
Sakarya University Journal of Science
ISSN 1301-4048 | e-ISSN 2147-835X | Period Bimonthly | Founded: 1997 | Publisher Sakarya University |

http://www.saujs.sakarya.edu.tr/

Title: Performance comparison and analysis of Linux block I/O schedulers on SSD

Authors: Yunus Ozen, Abdullah Yildirim

Recieved: 2018-11-01 15:03:41

Revised: 2018-11-11 23:53:28

Accepted: 2018-12-13 09:51:56

Article Type: Research Article

Volume: 23

Issue: 1

Month: February

Year: 2019

Pages: 106-112

How to cite
Yunus Ozen, Abdullah Yildirim; (2019), Performance comparison and analysis of
Linux block I/O schedulers on SSD. Sakarya University Journal of Science, 23(1),
106-112, DOI: 10.16984/saufenbilder.477446
Access link
http://www.saujs.sakarya.edu.tr/issue/38708/477446

New submission to SAUJS

http://dergipark.gov.tr/journal/1115/submission/start

Performance comparison and analysis of Linux block I/O schedulers on SSD

Yunus Ozen*1, Abdullah Yildirim1

ABSTRACT

A computer system’s one of the slowest operation is disk seek operation. Sending out read and write
requests to the block devices such as disks as soon as the request arrives results in poor performance.
After performing sorting and merging operations, the operating system kernel issues block I/O requests
to a disk for improving the overall system performance. The kernel subsystem to perform scheduling the
block I/O requests is named as the I/O scheduler. This paper introduces performance comparison and
detailed analyses of Deadline, CFQ, Noop and BFQ block I/O schedulers that are contained in the Linux
4.1x kernel. The tests have been carried out on an SSD block device that is common in hardware
combinations of both personal and professional use-case scenarios. The performance of the schedulers
has been evaluated in terms of throughput. Each scheduler has advantages in different use-case scenarios
and provides better throughput in a suitable environment.

Keywords: Block I/O Scheduler, Deadline, Noop, CFQ, BFQ.

1. INTRODUCTION

Block devices such as hard drives or flash
memories run in a random access fashion to write
or read fixed-size pieces of data. That data is
named as a block. Whenever a piece of data is
requested for a block device, the read/write head
seeks from a position to another position. This
seeking operation is a slow operation. Since
block devices are performance-sensitive the
kernel has a dedicated sub-system called block
I/O layer to optimize seeking operations. The
main motivation of the Linux kernel version 2.5
development was to optimize the block I / O
layer. The bio struct proposed with version 2.5 in
addition to the bufferhead struct is still an
essential part of the modern Linux kernel [1]. The

* Corresponding Author: yunus@yunus.gen.tr
1 Yalova University, Computer Engineering, Yalova, Turkey

bio struct is the basic container for block I/O
requests in the Linux kernel. It stores the active
block I/O operations as a list of segments. A
segment represents a bunch of buffers that are
contiguous in memory. The bio struct provides
flexibility to perform multiple block I/O
operations with its segments based approach.

Block devices have request queues to schedule
pending read or write requests. The kernel
subsystem to perform scheduling the block I/O
requests is called the I/O scheduler. Sending
requests to the block device immediately ends up
in poor performance. The scheduler organizes the
request order in the queue and dispatching time
to the block device. The main objective is
reducing seeks to improve overall throughput of

Sakarya University Journal of Science 23(1), 106-112, 2019

2 Yalova University, Computer Engineering, Yalova, Turkey

https://orcid.org/0000-0003-3225-8797
https://orcid.org/0000-0002-8424-922X

the system. The kernel issues the requests to the
device after performing some merging and
sorting operations in this purpose. Merging is the
bundling of two or more requests into a single
request. Merging the requests reduces overhead
while decreases the seek operations. The whole
request queue is kept sorted according to sector
positions. The purpose in sorting is minimizing
the number of seeks by keeping the disk head
moving into the same direction [2].

Linus Elevator was the first I/O scheduler in the
Linux. It performs both merging and sorting
operations to optimize the number of seeking.
The request is added to the tail of the request
queue, if a suitable location is not found for a
request to merge [3]. If an existing request is
older than a threshold, the new request is added
to the tail of the queue. That is not efficient but
prevents several requests to be starved. This
improves latency but causes to request starvation.

Several schedulers such as Deadline, CFQ, and
Noop are introduced after version 2.6 to
overcome this starvation problem. The main
motivation of those earlier schedulers was
reducing the number of seek operation on
rotational magnetic block devices such as hard
drives [1].

Rotational magnetic block devices have been
replaced by solid state drives (SSDs) recently in
areas ranging from smart devices to large data
center implementations. SSDs have some
advantages over traditional HDDs in terms of
throughput, reliability, and energy consumption.
They are free from the latency of the seeking time
of rotational magnetic disks. However, existing
I/O hardware and schedulers have been designed
and optimized for rotational magnetic disk
specifications [4].

The SSDs are getting research interest for their
potential to make appropriate optimizations with
a new motivation [5].

The literature already has some recent studies
that modify queue structures of existing state of
the art schedulers and exploit the internal
parallelism of SSDs. FlashFQ [6] analyzes
request size to estimate the response time and
uses the start-time fair queueing to provide
fairness among concurrent tasks on SSDs. Gao et

al. [7] proposed a scheduler called PIQ for
minimizing the access conflicts among the I/O
requests in one batch. External mergesort is a
common sorting algorithm to sort large amounts
of data. FMsort focuses on enhancing the merge
phase of external mergesort for SSDs [8]. Several
studies have been proposed to take advantage of
the internal parallelism of SSDs to improve
performance [9]. Mao et al. designed a new I/O
scheduler called Amphibian by utilizing internal
parallelism of SSDs. Amphibian performs size-
based request ordering to prioritize requests with
small sizes [10]. Chen et al. performed
experiments to show the results of optimization
based on internal parallelism for the performance
improvement [11]. Guo et al. [12] proposed a
scheduler called SBIOS considering full use of
read internal parallelism and avoiding the block
cross penalty. Most of the studies in the literature
focus on existing complex schedulers for
adapting them to hardware opportunities of
SSDs. Revisiting state of the art schedulers in
terms of throughput and highlighting the
potential for a simple scheduler is needed.

The focus of our study is to make a comparison
between the state of the art I/O schedulers in the
Linux kernel in terms of throughput.

The rest of the paper is organized as follows. The
schedulers Deadline, CFQ, Noop, and BFQ block
I/O are presented in Section 2. Benchmark setup,
experimental platform details, performance
metrics, and preferred workloads are described in
Section 3. Performance evaluation is presented in
Section 4. We finally conclude this paper in
Section 5.

2. I/O SCHEDULERS

The I/O scheduler merges and sorts the pending
block I/O requests into the request queues and
sends them to the system. This section briefly
describes the Deadline, CFQ, Noop, and BFQ
block I/O schedulers that are compared in terms
of throughput and analyzed in this paper.
Deadline, CFQ, Noop and BFQ block I/O
schedulers are chosen, because they are
contained in most of the Linux distributions with
the 4.1x kernel.

Yunus Ozen, Abdullah Yildirim
Performance comparison and analysis of Linux block I/O schedulers on SSD

Sakarya University Journal of Science 23(1), 106-112, 2019 107

2.1. The Deadline I/O Scheduler

The Deadline scheduler is one of the earliest
schedulers that focus on the starvation problem
of the Linus Elevator. Linus Elevator targets
merging I/O requests to a specific portion of the
disk and this causes starvation of the requests to
another portion of the disk. The read requests are
generally dependent on each other because of
data locality. The scheduler merges them to
minimize the seek operation and this causes
starvation. There is a tradeoff between
minimizing seeks and preventing starvation. The
Deadline scheduler contains a request queue that
is sorted sectorwise on disk and merged like
Linus Elevator. The Deadline scheduler inserts
the request into another queue according to the
type of request. Write requests are inserted into a
write FIFO queue and read requests are inserted
into a read FIFO queue. Deadline scheduler
maintains a balance to make these operations fair
with its multi-queue structure. It gives smaller
expiration value to the read requests than write
requests to prevent write requests starving read
requests. The simplified diagram of deadline
scheduler is shown in Figure 1.

Figure 1. Deadline scheduler.

2.2. The Complete Fair Queuing I/O

Scheduler (CFQ)

The CFQ scheduler organizes incoming I/O
requests to the queues based on the processes.
The newly submitted I/O request is combined
with neighboring requests and insertion sorted
sectorwise in every queue. The CFQ scheduler

differs from other schedulers with its per-process
queues. The round-robin structure lets a number
of requests to be dispatched before continuing on
to the next one. Each process gains an equal slice
of disk bandwidth and this algorithm provides
fairness at a per-process fashion. The simplified
diagram of CFQ scheduler is shown in Figure 2.

Figure 2. CFQ scheduler

2.3. The Noop I/O Scheduler

The Noop scheduler does not sort requests before
inserting to the queue. It merges the new request
to the adjacent request and maintains a single
request queue in a near-FIFO order. It is said to
be the first I/O scheduler that targets the block
devices such as flash memories that run in a
completely random-access fashion. The
simplified diagram of Noop scheduler is shown
in Figure 3.

Figure 3. Noop scheduler.

Yunus Ozen, Abdullah Yildirim
Performance comparison and analysis of Linux block I/O schedulers on SSD

Sakarya University Journal of Science 23(1), 106-112, 2019 108

2.4. The Budget Fair Queueing I/O Scheduler

(BFQ)

The BFQ scheduler is an equal-share disk
scheduling algorithm. It is based on CFQ that is
default I/O scheduler in several Linux
distributions. BFQ converts time intervals based
round-robin to the number of sectors based
round-robin. It assigns a sector budget to each
request instead of a time slice. The simplified
diagram of BFQ scheduler is shown in Figure 4.

Figure 4. BFQ scheduler.

3. EXPERIMENTAL EVALUATION

The benchmark setup and the experimental
platform with the different file sizes used for the
performance analysis of the Deadline, CFQ,
Noop, and BFQ schedulers are presented in this
section. The results provided are read, reread,
write and rewrite results of different schedulers
as already explained in Section 2. For our
analysis, we used IOzone to perform
benchmarking of selected I/O schedulers.

3.1. Benchmark Setup

The preferred benchmark tool for the study
presented in this paper is the IOzone
benchmarking tool [13]. It generates workloads
for several file operations. The IOzone provides
a framework to run different scenarios to
measure the performance of the system. It can
measure the performance of file operations with
different file sizes and different sized chunks of
the file at a time. These chunks are particular

spots within a file to read or write in one try. The
size of these chunks affects the I/O performance.
The experiments have been executed for each of
the schedulers on the selected platform with
constant 64 KB sized chunks and varying file
sizes from 64 KB to 500 MB to measure the
throughput performance against varying file
sizes. The maximum throughput obtained for
each of the file operations has been reported.

3.2. Experimental Platform

The experiments have been carried out on 4 cores
1.90 GHz Intel i7 351U processor system, with
4GB main memory, 256KB L2 cache, 4MB L3
cache running Manjaro Distribution (Linux
4.19.0-3). The SSD was a 240GB Sandisk U100
SATA 600. An EXT4 file-system has been used
on the drive. The computer has been rebooted
before each experiment to remove cache related
effects.

3.3. Performance Metrics

The throughput of disks is finite and
comparatively small while reading and writing. It
causes bottlenecks that block I/O schedulers
intend to improve overall system performance by
changing the throughput performance. Total disk
throughput (in KB/s) has been used as the metric
to show the performance of the schedulers in the
benchmark experiments. I/O intensive process
execution time has been used to measure disk
throughput. Any other processes have been killed
except the daemons before benchmark execution.
In these experiments, larger throughput (smallest
execution time) means better scheduling for that
file operations.

3.4. Workloads

The write, rewrite, read, and reread workloads
have been used for the experiments using IOzone
benchmark tool.

The read test is for measuring the reading
performance of an existing file. The reread test is
for measuring the reading performance of a file
that was recently read. In this case, the
performance tends to be higher as the data is

Yunus Ozen, Abdullah Yildirim
Performance comparison and analysis of Linux block I/O schedulers on SSD

Sakarya University Journal of Science 23(1), 106-112, 2019 109

cached by the OS as it is recently accessed. The
write test is for measuring the writing
performance of a new file to the disk. Whenever
a new file is written, the metadata is written on
the block device in addition to the data itself. The
rewrite performance becomes higher than the
performance of writing a file because of this
overhead. The rewrite test is for measuring the
writing performance of a file that already exists
on the disk. Whenever an existing file is written,
the required effort is lower as the metadata is not
written again.

4. ANALYSIS AND RESULTS

This section shows a comparative performance
analysis using the workloads described in
Section 3 for the Linux I/O schedulers Deadline,
CFQ, Noop, and BFQ. The aim of the analysis is
to understand how different schedulers perform
under different workloads in terms of throughput.

For multiprocess throughput evaluation, we let
IOzone run 3 processes for the initial write,
rewrite, read, reread tests. These tests have been
carried out 10 times and the results have been
analyzed through the average of these tests.

Figure 5 shows the initial write test results. Noop
gives the best performance with its SSD-ready
structure. CFQ scheduler gives equal chance to
every process and it has better write performance
comparing to Deadline and BFQ. The schedulers
without process priority have worse throughput
results. Noop has an average 10% better write
performance than its closest competitor CFQ.

Figure 5. Write test results.

Figure 6 presents the rewrite test results. The
throughput results have nearly the same ratio

with the write test results. The write tests write
the data and also the metadata for the file, but the
rewrite test writes only the data to disk. All
schedulers have higher rewriting performance
than writing performance. The average rewrite
performance of all schedulers is 38% better than
the write performance. Noop has an average 4%
better rewrite performance than its closest
competitor CFQ.

Figure 6. Rewrite test results.

The read and reread tests are shown in Figure 7
and Figure 8. Both read and reread throughput
results are better then write and rewrite results for
all schedulers. Noop has the best results.
Deadline scheduler has better results than CFQ
and BFQ in both read and reread tests because it
prioritizes reads more than writes. Noop has an
average 7.1% better read and 10.2% better reread
performance than its closest competitor
Deadline. Deadline has an average 2.9% and
6.7% better read performance than CFQ and
BFQ respectively. It also has an average 1.5%
and 7.9% better reread performance than CFQ
and BFQ respectively.

Figure 7. Read test results.

Yunus Ozen, Abdullah Yildirim
Performance comparison and analysis of Linux block I/O schedulers on SSD

Sakarya University Journal of Science 23(1), 106-112, 2019 110

Figure 8. Reread test results.

The average of all tests is shown in Figure 9.
CFQ scheduler provides an equal chance to each
process in its round-robin structure. This makes
it not suitable for environments that might need
to prioritize request types for processes. Deadline
scheduler is suitable for read-intensive works. Its
default timeout values prioritize reads more than
writes. These values are configurable according
to the features of the work. Noop scheduler is
optimized for systems that do not need a specific
I/O scheduler. It has a modest structure with its
single FIFO queue. It is suitable for the
environments where the operating system is in a
hypervisor. The underlying host operating
system does scheduling itself in hypervisors or
cloud environments that the operating systems
inside virtual boxes do not need complex I/O
schedulers. The BFQ scheduler is optimized for
interactive tasks of personal-use scenarios
instead of server scenarios. It focuses on
delivering the lowest latency rather than reaching
higher throughput. The operating system
distributions focusing on personal usage do not
perform the heavy read or write operations
generally and lower latency is the prioritized to
throughput.

Figure 9. Avarage of all test results.

5. CONCLUSION

Block devices maintain request queues and
approaches to schedule pending read or write
requests. The kernel I/O scheduler subsystem is
responsible for request optimization. The
performance of Deadline, CFQ, Noop, and BFQ
block I/O schedulers that are included in the
latest Linux 4.1x kernel are compared in terms of
throughput this paper. The tests have been
carried out on an SSD block devices that are
common in ranging from small handheld devices
to large-scale data center configurations.
According to the test results, each scheduler has
different advantages over others. CFQ scheduler
is suitable for the systems that require balanced
I/O access and do not need process prioritization.
Deadline scheduler has better performance on
read-intensive works. Noop is for the systems on
the cloud or hypervisors. BFQ performs better on
interactive use-case scenarios. Noop is the
simplest scheduler and it is considered to have
the potential for optimized new implementations
targeting SSD block devices.

REFERENCES

[1] R. Love, "The Block I/O Layer," in Linux
Kernel Development, Crawfordsville,
Indiana, Addison-Wesley, 2010, pp. 290-
304.

[2] F. Chen, R. Lee, and X. Zhang. “Essential
roles of exploiting internal parallelism of
flash memory based solid state drives in
high-speed data processing,” In HPCA’11,
San Francisco, CA, 2011.

[3] J. Fusco, "The I/O Scheduler," in The Linux
programmer’s toolbox, Upper Saddle
River, NJ, Pearson Education, 2007, pp.
282-284.

[4] J. Kim, J. Kim, P. Park, J. Kim and J. Kim,
"SSD Performance Modeling Using
Bottleneck Analysis," in IEEE Computer
Architecture Letters, vol. 17, no. 1, pp. 80-
83, 1 Jan.-June 2018.

[5] S. Mittal and J. S. Vetter, "A Survey of
Software Techniques for Using Non-
Volatile Memories for Storage and Main
Memory Systems," in IEEE Transactions

Yunus Ozen, Abdullah Yildirim
Performance comparison and analysis of Linux block I/O schedulers on SSD

Sakarya University Journal of Science 23(1), 106-112, 2019 111

on Parallel and Distributed Systems, vol.
27, no. 5, pp. 1537-1550, 1 May 2016.

[6] K. Shen and S. Park, “FlashFQ: A fair
queueing I/O scheduler for flash-based
SSDs,” in Proc. USENIX Annu. Tech.
Conf. (USENIX ATC), San Jose, CA, USA,
Jun. 2013, pp. 67–78.

[7] C. Gao et al., "Exploiting Parallelism for
Access Conflict Minimization in Flash-
Based Solid State Drives," in IEEE
Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 37,
no. 1, pp. 168-181, Jan. 2018.

[8] J. Lee, H. Roh and S. Park, "External
Mergesort for Flash-Based Solid State
Drives," in IEEE Transactions on
Computers, vol. 65, no. 5, pp. 1518-1527,
1 May 2016.

[9] W. Wang and T. Xie, “PCFTL: A plane-
centric flash translation layer utilizing
copy-back operations,” IEEE Trans.
Parallel Distrib. Syst., vol. 26, no. 12, pp.
3420–3432, Dec. 2015.

[10] B. Mao and S. Wu, “Exploiting request

characteristics and internal parallelism to

improve SSD performance,” in Proc. 33rd

IEEE Int. Conf. Comput. Design (ICCD),

NY, USA, Oct. 2015, pp. 447–450.

[11] F. Chen, R. Lee, and X. Zhang, “Essential

roles of exploiting internal parallelism of

flash memory based solid state drives in

high-speed data processing,” in Proc. 17th

Int. Conf. High-Perform. Comput. Archit.

(HPCA), San Antonio, TX, USA, Feb.

2011, pp. 266–277.

[12] J. Guo, Y. Hu and Bo Mao, "SBIOS: An

SSD-based Block I/O Scheduler with

improved system performance," 2015

IEEE International Conference on

Networking, Architecture and Storage

(NAS), Boston, MA, 2015, pp. 357-358.

[13] W. D. Norcott, D. Capps, “Iozone

filesystem benchmark,” [Online].

Available: www.iozone.org. [Accessed 4

October 2018].

Yunus Ozen, Abdullah Yildirim
Performance comparison and analysis of Linux block I/O schedulers on SSD

Sakarya University Journal of Science 23(1), 106-112, 2019 112

