Middle East Journal of Science (2018) 4(2):70 -80 V

INESEG

INTERNATIONAL [Middle East Journal of Science

ENGINEERING, (2018) 4(2):70 -80
SCIENCE AND Ipyblished online December, 2018  (http://dergipark.gov.tr/mejs)

EDUCATION .. :
NESEC,  GROUP doi: 10.23884/mejs.2018.4.2.03

e-ISSN 2618-6136
Received: November 2, 2018 Accepted: December 4, 2018
Submission Type: Research Article

BLOW UP OF SOLUTIONS FOR A TIMOSHENKO EQUATION WITH
DAMPING TERMS

Erhan Piskin* and Hazal Yiksekkaya
Dicle University, Department of Mathematics, Diyarbakir, Turkey

*Corresponding author: episkin@dicle.edu.tr

Abstract: In this work, we studied the following equation

ug + A — M (||Vu||2) Au— Aug +up = ul?
regard to initial and Dirichlet boundary condition. We show that the blow up of solutions
with positive and negative initial energy.

Keywords: Timoshenko equation, Blow up, Damping term.

Mathematics Subject Classification (2010): 35A01.
1 Introduction

In this work, we consider the following Timoshenko equation
wp + A%u— M (||w|2) A= Dug+up = |uli u,  (z,1) € Q% (0,T),
u(z,0) =wug (x), ut(z,0) =u (x), x €, (1)
u(x,t):%u(a:,t):o, x € 09,
where €2 is a bounded domain of R™ having a smooth boundary 9€2. Also ¢ > 1 is real numbers,
outer normal is denoted by v and M (s) =1+ 57, v > 1.

In the event of M (s) = 1, without fourth order term (A2u) and strong damping term

(— A ug) the equation (1) can be recorded in the following form
Uy — AU+ up = |u\q71 u. (2)

Georgiev and Todorova, Levine, Messaoudi, Vitillaro made further efforts to get the existence

and blow up in finite time of solutions for (2).
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In the event of M (s) = 0 and absent the strong damping term the equation (1) can be typed
in the following form

wg + A%u 4 up = |ulf . (3)

Messaoudi [11] researched the local existence and studied blow up of the solution to the equation
(3). Wu and Tsai [16] got global existence and made researches about blow up of the solution of
the problem (3). Then, blow up of the solution for the problem (3) with positive initial energy
was studied by Chen and Zhou [2] .

The problem (1) was researched by Esquivel-Avila [4, 5], he demonstrated blow up, unbound-
edness, convergence and made researches for global attractor. Pigkin [12] researched the local
and global existence, asymptotic behavior also studied about blow up of the solution. Later,
Pigkin and Irkil [13] investigated blow up of the solutions (1) for positive initial energy.

In this paper, we show the blow up of solutions of the problem (1), for positive and negative
initial energy.

This work is arranged as the following. In chapter 2, some lemmas and notations are given.

In chapter 3, blow up of the solution is discussed.

1.1 Derivation of the Timoshenko equation

In this section, we show the derivation of the Timoshenko equation [3, 14].

w
In the foregoing figure, the bending moment is indicated by M and shearing force is indicated
by Q. Also ¢ is the angle of bending and ~ is the angle of shearing. Deflection is stated by W.

For a great number of minuscule deflections

ow
- 4
5 — Pt (4)
and by elementary beam theory
M=-EI%,
(5)
Q = kEAGH.
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Here, flexural rigidity is denoted by ET; k is a constant related to the form of cross-section of a
beam; A is field of cross-section and modulus of rigidity is denoted by G.
The movements equations are:

The rotations equation is

oM 2¢>

Here, the density of the material is p.

In the direction of W, the equation for translation is-

o) 2W
"X dr — pA
oz 00 = PA 5

dx. (7)

In equation (5), if the account of @ is substituted into equations (6) and (7), we get

oM 0%
—67+kAG p182, (8)
O (kAGH) O*W
or pA ot? ©)
Substituting for
_ oW
7= or
in the equation (4) and
9¢
M=—-FEI—
Ox

in the equation (5) into equations (8) and (9), we attain

2 2
¢ ow N\ 8 ¢
EI'y— +kAG ( ¢> Plom =0, (10)
PW RPW  9¢
A2 a (209 an

To eliminate ¢ from equations (10) and (11), we rearrange (12) to read

06 __ pA PW W
or  kAG Ot? 0x? "’

Now differentiating equation (10) accordinly to = and substituting for % we attain

P2 [ pA W W

EIW[ KAG 012 axz}
W pA BW  PW
022 T RAG o 8:52}

82[ pA O2W 82W}

+RAG |

P oE | TRAG 02 T 0a?
_—
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Simplifying the above expression we obtain

Elp o'W AW PW PIoMW oW
56 0o TP o TrAGE T ig o  Plomar — 0
therefore
oW EN o'W PW 1MW
Bl g =l <1+kG> aror TP TG o T (12)

This equation is termed the ” Timoshenko equation”.

Rotatory inertia is symbolized by
0w
—pl———
0x20t2

in equation (12) and amendment related to shear by

_plE ‘W LYW
kG 0z20t2 ' kG Ot

The Euler’s equation (13) is got from the Timoshenko equation by sifting the amendments
related to both shear and rotatory inertia.

0w 0*wW

EI
ozt TP e

=0. (13)
The Timoshenko beam theory can be thought like a system, such as (10) and (11) or in the one
form, as equation (12).

2 Preliminaries

In this chapter, we should show some assumptions and lemmas which will be taken advantage

of. Where ||.|| and ||.[|, indicate the usual L? (Q) norm and LP () norm, in turn.

Lemma 1 (Sobolev-Poincare inequality) [1]. Let p be a number with 2 < p < oo (n=1,2) or
2<p< % (n>3), and Cy, = C4 (2, p) is a constant, such that

lull, < C« [Vull for u € Hy ().

We identify the energy function as follows

Ly 2, 1 2 2
BE@) = 3lul®+3 (IVul*+2u]?)
1 2(7+1) 1 +1
— | Vu| """ — ——|Ju]|d; . 14
by IVl = 1 (1)
Lemma 2 FE (t) is a nonincreasing function also t > 0 and
E'(t) = = ul® = [Vu® < 0. (15)
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Proof. If we multiply the equation of (1) by u; and integrate over 2, use integrating by parts,
we attain
¢
E(t) - E(0) = _/ (e 2 + 197 2) dr for ¢ > 0. (16)
0
]

Also, we remark the local existence theorem of problem (1), the proof of it can be present

in [12].

Theorem 3 (Local existence). Supposing that (ug,u1) € HE (Q) x L%(Q) ensures, after there

is an only solution u of (1) satisfying
ue C([0,7); Hg (),

u € C([0,7);L*(Q)) N LPT (2 x (0,7)).

Furthermore, at a minimum one of the following expressions holds:
(i) T = oo,

(i) |wl* + | Aul®* — o0 as t — T

3 Blow up of solutions

In this chapter, we work away the blow up of the solution for the problem (1). We should denote

the following two lemmas,which will be taken advantage of then.

Lemma 4 [9]. Let § >0 and B (t) € C?(0,00) be a nonnegative function satisfying
B"(t)—4(6+1)B (t)+4(6+1)B(t) > 0. (17)
If
B’ (0) > r2B (0) + Ko, (18)
with rg =2 (5 +1) — 24/(6 + 1) 6, then B’ (t) > Ko for t > 0,here Ko is a constant.
Lemma 5 [9/. If H(t) is a nonincreasing function on [tg,00) and satisfies the differential

mequality

[H' (0] = a+b[H @), fort>to, (19)

where a > 0, b € R, then there exists a finite time T™ such that

1i H(t)=0.
,Nim H ()
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Upper bounds for T are estimated as follows:

(i) If b < 0 and H (to) < min {1,/=%} then

1 _a
T <to+ ” )
NENNE TS
(ii) If b =0, then
H (to)
T <t -
St + \/a
(ii) If b > 0, then
H
< O o <ty 8 S [ et ) ).

where ¢ = (%)ﬁ .

Definition 6 A solution u of (1) is termed blow up if there is a finite time T™ such that

¢
lim [/ ulda +/ / <u2 + |Vu|2> d.%'d’l’:| = 00. (20)
t—T*— [¢) 0o JOQ

t
a(t) = / u?dx +/ / <u2 + ]Vuﬁ) dxdr, for t > 0. (21)
Q 0 JO

Let

Lemma 7 Assume '%1 >0 >3, and that v > 0, then we have

a" (t) 24(5+1)/u?dm—4(25+1)E(0)+4(25+1) /t (HuTHQJrHVuTH?) dr. (22)
0

Q

Proof. By differentiating (21) according to t, we have

o (1) = 2/ wwgd + [[ul® + |Vul]?, (23)
Q

a’(t) = 2/u§d:c—|—2/uuttdx+2/uutdx+2/ VuVuidx
Q Q Q Q

=2 (Jluell® + Jll ) = 2 (19l + Va0 + |Au)?) (24)
Then from (1) and (24), we have
d'(t) = 4(5+1)/Qu§dx—4(25+1)13(0)
+48 ([l + || Au)?) + (4“ 2 2) [Vl 20

v+1
26 + !
+ (2= 2D gt a2+ ) [ (4 19 ar

Since qT >0 >3, we obtain (22). m
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Lemma 8 Assume q%,‘l >02>73%, v>0 and one of the following expressions are satisfied
(i) E(0) <0 and [quouidz > 0,
(i) E(0) =0 and [quouidz >0,
(iii) E(0) > 0 and
@ (0) > 72 [a(0) + grats | + ol + Vol (25)
4(6+1)

holds.
Then a' (t) > ||luo||® + | Vuol|? fort > t*, where to = t* is given by (26) in case (i) and to = 0
in cases (i) and (iii).

Where K1 and t* are defined in (30) and (26), in turn.
Proof. (i) If E£(0) < 0, then by (22), we attain
a (t) > 2/ uourde + ||lug||® + ||[Vuol®> =4 (26 + 1) E(0)t, t>0
Q

Thereby we obtain a’ (t) > |luol|® + || Vuol/? for ¢ > ¢*, where

@' (0) = (Jluol> + [ Vo)

12+ )E@0) (26)

t* = max

(i) If E(0) = 0 and [, upurdz > 0, then a” (t) > 0 for t > 0. We have a’ (t) > |luo|® +
|Vuo|®, ¢ > 0.
(iii) If £(0) > 0, firstly, we write down that

t
2/ /uutda:dv': ull? — uoll?. (27)
0 Ja
Utilising Holder inequality and Young inequality, we obtain
2 2 Lo ! 2
ol < ol + [l dr + [ el ar (28)
From (21), (23) and (28), we attain
t
o (0 <at) + ol + el + [ [ (u2+[9ul) dadr. (20)
0 Ja
Hence, by (22) and (29), we get
" (t)—4(06+1)d (t)+4(0+1)a(t)+ K >0,
where
K = 4(25+1)E(0)+4(5+1)/u§dx (30)
Q

t
#46+1) [ Valtdo =15 [ (Jurl + [ Varl?) dr
Q 0
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Let
K
b(t)=al(t —, t>0.
=00+ i o>
After b (t) provides Lemma 4. As a result, we obtain by (25) @’ (t) > |luo||® + ||[Vuol/*, ¢ > 0,

where r9 is given in Lemma 4. m

1

Theorem 9 Assume 4= >0 > 3, v > 0 and one of the following expressions are satisfied

(i) E(0) <0 and [quouidz > 0,
(i) E(0) =0 and [quouidz >0,
’ 2 2\\2
E (a'(to)=(lluo >+ Vuoll*))
(i) 0 < B(0) < gty +0r—to) (TP v e0TP)]
After the solution u blow up in finite time T™ in the case of (30). In case (i),

and (25) holds.

. ~ H (o)
T <to— 15 o)’ (31)
Moreover, if H (ty) < min {1, ,/—%} , we get
) 1 V=i
T §t0+\/jbln —%—H(tof (32)
where
a = 82H23 (o) {(a (to) — Hu0||2)2 —8E(0)H™5 ()| >0, (33)
b=862E(0). (34)
In case (i),
* . H (to)
T <t H (to)" (35)

In case (iii),

. o H(b) * 3541 (a\2t5 § ay2+1 — L
T* < Ja or T* <tg+27% (g) o 1 1+<5> H (t0) -

where a and b are given (33), (34).

Proof. Let
H (1) = [a(t) + (T3 = ¢) (lluo> + Hwouz)}_d, for ¢ € [0,71], (37)

where T7 > 0 is a specific constant that will be indicated then. Later, we obtain

#'@ = ~afa)+@ -1 (ol + 1vuol?)] " [o @) - (Juol?® + 1Vuol?)]
= —oH (1) o (1)~ (Jluoll® + [ Vuol*) |, (38)
H'(t) = —H™F (t)a" @) [a (®) + (71 = 0) (luol® + [ Vuol)

5 (1) (146) [ (6) — (luol® + [ Vo))
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and

H" (t) = —6H™S (1) V (1), (40)
where

V0 =a () [+ (T — 1) (Juol + 1 Vuol?)] -1+ 6) [a () — (uoll® + [ Po]?)] . (41)

For simplicity of calculation, we define

P, = [ou?dz, R, = [yuidz,
Qu=Jylull®dt,  Su= [ llull®dt,
M, = [L|Vuldr, N, = [|Vu|*dr.

From (23), (27) and Holder inequality, we get

t
o () = 2/uutdm+|yu0\|2+\|vu||2+2/ /uutd:cdt
Q 0 JOQ

< 2 (VRPu +VQuE) + Juo|* + V. (42)

If case (i) or (ii) holds, from (22) we get
a"(t) > (—4—886) E(0) +4 (14 6) (Ru + Su+ Nu) - (43)
Thus, from (41)-(43) and (37), we attain

V() > [(—4—85)E(0)+4(1+0)(Ru+ Sy + Ny H5 (1)

—4(1+90) (\/RUPU +/QuSu + \/MuNu)2 .

From (21),

t
a(t) = /u2dx+//(u2+|Vu|2)dxdT
Q 0 Jo

and (37), we get
V(t) > (—4—86) E(0) H™3 ()+4(1+0) [(Ru + Su+ No) (11 — 1) (Jluol® + [ Vuo|?) +© (1)),

where

2
S} (t) = (Ru + Su + Nu) (Pu + Qu + MU) - (\/Rupu + \/QuSu + \/MuNu) .
Utilising the Schwarz inequality, and © (¢) being nonnegative, we get
V() > (—4—85)E(0)H 5 (1), t >t (44)
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Thus, from (40) and (44), we obtain
H” (t) < 45 (1 + 26) E (0) H''5 (t), ¢ > to. (45)

From Lemma 8, we recognise that H' (t) < 0 for ¢ > to. Multiplying (45) by H' (¢) and integrating

it from ty to t, we obtain

H™(t) > a+bH>"5 (1)

for t > to, we can see a,b are described in (33) and (34) in turn.

If case (iii) holds, similar to the steps of case (i), we obtain a > 0 if and only if

(o t0) = (Juol? + 19 02) )
8 [a(to) + (71 = to) (Iluoll” + [Vuo]*) |

E(0) <

After, from Lemma 5, there is a finite time 7™ such that lim H (¢f) = 0 and upper bound of
t—T*—
T* is estimated for the sign of £ (0). This implies that (20) provides. m
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