

we get

dE

dt
=

∫ L/2

0
ututt + a2(

∂

∂x
(uxut)− utuxx)dx+

∫ L

L/2
vtvtt + b2(

∂

∂x
(vxvt)− vtvxx)dx

=

∫ L/2

0
ut(utt − a2uxx)dx+

∫ L

L/2
vt(vtt − b2vxx)dx

+ a2
(
ux(L/2, t)ut(L/2, t)− ux(0, t)ut(0, t)

)
+ b2

(
vx(L, t)vt(L, t)− vx(L/2, t)vt(L/2, t)

)
using (1.1)-(1.2) we get

dE

dt
= a2

(
ux(L/2, t)ut(L/2, t)− ux(0, t)ut(0, t)

)
+ b2

(
vx(L, t)vt(L, t)− vx(L/2, t)vt(L/2, t)

)
finally, using (1.3)-(1.4) yields

dE

dt
= −λ |vt(L, t)|2 ≤ 0, (2.1)

and then the energy is decreasing with time, i.e.,

E(t) ≤ E(0) for all t ≥ 0.

Lemma 2.3. The perturbed energy satisfies(
1− 2Lε

min(a, b)

)
E(t) ≤ Eε(t) ≤

(
1 +

2Lε

min(a, b)

)
E(t), (2.2)

where ε is small enough, such that 0 < ε <
min(a, b)

2L
.
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Proof. We have

|F (t)| =

∣∣∣∣∣
∫ L/2

0
2xut(x, t)ux(x, t)dx+

∫ L

L/2
2xvt(x, t)vx(x, t)dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫ L/2

0
2xut(x, t)ux(x, t)dx

∣∣∣∣∣+

∣∣∣∣∣
∫ L

L/2
2xvt(x, t)vx(x, t)dx

∣∣∣∣∣
≤ 1

a

∫ L/2

0
2 |x| |ut(x, t)| |aux(x, t)| dx+

1

b

∫ L

L/2
2 |x| |vt(x, t)| |bvx(x, t)| dx

≤ L

2a

∫ L/2

0
2 |ut(x, t)| |aux(x, t)| dx+

L

b

∫ L

L/2
2 |vt(x, t)| |bvx(x, t)| dx

≤ L

a

∫ L/2

0
2 |ut(x, t)| |aux(x, t)| dx+

L

b

∫ L

L/2
2 |vt(x, t)| |bvx(x, t)| dx

by applying Young’s inequality 2.1, we derive that

|F (t)| ≤ L

a

∫ L/2

0
|ut(x, t)|2 + a2 |ux(x, t)|2 dx+

L

b

∫ L

L/2
|vt(x, t)|2 + b2 |vx(x, t)|2 dx

≤ 2L

min(a, b)

(1

2

∫ L/2

0
|ut(x, t)|2 + a2 |ux(x, t)|2 dx+

1

2

∫ L

L/2
|vt(x, t)|2 + b2 |vx(x, t)|2 dx

)
=

2L

min(a, b)
E(t),

it therefore follows that
Eε(t) ≤ E(t) + ε |F (t)| ≤

(
1 +

2Lε

min(a, b)

)
E(t),

and
Eε(t) ≥ E(t)− ε |F (t)| ≥

(
1− 2Lε

min(a, b)

)
E(t),

finally, we get (
1− 2Lε

min(a, b)

)
E(t) ≤ Eε(t) ≤

(
1 +

2Lε

min(a, b)

)
E(t).

3. Main results

We now in position to announce our result.

Theorem 3.1. Assume that b ≤ a, then there exist constants M,ω > 0 such that the solution of (1.1)-
(1.5)satisfies

E(t) ≤ME(0)e−ωt for t ≥ 0.

Proof. Differentiating (1.6) with respect to t, we obtain

dF

dt
=

∫ L/2

0
2xuttuxdx+

∫ L/2

0
2xutuxtdx+

∫ L

L/2
2xvttvxdx+

∫ L

L/2
2xvtvxtdx.

Moreover, by (1.1) yields ∫ L/2

0
2xuttuxdx =

∫ L/2

0
2xa2uxxuxdx

=

∫ L/2

0
a2x

∂

∂x

(
u2x
)
dx,
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by integrating by parts, we obtain∫ L/2

0
2xuttuxdx = a2

L

2
u2x(L/2, t)− a2

∫ L/2

0
u2xdx,

and ∫ L/2

0
2xutuxtdx =

∫ L/2

0
x
∂

∂x

(
u2t
)
dx

=
L

2
u2t (L/2, t)−

∫ L/2

0
u2tdx.

Similarly, we have ∫ L

L/2
2xvttvxdx = b2Lv2x(L, t)− b2L

2
v2x(L/2, t)− b2

∫ L

L/2
v2xdx,

and ∫ L

L/2
2xvtvxt = Lv2t (L, t)−

L

2
v2t (L/2, t)−

∫ L

L/2
v2t dx,

then
dF

dt
=
L

2

(
a2u2x(L/2, t)− b2v2x(L/2, t)

)
+
L

2

(
u2t (L/2, t)− v2t (L/2, t)

)
+ L

(
b2v2x(L, t) + v2t (L, t)

)
− 2
[1

2

∫ L/2

0

(
a2u2x + u2t

)
dx+

1

2

∫ L

L/2

(
b2v2x + v2t

)
dx
]
.

By (1.4)-(1.3), we infer
dF

dt
= L

(
1 +

λ2

b2

)
v2t (L, t)− 2E(t),

with the fact that
dEε
dt

=
dE

dt
+ ε

dF

dt
, and

dE

dt
= −λ |vt(L, t)|2 ,

we get
dEε(t)

dt
= −λv2t (L, t) + εL

(
1 +

λ2

b2

)
v2t (L, t)− 2εE(t)

= −2εE(t)− λ
[
1− εL(b2 + λ2)

λb2

]
v2t (L, t)

≤ −2εE(t),

for all 0 < ε < min
( b

2L
,

λb2

L(b2 + λ2)

)
.

It then follows from (2.2) with b ≤ a that

dEε(t)

dt
≤ −2ε

(
1 +

2Lε

b

)(
1− 2Lε

b

)
E(t)

≤ −2ε
(

1− 2Lε

b

)
Eε(t),

hence
E′ε(t) + ωEε(t) ≤ 0, where ω = 2ε

(
1− 2Lε

b

)
. (3.1)

Multiplying (3.1) by eωt and integrating from zero to t, we obtain

Eε(t) ≤ Eε(0)e−ωt,
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from (2.2) we have

E(t) ≤ 1

1− 2Lε
b

Eε(0)e−ωt

≤ 1

1− 2Lε
b

(
1 +

2Lε

b

)
E(0)e−ωt

=
b+ 2Lε

b− 2Lε
E(0)e−ωt.

We deduce that
E(t) ≤ME(0)e−ωt,

where

M =
b+ 2Lε

b− 2Lε
, ω = 2ε

(
1− 2Lε

b

)
such that, 0 < ε < min

( b

2L
,

λb2

L(b2 + λ2)

)
.

Finally, we can say that the wave equation is exponentially stabilizable by boundary feedback.
The maximum decay rate: ω represents the decay rate of energy.

Let the functions Ψ(λ) =
λb2

L(b2 + λ2)
, and ω =: Φ(ε) = 2ε

(
1− 2Lε

b

)
.

Because Ψ′(λ) = b2

L

(
b2−λ2

(b2+λ2)2

)
, and Φ′(ε) = 2− 8Lε

b , then Ψ(λ) attains the maximum b
2L , at λ = b, and Φ(ε)

attains the maximum b
4L , at ε = b

4L .
We infer that the decay rate ω achieve b

4L when the control gain is λ = b.
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